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The linear mixed-effects model (LMM) is widely used
in the analysis of clustered or longitudinal data. This pa-
per aims to address analytic challenges arising from estima-
tion and selection in the application of the LMM to high-
dimensional longitudinal data. We develop a doubly regular-
ized approach in the LMM to simultaneously select fixed and
random effects. On the theoretical front, we establish large
sample properties for the proposed method under the high-
dimensional setting, allowing both numbers of fixed effects
and random effects to be much larger than the sample size.
We present new regularity conditions for the diverging rates,
under which the proposed method achieves both estimation
and selection consistency. In addition, we propose a new al-
gorithm that solves the related optimization problem effec-
tively so that its computational cost is comparable with that
of the Newton-Raphson algorithm for maximum likelihood
estimator in the LMM. Through simulation studies we as-
sess performances of the proposed regularized LMM in both
aspects of variable selection and estimation. We also illus-
trate the proposed method by two data analysis examples.
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1. INTRODUCTION

In this paper, we consider estimation and variable selec-
tion in the analysis of high-dimensional clustered or longitu-
dinal data. Such data are becoming increasingly popular in
many subject-matter areas, especially in life sciences, social
sciences, and medical and health sciences. Linear mixed-
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effects models (LMM; Laird and Ware, 1982), being one of
the most widely used models in the analysis of repeated mea-
surements, are greatly challenged by data with the number
of covariates diverging to infinity along with the sample size.
This paper focuses on the development of a novel and effec-
tive variable selection procedure in the LMM that extracts
important predictors from a vast pool of candidates.

When the number of predictors is large, a variable selec-
tion method enables us to achieve parsimonious models that
include most important predictors. A parsimonious model is
easier to interpret and implement in practice. Information
criteria, such as AIC (Akaike, 1973), BIC (Schwarz, 1978)
and conditional AIC (Vaida and Blanchard, 2005; Liang,
Wu and Zou, 2008; Greven and Kneib, 2010) are among the
most popular model selection tools in the LMM. However,
these selection procedures are known to be inefficient or even
infeasible when the number of possible mixed-effects models
is large.

Extending from the recent variable selection literature
and assuming a fixed structure of random effects, Lan (2006)
and Schelldorfer et al. (2011) developed penalized likelihood-
based approaches to selecting fixed effects. However, neither
of the work considered the selection of random effects. In
practice, the selection of random effects is equally impor-
tant to the selection of fixed effects, as the configuration
of the random effects component not only determines the
marginal covariance structure of the correlated data, but
also steers the interpretation of subject-specific effects of
covariates. Though a misspecified covariance structure may
not affect the consistency of fixed effects estimators (e.g.
Verbeke and Lesaffre, 1997), it does affect the estimates of
random effects and the asymptotic covariance matrix. For
example, Lange and Laird (1989) showed that an under-
specified random-effects component would lead to biased es-
timation for the variance of fixed effects. On the other hand,
an over-parameterized covariance structure may lead to un-
stable algorithms and loss of estimation efficiency. Thus, an
appropriate composition of the random-effects component is
critically important in the LMM.

In the situation where both numbers of fixed and random
effects are fixed as constant, there are several works that
have contributed to the selection of the random effects com-
ponent in the LMM. Stram and Lee (1994) discussed the
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asymptotic behavior of a likelihood ratio test for nonzero
random effects variances. For the special case where one
is interested in whether any random effects should be in-
cluded, Commenges and Jacqmin-Gadda (1997), Lin (1997)
and Hall and Praestgaard (2001) proposed score tests. Fos-
ter et al. (2009) proposed a LASSO random effects models
with no fixed effects, where random effects were assumed
to follow a double exponential distribution, and the Laplace
approximation was used to obtain the marginal likelihood
function. Albert and Chib (1997) and Chen and Dunson
(2003) also tackled the problem of random-effects selection
using Bayesian approaches. Sinharay and Stern (2001) used
Bayes factors to compare variance components in the LMM.
Similar to Foster et al. (2009), these papers did not consider
the fixed effects selection.

Several recent papers have investigated simultaneous se-
lection of fixed and random effects in the LMM. Jiang et al.
(2008) developed a “fence” method for variable selection in a
general mixed-effects model. Bondell et al. (2010) developed
a penalized joint log-likelihood approach with an adaptive
penalty. Two Bayesian approaches were proposed by Kinney
and Dunson (2007) and Ibrahim et al. (2011), respectively.
The former considered a prior with mass at zero, while the
latter also considered a regularized likelihood-based method.
Fan and Li (2012) recently proposed a two-step method for
selecting both the fixed and random effects. In the first step,
the method selects random effects using group-lasso via reg-
ularizing the mode of the posterior distribution of random
effects. In the second step, the method focuses on fixed-
effects selection with given random effects, and the authors
have concentrated on the scenario that the number of fixed
effects is smaller than the sample size. Ahn et al. (2012) pro-
poses a moment-based method for random effects selection
in linear mixed models. The theoretical results with fixed
p are established. Lai et al. (2012) considered fixed and
random effects selection in nonparametric additive mixed
models. Yang (2012) proposed Bayesian variable selection
for logistic mixed model with nonparametric random ef-
fects. Du et al. (2013) considered the fixed and random
effects selection in a finite mixture of linear mixed-effects
models. Lin et al. (2013) proposed a two-stage model se-
lection procedure for the linear mixed-effects models. The
procedure consists of two steps: First, penalized restricted
log-likelihood is used to select the random effects. Next, the
penalized log-likelihood is used to select the fixed effects.
The theoretical results with fixed p are established. Pan and
Huang (2014) considered the selection of random effects with
a fixed dimension with no theoretical justification. Based on
a reparametrization of the covariance matrix of random ef-
fects by a modified Cholesky decomposition, they added a
LASSO penalty function on the variances of the random
effects, resulting in a non-convex constrained optimization
that was numerically of great difficulty.

In this paper, we consider a new regularization approach
that performs estimation and variable selection simultane-
ously for both fixed and random effects. Our development

differs from previous methods in two aspects. First, our
method allows both numbers of fixed and random effects
to diverge to infinity as the sample size increases, while pre-
vious methods have restricted their attention to finite di-
mensions of fixed and/or random effects. Furthermore, in
the scenario we consider, large-sample properties have not
been studied previously. The reach of estimation and selec-
tion consistency requires a delicate control of signal-to-noise
ratio in the model, which involves an inter-play between the
strength of signals (fixed effects) and the amount of varia-
tions (random effects and random errors). One of our new
contributions is to establish a set of regularity conditions
concerning the diverging rates for tuning parameters, under
which the proposed regularization method achieves both es-
timation and selection sparsistency. Second, our method is
implemented by an efficient optimization algorithm, whereas
previous methods are based on the EM or Monte Carlo al-
gorithm which is known to be computationally intensive,
particularly when the dimensions of fixed and random ef-
fects are large. In contrast, our new optimization algorithm
is as effective as the Newton-Raphson algorithm for comput-
ing the maximum likelihood estimator (MLE) in the LMM.
Finally, using the Cholesky decomposition of the selected
covariance matrix of random effects, we ensure it to be
positive-definite. Similar techniques have been considered
in the literature including, for example, Pourahmadi (1999,
2000), Pan and MacKenzie (2003) and Ye and Pan (2006).
Further, the resulting random effects selection is invariant
with respect to the ordering of predictors appearing in the
Cholesky decomposition.

The rest of the paper is organized as follows. In Section 2,
we introduce our new method: the doubly regularized MLE.
In Section 3, we discuss a new algorithm to carry out the
related optimization. In Section 4, we study the asymptotic
behavior of the proposed method under some mild regu-
larity conditions, including the classical assumption of re-
stricted eigenvalues for covariates associated with fixed ef-
fects and a regularity condition of similar flavor for covari-
ates associated with random effects. In Sections 5 and 6, we
demonstrate the use of our method via simulations and two
data examples, respectively. We conclude the paper with
Section 7. All technical proofs are given in the Appendix
section.

2. METHODOLOGY

2.1 Model

Suppose there are n subjects under study, and there are
mi repeated observations recorded for subject i, i = 1, . . . , n;
throughout the paper, we consider bounded mi. There are
pn covariates associated with the fixed effects, denoted by
X1, . . . , Xpn , while qn covariates associated with the ran-
dom effects, denoted by Z1, . . . , Zqn . Usually, the qn random-
effects covariates are a subset of the pn fixed-effects covari-
ates. In this paper, we allow both pn → ∞ and qn → ∞ as
n → ∞. For the ease of exposition, in the following presen-
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tation we use simple notation of p and q unless the subscript
n is necessary. For subject i at observation j, let Yij denote
the response variable, xij be the vector of p predictors in the
fixed effects component, and zij be the vector of q predictors
in the random-effects component. The linear mixed-effects
model is then written as follows:

(1) Yij = xT
ijβ + zTijbi + εij ,

where errors εij ’s are assumed i.i.d. N(0, σ2), and the ran-
dom effects, bi = (bi1, . . . , biq)

T , are i.i.d. according to a
multivariate normal distribution MVNq(0, σ

2D). Denote the
set of parameters to be estimated by θ = (β,D, σ2). With-
out loss of generality, we assume each covariate Xj or Zk is
standardized to have zero mean and unit Euclidean norm.
Thus, the fixed intercept can be removed from the model.
However, we will always keep the random intercept, denoted
by b1, in the model to account for the minimal level of
within-subject correlation.

For notational simplicity, we rewrite (1) in a matrix for-
mat:

Yi = Xiβ + Zibi + εi,

where Yi = (Yi1, . . . , Yimi)
T ,XT

i = (xi1, . . . ,ximi),Z
T
i =

(zi1, . . . , zimi), and εi = (εi1, . . . , εimi)
T . The first two mo-

ments of Yi are then given by

E(Yi) = Xiβ,

V ar(Yi) = σ2
(
ZiDZT

i + Imi

)
.

Clearly, the component of fixed effects, i.e. Xi, affects the
mean model, and the component of random effects, i.e. Zi,
affects the covariance structure. Our goal is to jointly select
and estimate both fixed and random effects.

2.2 Maximum likelihood estimation

Our variable selection method is built upon a modified
maximum likelihood (ML) estimation in the LMM (e.g.,
Laird and Ware, 1982; Jennrich and Schluchter, 1986; Lind-
strom and Bates, 1988), which is detailed as follows.

Under model (1), the marginal distribution of Yi is given
by

Yi ∼ MVNmi(Xiβ, σ
2Vi),

where Vi = Imi + ZiDZT
i . Subject to a constant, the (full)

log-likelihood for the data is

�nF (β,D, σ2) = −1

2

n∑
i=1

log
∣∣∣σ2Vi

∣∣∣(2)

− 1

2σ2

n∑
i=1

(Yi −Xiβ)
TV−1

i (Yi −Xiβ),

and the ML estimates of parameters β,D and σ2 can be
obtained by maximizing the log-likelihood function (2). Note
that if D were known, the MLE for β would be given by

(3) β̂(D) = argmin
β

n∑
i=1

(
Yi −Xiβ

)T
V−1

i

(
Yi −Xiβ

)
.

One well-known criticism on the ML estimation is that for
the variance components (i.e.D), there is a downward finite-
sample bias due to the fact that the ML method does not
take into account the loss in degrees of freedom from the es-
timation of β. The restricted maximum likelihood estimate
(REML) corrects for this bias by deriving estimates of the
variance components as the maximizers of the log-likelihood
based on N − p linearly independent error contrasts, where
N is the total number of observations from all individuals,
i.e., N =

∑n
i=1 mi. This restricted log-likelihood, according

to Harville (1974), is

�R(D, σ2)

= −1

2

n∑
i=1

log
∣∣∣σ2Vi

∣∣∣− 1

2
log
∣∣∣σ−2

n∑
i=1

XT
i V

−1
i Xi

∣∣∣
− 1

2σ2

n∑
i=1

{
Yi −Xiβ̂(D)

}T

V−1
i

{
Yi −Xiβ̂(D)

}
,(4)

where β̂(D)) is given by (3).
Joining the estimator (3) and the REML (4), we may

write a modified log-likelihood as

�nM (β,D, σ2) = −1

2

n∑
i=1

log
∣∣∣σ2Vi

∣∣∣
− 1

2
log
∣∣∣σ−2

n∑
i=1

XT
i V

−1
i Xi

∣∣∣
− 1

2σ2

n∑
i=1

(
Yi −Xiβ

)T
V−1

i

(
Yi −Xiβ

)
,(5)

provided that all the determinants in (5) are positive. The
estimates of β and D can then be obtained by jointly max-
imizing (5).

2.3 Doubly regularized likelihood estimation

The selection of fixed- and random-effects (SOFARE) can
be realized through the selection of nonzero elements in β
and D. If βj = 0, the corresponding predictor Xj (a fixed
effect) will be excluded from the model. If a diagonal element
Dkk = 0, which means the variance of the kth random effect
is zero, then the random effect bk will be removed from the
model. In order to obtain the desired sparsity in the final
estimates, we propose to regularize the estimation of both β
andD simultaneously. Specifically, we consider the following
two cases.

(I) The N < p case: When the total number of observa-
tions N is smaller than the total number of candidate
fixed effects p, the modified log-likelihood (5) is not ap-
plicable as it relies on N −p (< 0) linearly independent
error contrasts. In this case, we propose to use double
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regularization on the log-likelihood (2), that is, we wish
to find β, D, and σ2 that maximize

Qn(β,D, σ2) = �nF (β,D, σ2)− λ1J1(β)− λ2J2(D),

where �nF (β,D, σ2) is given in (2).
(II) The N > p case: When the total number of observa-

tions N is greater than the total number of candidate
fixed effects p, as discussed in Section 2.2, to correct
for the bias in the variance component estimation, we
propose to use the modified log-likelihood (5) to carry
out regularized estimation; that is, we wish to find β,
D, and σ2 that maximize

Qn(β,D, σ2) = �nM (β,D, σ2)− λ1J1(β − λ2J2(D),

where �nM (β,D, σ2) is from (5).

Note that in the above formulations, λ1 and λ2 are two non-
negative tuning parameters. The first penalty function J1(β)
controls the sparsity of final estimation of β, and hence nav-
igates the selection of fixed effects. The second penalty func-
tion J2(D) dictates the sparsity of the final estimation of D,
and hence rules the selection of random effects. The reason
that we propose two versions of regularized objective func-
tions is to take the advantage that the modified likelihood
(5) has better finite-sample performances, which however
becomes ill-defined in the case of large p small N due to
singular covariance matrices in (5).

Specifically, we adopt the L1-norm penalty for J1(β)
(Tibshirani, 1996),

(6) J1(β) =

p∑
j=1

|βj |.

It is well-known that due to the singularity of |βj | at 0, some

estimates of β̂j , j = 1, . . . , p will be exactly zero.
For the random-effects selection, to ensure the positive

definiteness of the estimated D, we invoke the Cholesky de-
composition, i.e., D = LLT , where L is a lower triangu-
lar matrix with positive diagonal elements. This decompo-
sition converts a constrained optimization into an uncon-
strained problem, and the resulting computation is stable
and fast. Consequently, the selection procedure will target
on L, rather than on D. The relation between the sparsity
of D and the sparsity of L is given by the following Lemma.

Lemma 2.1. Denote L = (LT
(1), . . . ,L

T
(q))

T , where L(k) is
the kth row of L. Then for any given k, we have

L(k) = 0 ⇐⇒ Dkk = 0 and Dkj = Djk = 0, ∀j.

The proof is straightforward and is omitted. Lemma 2.1
indicates that if the vector L(k) = 0, then the diagonal ele-
ment Dkk, known as the variance of the random effect bk, is
zero. Furthermore, for any j �= k, the off-diagonal elements
Dkj are also equal to 0, which implies that the covariances
between bk and all the other random effects are estimated
as zero. Thus, the random effect bk can be excluded from

the model. The above observation motivates us to shrink the
entire vector L(k) towards a zero vector. For this, we adopt
the L2-norm penalty (Yuan and Lin, 2006) for J2(D),

(7) J2(L) =

q∑
k=2

√
L2
k1 + · · ·+ L2

kq.

Note that the summation starts from k = 2, for we in-
tend to keep the random intercept in the model, which
generates a minimal within-cluster correlation. Like the L1-
norm penalty, the L2-norm penalty is singular at the point
L(k) = 0, which encourages L(k) to be estimated as an exact
zero vector.

Furthermore, noting that Dkk = L2
k1+ · · ·+L2

kq, we may

rewrite the J2 penalty as J2(D) =
∑q

k=2

√
Dkk. The fact

that the value of J2(D) remains unchanged regardless the
ordering of Dkk (or random effects) appearing in the model
implies that the estimation for D is invariant with respect
to the ordering of random effects in the Cholesky decompo-
sition.

3. ALGORITHM

We aim to estimate β and L (D = LLT ) by maximizing
the following doubly regularized objective function:

Qn(β,L, σ
2) = �n(β,L, σ

2)− λ1

p∑
j=1

|βj | − λ2

q∑
k=2

‖L(k)‖2,

where �n(β,L, σ
2) takes (2) or (5) depending on whether

N < p or N > p, and ‖L(k)‖2 =
√
L2
k1 + · · ·+ L2

kq.

To simplify the computation, following Lindstrom and
Bates (1988), we estimate σ2 by, if N > p

(8) σ̂2(β,L) =
1

N − p

n∑
i=1

(Yi −Xiβ)
TV−1

i (Yi −Xiβ),

and if N < p,

(9) σ̂2(β,L) =
1

N

n∑
i=1

(Yi −Xiβ)
TV−1

i (Yi −Xiβ).

Substituting the expression (8) into �nM (β,L, σ2) or the ex-
pression (9) into �nF (β,L, σ

2), we obtain the doubly regu-
larized profile log-likelihood of the form:

(10) QR(β,L) = PR(β,L)− λ1

p∑
j=1

|βj | − λ2

q∑
k=2

‖L(k)‖2,

where in the case of N > p,

PR(β,L)

= −1

2

n∑
i=1

log
∣∣∣Vi

∣∣∣− 1

2
log
∣∣∣ n∑
i=1

XT
i V

−1
i Xi

∣∣∣
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− N − p

2
log

{
n∑

i=1

(
Yi −Xiβ

)T
V−1

i

(
Yi −Xiβ

)}
,

or in the case of N < p,

PR(β,L) = −1

2

n∑
i=1

log
∣∣∣Vi

∣∣∣
− N

2
log

{
n∑

i=1

(
Yi −Xiβ

)T
V−1

i

(
Yi −Xiβ

)}
.

The estimation of β and L can be obtained through an
iterative algorithm: We first fix L and estimate β, then fix
β and estimate L. Since the penalty function in (10) is sep-
arable, we iterate between the two steps above until the
algorithm converges. Note that in both the loop of updating
the fixed effects β and the loop of updating the parame-
ters in L, the algorithm calculates the estimate of only one
parameter while holding other parameters fixed. This type
of coordinate descent algorithm and some of its modified
versions have been widely used for optimization in the lit-
erature, and the algorithmic convergence has been shown in
Tseng (2001) and Tseng and Yun (2009), among others. In
our case, at each update, the corresponding objective func-
tion is strictly convex, which guarantees the existence of a
stationary point corresponding to the minimum of the ob-
jective function. The proof of this property can be given in
a very similar way to that outlined for Theorem 3 in Schell-
dorfer et al. (2011), and is omitted in this paper. It is worth
noting that since the objective function (10) may not be
jointly convex, the convergent value from our algorithm is
not guaranteed to be the globally optimal solution.

When L is fixed, maximizing (10) with respect to β is
similar to a LASSO type optimization; hence we can apply
either the LARS/LASSO algorithm (Efron et al., 2004) or
a quadratic programming package to efficiently solve for β.
When β is fixed, directly maximizing (10) with respect to L
is challenging. Following the same spirit as Lin and Zhang
(2006), we transform the optimization to an equivalent prob-
lem that is easily solvable. The following proposition war-
rants the validity and feasibility of our new algorithm.

Proposition 3.1. For any given β and λ2, consider the
following two objective functions:

Q
1,

ˆβ
(L) = PR(β̂,L)− λ2

q∑
k=2

√
L2
k1 + · · ·+ L2

kq,(11)

Q
2,

ˆβ
(L,γ) = PR(β̂,L)−

q∑
k=2

γ2
k(12)

−λ2
2

4

q∑
k=2

1

γ2
k

( q∑
j=1

L2
kj

)
.

Let L̂kj be the local maximizer of (11), and (γ̃k, L̃kj) be the
local maximizer of (12), k = 2, . . . , q, j = 1, . . . , q. Then we
have

L̂kj = L̃kj , k = 2, . . . , q, j = 1, . . . , q;(13)

γ̃k =

√
λ2

2
‖L̃(k)‖2, k = 2, . . . , q.(14)

The proof of Proposition 3.1 is given in the appendix.
This proposition suggests that, instead of maximizing (11)
with respect to L directly, one can maximize (12) iteratively
between γk and Lkj . Note that when γk is fixed, the objec-
tive function (12) resembles a generalized ridge regression,
which can be solved via the Newton-Raphson algorithm.
When Lkj ’s are fixed, γk can be easily computed using for-
mula (14). Overall, our proposed algorithm iteratively up-
dates β, γk and Lkj , and proceeds as follows:

1. Initialization: Initialize β(0), γ
(0)
k and L

(0)
kj with some

plausible values. For example, β(0) can be initialized
by the least squares regression results for the N > p
case or the ridge regression results for the N ≤ p case.
L(0) can be simply initialized by the identity matrix

and γ
(0)
k can be obtained based on L(0).

2. Update Lkj : For iteration r, let

L
(r)
kj = argmax

Lkj

PR(β
(r−1),D)

− λ2
2

4

q∑
k=1

1(
γ
(r−1)
k

)2(
k∑

j=1

L2
kj

)
.

3. Update γk:

γ
(r)
k =

√
λ2

2
‖L(r)

(k)‖2.

4. Update β by LASSO:

β(r) = argmin
β

1

2

n∑
i=1

(
Yi −Xiβ

)T
V

(r)
i

−1(
Yi −Xiβ

)

+ λ1

p∑
j=1

|βj |.

5. If both maxk,j{|L(r)
kj −L

(r−1)
kj |} and maxj |β(r)

j −β
(r−1)
j |

are small enough, stop the algorithm. Otherwise, let
r = r + 1 and go back to step 2.

4. ASYMPTOTIC THEORY

In this section we present the large-sample properties for
the proposed method. For clarity, we use notation of pn and
qn to reflect the fact that the dimensions of both fixed and
random effects diverge to infinity. As shown in the following
two main theorems, both the diverging rates for pn and qn
can be faster than n, a scenario referred to as pn � n and
qn � n. Similar rates for pn have been studied in a vast lit-
erature. For example, Bickel et al. (2009) derived the large
sample properties for the LASSO and Danzig selector in the
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case of pn � n in the linear model. On the other hand,
our results regarding qn are new. For example, Lam and
Fan (2009) established asymptotic properties for a penal-
ized maximum likelihood method to estimate the covariance
matrix, and they found that in order to achieve a desirable
convergence rate, the dimension of the covariance matrix
cannot grow faster than the number of observations. Our
proposed method concerns a similar problem, i.e. selecting
the random effects through a regularized estimation of co-
variance matrix D. We found that due to the sparsity of the
random effects, the diverging rate for qn (similar to that for
pn) can be established. As a result, qn will grow at a faster
rate than n, which differs from the covariance estimation
result given by Lam and Fan (2009).

There is little literature available concerning the large-
sample theory on the simultaneous regularization for the
regression mean model and the covariance matrix with both
divergent dimensions of pn and qn. Our proofs of the main
theorems (Theorems 4.1 and 4.2) are laid out from a non-
trivial integration of analytics established by Bickel et al.
(2009) and Lam and Fan (2009). The analytic complexity
pertains to the non-diagonal covariance matrix with a di-
vergent dimension of variance parameters. When both di-
mensions of fixed and random effects grow along with the
sample size, the simultaneous selection method requires to
reconcile between the variance of signal and the variance of
noise in the model, which demands subtle controls on their
diverging rates.

In the following presentation, we focus on the case where
pn is allowed to be larger thanN , noting that theN > p case
can be handled in a relatively straightforward fashion based
on the results in this section. Thus, we wish to maximize
the following objective function:

Qn(β,L, σ
2) =

1

n
�nF (β,Lσ

2)(15)

−λ1n

pn∑
j=1

|βj | − λ2n

qn∑
k=2

‖L(k)‖2,

where �nF (β,L, σ
2) is the full log-likelihood in (2). For the

convenience of discussion, we assume that each subject i
consists of equal m observations; we also absorb σ2 into D
and rewrite σ2Vi = ZT

i DZi + σ2Im.
The tuning parameters λ1n and λ2n in (15) vary with

the sample size n and the dimensions, pn and qn. Denote
the true vector of fixed effects by β∗, the true Cholesky
decomposition L of D as L∗ and the true standard deviation
of the observation error by σ∗.

We define the following notations:

J = {j : β∗
j �= 0} and J c = {j : β∗

j = 0};
S = {(k, j) : D∗

kj �= 0} and Sc = {(k, j) : D∗
kj = 0};

SD = {k : D∗
kk �= 0} and Sc

D = {k : D∗
kk = 0}.

For the fixed-effects parameters, we let J and J c con-
tain the indices of coefficients which are truly non-zero and

truly zero, respectively. Equivalently defined for variances
of random effects are SD and Sc

D. Finally, S and Sc con-
tain the indices of elements in D which are truly non-zero
and zero, respectively. For a vector β ∈ Rpn and a subset
J ⊆ {1, · · · , pn}, we denote by δJ the vector in Rpn that
has the same coordinates as δ on J and zero coordinates on
the complement Jc of J . Denote the cardinality of a set J
as |J |, and write sn = |J | and dn = |S|. Without loss of
generality, we assume that the first

√
dn random effects are

in the true model. Let m = maxi=1,...,n mi.
We developed two large-sample theorems in this section.

Theorem 4.1 concerns the rate of estimation convergence,
and Theorem 4.2 is devoted to the property of sparsistency.
All regularity conditions required by the two theorems are
stated in the appendix. It is worth noting that a condition
in Assumption A.3 concerning the restricted eigenvalue on
the random-effects covariates Z is critical for the scenario of
qn � n in the main theorems. (Theorems 4.1 and 4.2)

Theorem 4.1. (Rate of convergence) Under regularity con-
ditions Assumption A.1 - Assumption A.5 in the appendix
and sparse assumptions that both dn and sn are O(1), if
log pn/n = Op(λ

2
1n) and log qn/n = Op(λ

2
2n), then there ex-

ists a local maximizer β̂, L̂ and σ̂2 such that ‖β̂ − β∗‖2 =

Op(log pn/n), ‖L̂−L∗‖2F = Op(log qn/n) and |σ̂2 − σ∗2|2 =
Op(logm/n). Here ‖A‖2F denotes the Frobenius norm.

Theorem 4.1 implies that if pn and n satisfy the rate of
log pn/n = op(1), or equivalently pn diverges at an exponen-
tial rate with the sample size, the regularized ML approach
provides a consistent estimator for the vector of regression
coefficients, β. Thus, our method allows the fixed-effects di-
mension pn to be much larger than the sample size n. Sim-
ilarly, the random-effects dimension qn can also be much
larger than the sample size n if certain regularity conditions
related to X and Z are satisfied.

Theorem 4.2. (Sparsistency) Under the conditions given
in Theorem 4.1, for any local maximizer of (15) satisfying

‖β̂ − β∗‖2 = Op(log pn/n), ‖L̂ − L∗‖2F = Op(log qn/n) and
|σ̂2 − σ∗2|2 = Op(logm/n), with probability tending to 1,

β̂j = 0 for all j ∈ J c and D̂kk = 0 for k ∈ Sc
D.

This sparsistency property ensures the selection consis-
tency for the true signals on both fixed and random effects.

5. SIMULATION EXPERIMENT

We have conducted four simulation studies to explore the
performances of the proposed method. In the first two ex-
amples, we studied the case of N > p and generated lon-
gitudinal outcomes of 200 subjects, each consisting of 8 re-
peated observations with 100 predictors, i.e., N = 200 × 8.
The true model is based on 4 important predictors, three of
which are subject-specific and have non-zero random effects.
In the other two examples, we conducted simulation studies
for the case of N < p and generated 100 subjects with 5
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Table 1. Simulation results of Examples 5.1 - 5.4 for non-adaptive regularization (NAR) and adaptive regularization (AR)
methods; reported values are sensitivity, specificity, averaged model size (AMS), means (std. dev.) of the estimates over 200

repetitions.

Variable Selection Parameter Estimation
Ex. Method Fixed effect Random effect Fixed effect Variance component

Sen. Spec. AMS Sen. Spec. AMS β1 β2 β5 β10

√
D11

√
D22

√
D10,10

5.1 NAR 100 92.9 10.8 100 88.7 8.3 2.74 1.22 1.94 1.70 0.64 0.63 0.64
std dev (0) (2.8) (2.7) (0) (5.1) (2.4) (.09) (.08) (.03) (.08) (.08) (.07) (.07)
AR 100 98.5 5.4 100 98.5 3.7 2.98 1.47 2.00 1.97 0.74 0.71 0.73
std dev (0) (1.2) (1.2) (0) (1.7) (.80) (.07) (.06) (.03) (.07) (.09) (.09) (.07)

5.2 NAR 100 90.4 13.2 100 92.6 8.3 2.73 1.20 1.94 1.70 0.61 0.61 0.62
std dev (0) (3.4) (3.3) (0) (3.8) (2.4) (.08) (.07) (.03) (.07) (.08) (.08) (.08)
AR 100 98.7 5.3 100 97.9 3.7 2.98 1.47 2.00 1.97 0.73 0.72 0.73
std dev (0) (1.0) (1.0) (0) (2.0) (.80) (.07) (.06) (.03) (.07) (.09) (.09) (.09)

5.3 NAR 100 96.2 26.6 100 81.4 11.6 2.71 1.23 1.80 1.71 0.61 0.60 0.62
std dev (0) (.97) (5.8) (0) (6.9) (3.6) (.15) (.13) (.13) (.14) (.13) (.12) (.13)
AR 100 98.6 12.2 100 93.3 5.9 2.96 1.48 1.95 1.97 0.71 0.73 0.73
std dev (0) (.76) (3.5) (0) (3.9) (2.1) (.10) (.11) (.10) (.10 ) (.10) (.12) (.11)

5.4 NAR 99.9 95.8 31.0 99.8 80.3 12.2 2.69 1.18 1.82 1.69 0.59 0.60 0.55
std dev (1.8) (1.1) (6.5) (2.4) (6.8) (3.5) (.13) (.20) (.15) (.13) (.12) (.13) (.19)
AR 100 98.2 14.9 100 93.0 6.3 2.93 1.43 1.96 1.93 0.70 0.72 0.69
std dev (0) (.71) (4.1) (0) (4.0) (1.9) (.11) (.13) (.10) (.09) (.11) (.12) (.15)

repeated observations in each subject. The predictor size, p,
is 600, which is greater than N = 100× 5.

Example 5.1. The true model used to simulate data is
given by

yit = (1 + bi0) + (3 + bi1)xit1 + (1.5 + bi2)xit2

+(2 + 0)xit5 + (2 + bi,10)xit,10 + εit,

(bi0, bi1, bi2, bi,10)
T ∼ MVN(0, 0.82R),

where xitj ∼ N(0, 1) and Corr(xitj , xitj′) = 0.5|j−j′|, and
errors εij are i.i.d. N(0, 1). The correlation matrix in the
random-effects distribution is

R =

⎡
⎢⎢⎣

1.0 0.5 0.3 0.2
0.5 1.0 0.5 0.3
0.3 0.5 1.0 0.5
0.2 0.3 0.5 1.0

⎤
⎥⎥⎦ .

Example 5.2. The LMM is the same as that in Exam-
ple 5.1, except that we have an equal-correlation structure
among the predictors, Corr(xitj , xitj′) = 0.5.

Example 5.3. The LMM is the same as that in Example
5.1, except for the sample size N = 100×5 and the predictor
size p = 600.

Example 5.4. The LMM is the same as that in Example
5.2, except for the sample size N = 100×5 and the predictor
size p = 600.

When fitting the model, we included all predictors in
the fixed effects component (p = 100 in Examples 1 and
2, p = 600 in Examples 3 and 4) and the first 50 predictors

in the random-effects component (q = 50). Both fixed and
random intercepts are always included in all models and are
not subject to the selection process. The true size of the
fixed-effects component is 4 and that of the random-effects
component is 3.

Regarding the penalty, we considered two alternatives in
controlling the tuning parameters. One is referred to as non-
adaptive regularization (NAR), which is based on a simple
grid search for the tuning parameters. The other is termed
as adaptive regularization (AR), which allocates different
penalty weights on different parameters. The idea of adap-
tive regularization has been extensively discussed in the lit-
erature, for example, Zou (2006), Wang et al. (2007), Zhang
and Lu (2007), among others. Specifically, for the adaptive
version, we first set λ1 and λ2 at some small values and ob-
tain β̃ and L̃. Then the adaptive weights for the two penal-
ties are set by the corresponding reciprocals, i.e., 1/|β̃j | and
1/‖L̃(k)‖2. Further, following Wang et al. (2007), we selected
tuning parameters λ1n and λ2n by minimizing the following
BIC criterion:

(16) BIC = −2PR(β,L) +

[
dβ +

(1 + dD)dD
2

]
log(n),

where dβ and dD are the the total number of nonzero esti-
mates in β and that in the diagonal elements of D, respec-
tively. It is known that BIC is computationally convenient
and enables us to detect important covariates at a low rate
of reporting false signals.

For each example, we repeated the analysis over 200 simu-
lations. Table 1 summarizes the results of four examples (Ex.
5.1-5.4). We reported the selection sensitivity and specificity
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Table 2. Results for the analysis of psychiatric symptom data using both non-adaptive and adaptive versions of the propsed
regularized LMM as well as the LMM-EM of Bondell et al. (2010). The reported values are estimated fixed effects β̂j ’s and

the estimated variance components of random effects
√

D̂kk’s.

Non-Adaptive Method Adaptive Method LMM-EM
Fix. Eff. Var. Comp. Fix. Eff. Var. Comp. Fix. Eff. Var. Comp.

Age at baseline 0 0 0 0 0 0.052
Gender 0 0 0 0 0 0.080
Hispanic 0.010 0 0 0 0.046 0.069
Time −0.060 0.142 −0.069 0.182 −0.029 0
Summer −0.045 0.014 −0.033 0.033 −0.037 0.100
Winter −0.041 0.010 −0.029 0.029 −0.035 0.004
Treatment 0 0 0 0 0 0.003
Time*Trt −0.027 0.002 −0.006 0.005 −0.007 0.118
Gender*Trt 0.075 0 0.065 0 0.142 0
Hispanic*Trt 0 0 0 0 −0.025 0

for both fixed and random effects. Here, Sensitivity is de-
fined as the number of correctly selected variables divided
by the number of important variables, and specificity is de-
fined as the number of correctly deleted variables divided by
the number of noise variables. We also listed average selected
model size and average point estimates over 200 repetitions
as well as the corresponding empirical standard deviation.
Average model size for the fixed effects is the arithmetic
mean of the number of non-zero fixed effects over simulation
runs. Average model size for the random effects is defined
similarly. Since the random intercept was always included
in the model, we omit it in the calculations of summary
statistics.

The simulation results in Table 1 appear very encourag-
ing. As seen, both non-adaptive regularization (NAR) and
adaptive regularization (AR) methods identified important
fixed and random effects perfectly, and were very effective in
removing unimportant predictors. The selected model size
was reasonably close to the true model size. We also see
that the AR method enjoyed substantially smaller estima-
tion bias for the variance component than the NAR method,
in comparison to the true

√
Djj = 0.8. In conclusion, both

versions of the proposed regularization approaches were ef-
fective on identifying signals and useful in building predic-
tion models. For the purpose of discovery, the AR version
is recommended, since it appeared to have a slightly better
control of false discovery rate than the NAR version.

6. DATA EXAMPLES

In this section, we apply the proposed method to two
data examples.

6.1 Data example I

The data of the first example was collected from a longi-
tudinal randomized controlled intervention trial on 423 ado-
lescent children (11–21 years old) with HIV+ parents in a
Hispanic population in New York City (Rotheram-Borus et

al., 2004). The primary outcome of interest was a certain
psychiatric symptom, specifically, a negative state of mind
measured repeatedly by a Basic Symptoms Inventory (BSI)
over a period of six years (with an average of 11.5 visits per
person). Interested readers may refer to Weiss (2005) for de-
tailed definition and normalization of the BSI score variable.

There were six covariates, including treatment (1 for the
treatment group and 0 for the control group), age at base-
line, gender, indicator for Hispanic race (1 if the subject is
Hispanic and 0 otherwise), time of visit (logarithm of year),
and season of visit. Seasonality was coded into three cate-
gories, with Winter, Spring and Summer corresponding to
the periods of November through February, March through
June, and July through October, respectively. In our anal-
ysis, we used Spring as the reference level and created two
dummy variables for Summer and Winter. We also included
two-way interactions between treatment and other covari-
ates including time, gender and Hispanic. Thus, the LMM
for the data analysis takes the following form:

BSI ∼ Age at Baseline + Gender + Hispanic + Summer

+Winter + Time + Treatment + Time ∗ Treatment

+ Gender ∗ Treatment + Hispanic ∗ Treatment,

where these 10 predictors were included in both Xi for fixed
effects and Zi for random effects, that is, p = 10 and q = 11
(the extra one being the random intercept). The interaction
between Time and Treatment allows us to assess whether
there is a difference in the trend of changes of BSI in control
and treatment groups.

We first applied the non-adaptive version of the pro-
posed regularization method in the analysis, in which we
selected tuning parameters using the BIC in (16). The re-
sults are summarized in the left part of Table 2. As we
can see, the non-adaptive method selected Hispanic, Time,
Summer, Winter, Time*Treatment and Gender*Treatment
for nonzero fixed effects, and Time, Summer, Winter and
Time*Treatment for nonzero random effects.
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Table 3. Summary of bootstrap results in the psychiatric symptom data analysis. “Sel. Freq.” represents the selection
frequency over 200 bootstrap samples. Averaged estimates over 200 bootstrap samples and the corresponding standard errors

(numbers in the parentheses) are also reported.

Fixed Effect Variance Component
Sel. Freq. (%) Averaged Estimate Sel. Freq. (%) Averaged Estimate

Non-Adaptive Method
Age at baseline 21 0.005 (0.009) 7 0.001 (0.009)
Gender 37 0.014 (0.030) 6 0.018 (0.155)
Hispanic 34 0.021 (0.044) 15 0.009 (0.067)
Time 99 −0.062 (0.017) 100 0.125 (0.048)
Summer 97 −0.043 (0.017) 93 0.014 (0.020)
Winter 98 −0.039 (0.016) 87 0.010 (0.011)
Treatment 11 −0.003 (0.018) 2 0.003 (0.020)
Time*Trt 64 −0.021 (0.020) 81 0.006 (0.011)
Gender*Trt 72 0.065 (0.064) 10 0.009 (0.084)
Hispanic*Trt 10 −0.005 (0.047) 8 0.016 (0.114)

Adaptive Method
Age at baseline 23 0.006 (0.011) 16 0.001 (0.003)
Gender 16 0.010 (0.031) 18 0.041 (0.221)
Hispanic 45 0.028 (0.043) 27 0.024 (0.081)
Time 98 −0.063 (0.020) 100 0.160 (0.070)
Summer 84 −0.035 (0.021) 83 0.026 (0.031)
Winter 77 −0.030 (0.021) 77 0.020 (0.031)
Treatment 20 −0.011 (0.036) 12 0.002 (0.013)
Time*Trt 43 −0.018 (0.026) 78 0.027 (0.064)
Gender*Trt 74 0.093 (0.077) 27 0.004 (0.015)
Hispanic*Trt 22 −0.012 (0.044) 23 0.010 (0.051)

To assess this selection, we drew 100 bootstrap samples
from the original dataset. Each bootstrap sample was then
analyzed in the same way as done for the original dataset.
The selection frequency and average estimates of the regres-
sion coefficients and variance components are reported in
the upper part of Table 3.

We see that, among the fixed effects, Time, Summer,
Winter, Time*Treatment and Gender*Treatment had high
selection frequencies while Hispanic was selected in a much
lower rate. As for the random effects, Time, Summer, Winter
and Time*Treatment had high frequencies of being selected.

We also applied the adaptive doubly regularized LMM re-
gression on the BSI dataset. For the construction of adaptive
weights, we used the inverse of the estimates from ridge-
penalized LMM. The results are also summarized in Ta-
ble 2 (middle part). Similar as the non-adaptive method,
the adaptive method also selected Time, Summer, Winter,
Time*Treatment and Gender*Treatment for nonzero fixed
effects, and Time, Summer, Winter and Time*Treatment for
nonzero random effects. However, unlike the non-adaptive
method, the adaptive method did not select Hispanic, which
agrees with the low selection frequency from the 100 boot-
strap sample analysis. In terms of the magnitude of the es-
timates, the non-adaptive and adaptive methods provided
similar estimates for the fixed effects, while the estimates
for the variance components from the adaptive method are
slightly larger than those from the non-adaptive method.

Similar as the assessment done for the non-adaptive
method, we also used bootstrap to evaluate the selection of
the adaptive method. The results are reported in the lower
part of Table 3, and they are similar to those from the non-
adaptive method.

Overall, it seems that there were strong time effects and
season effects on the psychiatric symptom in the study.
There was also evidence that the treatment program was
effective and the program worked better for boys than for
girls, due to the nonzero interaction effects between Time
and Treatment and between Gender and Treatment. The
negative coefficient for Time indicates that the average
symptom score decreased over time. The estimated coeffi-
cients for Winter and Summer also indicated that symptoms
were more severe in spring than in winter or summer, while
the summer and winter were not much different from each
other.

Furthermore, some population heterogeneity seemed to
exist in the time effect, season effects (Summer and Win-
ter), and treatment effect (interaction between Time and
Treatment) indicated by the corresponding nonzero vari-
ance components. This implies that subject-specific effects
are imperative to interpret the relationship between the
symptom and the four predictors. For example, the ex-
pected psychiatric symptom in the summer is different
among the subjects, conditional on the other predictors be-
ing fixed.
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For the purpose of comparison, we also applied the reg-
ularization method proposed by Bondell et al. (2010), in
which an EM algorithm was implemented with a single tun-
ing parameter for both fixed and random effects. For the
rest of the section, we refer to this method as LMM-EM.
The results are summarized in the right part of Table 2.

Similar to our methods, the LMM-EM also selected Time,
Summer, Winter, Time*Treatment and Gender*Treatment
for nonzero fixed effects, and Summer, Winter and
Time*Treatment for nonzero random effects. However, there
are two noticeable differences between our methods and
the LMM-EM. First, the LMM-EM selected much more
nonzero variance components than our methods, includ-
ing Age at Baseline, Gender, Hispanic and Treatment. Note
that these components, especially Age at Baseline, Gender
and Treatment, were selected with very low frequencies in
the bootstrap analysis of our methods. Second, the Time co-
variate was selected as a nonzero variance component with
100 percent frequency in the boostrap analysis of our meth-
ods; however, it was not selected by the LMM-EM. We note
that the code for LMM-EM was kindly provided by Dr. Bon-
dell. Due to the nature of the EM, the algorithm is not com-
putationally efficient. In our case, it took about 4 full days
to finish the model fitting on the BSI dataset, where the best
tuning parameter was selected from 8 values on a grid. Thus,
this greatly limited us to consider some additional analyses
within a reasonable period of time, such as to carry out a
bootstrap analysis for the LMM-EM method.

To further assess the covariates selected by the LMM-
EM and our methods, we fit the regular linear mixed-effects
model (without any penalty) using the selected fixed and
random effects, respectively, by the non-adaptive method,
the adaptive method and the LMM-EM. The model based
on the effects selected by the adaptive method obtained the
smallest AIC (3220.9) and BIC (3235.2) values, in compar-
ison to the AIC (3223.1) and BIC (3237.4) values for the
model selected by the non-adaptive method, and the AIC
(3242.3) and BIC (3263.7) values for the model selected by
LMM-EM. Overall, all evidence indicate that for this BSI
dataset, the fixed and random effects selected by our meth-
ods are probably more reasonable than those by the LMM-
EM.

6.2 Data example II

The data of the second example was gathered from a
clinical study that aimed to identify protein signatures as-
sociated with post-transplant renal function of patients who
underwent kidney transplant. Cibrik et al. (2013) reported
a set of 17 proteins as biomarkers to predict transplant pa-
tients experiencing acute allograft rejection. The authors
also envisioned a study to identify protein signatures for the
prediction of long-term post-transplant outcomes. In this
analysis, the outcome of interest was longitudinal trajec-
tory of renal function measured by glomerular filtration rate
(GFR) from each of 95 renal transplant patients. The goal
was to identify proteins that were significantly associated

with longitudinal GFR. Twenty-eight proteins were mea-
sured at the baseline on each patient, in which two proteins
were removed from the analysis due to very low variation
across subjects. To reduce the false discovery rate, we fur-
ther removed those proteins that were found nonlinearly as-
sociated with GFR. The analysis of nonlinear relationship
was performed by using the additive mixed effects model
with a linear time effect and a smoothing spline function of
each baseline protein marker. This resulted in 22 proteins
to be included in our final analysis. Table 4 reports the re-
sults produced by both non-adaptive and adaptive versions
of regularization methods, as well as the summary statistics
drawn from 100 bootstrap replicates. To assess the selection
stability at a similar level of sparsity, we fixed the tuning
parameters at their optimal values determined by BIC from
the analysis of the original dataset.

Estimates of the fixed effects and the variance compo-
nents as well the selection frequency were shown in Ta-
ble 4. Interestingly, the adaptive regularization method was
able to detect multiple proteins associated with longitudi-
nal GFR, whereas the non-adaptive regularization did not
select any protein. Some of the detected proteins by the
adaptive regularization had 100% selection rate, which were
recommended to our collaborators for validation. Using the
proposed regularization methods we also found that some
of proteins had non-zero estimates of variance components,
suggesting subject-specific effects among these 95 transplant
patients.

7. CONCLUDING REMARKS

We have proposed a doubly regularized likelihood ap-
proach to select important fixed effects and random effects
simultaneously. We have also established a large-sample the-
ory for the rate of convergence and sparsistency under the
situation where both dimensions of fixed and random effects
can increase much faster than the sample size. Numerical re-
sults indicate that the proposed regularized methods work
well in the selection of fixed and random effects, as well as
the determination of the true model size. We have tested the
proposed method for several high-dimensional cases in sim-
ulation studies as well as by two data examples of relatively
low dimensionality that already presented great challenges
to existing methods in the linear mixed-effects methods.
There is a downward bias in the estimation of the variance
components by the non-adaptive regularization method;
however, it can be reduced by the adaptive regularization.

The new algorithm proposed for optimization is effec-
tive, as it is built upon two quadratic optimization recipes.
In general, fast computational algorithms are critical to en-
hance the use of the regularized LMM regression in prac-
tice. Currently existing methods based on the EM algorithm
may be disadvantageous in this aspect (e.g. Linstrom and
Bates, 1988); the slow convergence rate of the EM algo-
rithm will limit its capability for handling a large num-
ber of predictors. For example, in the analysis of the BSI
data, we have already experienced the advantage of com-
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Table 4. Summary of bootstrap results with the tuning parameters fixed for protein data analysis. “Sel. Freq.” represents the
selection frequency over 100 bootstrap samples. Averaged estimates over 100 bootstrap samples and the corresponding

standard errors (numbers in the parentheses) are also reported

Non-Adaptive
Fixed Effect Variance Component

Sel. Freq. (%) Averaged Estimate Sel. Freq. (%) Averaged Estimate

Time 100 4.89 (0.03) 76 0.03 (0.003)
BCAM 13 0 0 0
CD30 0 0 0 0
E.Cadherin 2 0 0 0
GRO.alpha 0 0 0 0
IFN.gamma 0 0 0 0
IL.13 2 0 0 0
IL.2 0 0 0 0
IL.4 0 0 0 0
IL.5 4 0 0 0
IL.6 0 0 0 0
IL.1.beta 3 0 1 0
IL.12.p70 0 0 0 0
KIM.1 3 0 0 0
Lactoferrin 0 0 0 0
MCP.1 1 0 0 0
MCP.2 0 0 0 0
MIP.1.alpha 0 0 0 0
Osteopontin 0 0 0 0
TIMP.4 2 0 0 0
TNF.alpha 0 0 0 0
VEGF 4 0 0 0
VEGF.R2 0 0 0 0

Adaptive
Fixed Effect Variance Component

Sel. Freq. (%) Averaged Estimate Sel. Freq. (%) Averaged Estimate

Time 100 5.190 (0.034) 100 0.115 (0.003)
BCAM 98 0.015 (0.001) 0 0
CD30 47 0.001 (0.000) 0 0
E.Cadherin 8 0.001 (0.000) 0 0
GRO.alpha 93 -0.005 (0.001) 0 0
IFN.gamma 100 -0.088 (0.041) 85 0.033 (0.002)
IL.13 85 -0.008 (0.001) 95 0.047 (0.004)
IL.2 95 0.236 (0.050) 15 0.003 (0.001)
IL.4 98 0.007 (0.010) 76 0.021 (0.002)
IL.5 100 -0.315 (0.030) 91 0.027 (0.002)
IL.6 100 -0.026 (0.028) 100 0.027 (0.002)
IL.1.beta 98 -1.298 (0.184) 100 0.175 (0.009)
IL.12.p70 100 -0.007 (0.001) 0 0
KIM.1 92 0.007 (0.001) 0 0
Lactoferrin 0 0 0 0
MCP.1 95 -0.013 (0.003) 0 0
MCP.2 98 -0.026 (0.007) 14 0.002 (0.000)
MIP.1.alpha 76 0 0 0
Osteopontin 0 0 0 0
TIMP.4 21 0 0 0
TNF.alpha 100 0.164 (0.016) 28 0.006 (0.001)
VEGF 99 -0.035 (0.005) 0 0
VEGF.R2 44 0.001 (0.000) 0 0

SOFARE 731



puting speed enjoyed by our method over the LMM-EM
method.

A useful extension arises from possible hierarchy between
fixed effects and random effects. For example, one may prefer
the composition of random effects be a subset of the included
fixed effects. In other words, if a predictor is identified to
have a subject-specific effect, then the corresponding fixed
effect should also be included in the model. The proposed
method can be easily generalized to handle this constraint.

Without loss of generality, suppose Zi is the first q
columns of Xi, for i = 1, . . . , n. Now consider a reparam-
eterized Cholesky decomposition

(17) D =

⎛
⎜⎝

β1

. . .

βq

⎞
⎟⎠LLT

⎛
⎜⎝

β1

. . .

βq

⎞
⎟⎠ ,

where L is a lower triangular matrix with positive diagonal
elements. Clearly, if βj = 0, the jth row and the jth column
of D are also zero, regardless of the value of L(j).

For regularization, we may then consider the following
optimization problem:

(18) (β̂, L̂ij) = argmax
β,L

PR − λ1

p∑
j=1

|βj | − λ2

q∑
k=2

‖L(k)‖2.

As pointed out above, if β̂j = 0, from (17) the penalty on

L will guarantee that L̂(j) is also estimated as zero. As a
result, when a fixed effect βj is shrunk to zero, the corre-
sponding random effect will be automatically excluded from
the model. The algorithm proposed in Section 3 can be ap-
plied to solve (18) with a slight modification.

APPENDIX A. TECHNICAL DETAILS

A.1 Proof of Proposition 3.1

The fact that the argument γ that maximizes the ob-

jective function (13) has the expression, γ̃k =
√

λ2

2 ‖L̃(k)‖2,
k = 2, . . . , q, as described in (15), can be obtained by an
application of the Cauchy-Schwarz inequality a2+ b2 ≥ 2ab.
Next, we prove L̂kj = L̃kj .

Recall the definition of the objective functions, Q
1,

ˆβ
(L)

and Q
2,

ˆβ
(L,γ) in equations (11) and (12) in Section 3 and

that L̂kj and (γ̃k, L̃kj) maximize (11) and (12), respectively.

Direct derivations lead to that Q
1,

ˆβ
(L̃) = Q

2,
ˆβ
(L̃, γ̃).

Consequently, Q
1,

ˆβ
(L̂) ≥ Q

2,
ˆβ
(L̃, γ̃).

Letting γ̂k =
√

λ2

2 ‖L̂(k)‖2, following some further deriva-

tions, we obtain that Q
2,

ˆβ
(L̂, γ̂) = Q

1,
ˆβ
(L̂), which leads to

Q
2,

ˆβ
(L̃, γ̃) ≥ Q1,β(L̂). That is, Q

1,
ˆβ
(L̂) = Q2,β(L̂, γ̂) =

Q2,β(L̃, γ̃).

Since the objective function Q is locally convex, the lo-
cally maximizer is unique. Thus, we have L̃kj = L̂kj .

A.2 Proof of Theorem 4.1

The following technical regularity conditions are assumed
throughout the proofs:

Assumption A.1. Denote ui = ZT
i V

∗
i
−1(εi + Zibi),

ũi = V∗
i
−1(εi + Zibi), Ai = ZT

i V
∗
i
−1Zi, Ãi = V∗

i
−1,

Wi,kl = (ui)k(ui)l − (Ai)kl and W̃i,kl = (ũi)k(ũi)l −
(Ãi)kl. There are constants τ1 and τ2 such that 0 < τ1 <
λmin (mini=1,...,n Ai) ≤ λmax (maxi=1,...,n Ai) < τ2 < ∞.

Assumption A.2. For any ‖δ‖ ≤ Op

(
(log qn/n)

1/2
)
, as-

sume that

1

n

n∑
i=1

Var
{
δTZT

i V
∗−1
i Zi⊗

ZT
i V

∗−1
i (εi + Zibi)(εi + Zibi)

TV∗−1
i Ziδ

}
< ∞,

1

n

n∑
i=1

Var
{
δTZT

i V
∗−1
i (εi + Zibi)(εi + Zibi)

TV∗−1
i Zi⊗

ZT
i V

∗−1
i Ziδ

}
< ∞,

and assume that

1

n

n∑
i=1

Var
{
vec(Im)TV∗−1

i ⊗

V∗−1
i (εi + Zibi)(εi + Zibi)

TV∗−1
i vec(Im)

}
< ∞,

1

n

n∑
i=1

Var
{
vec(Im)TV∗−1

i (εi + Zibi)(εi + Zibi)
TV∗−1

i ⊗

V∗−1
i vec(Im)

}
< ∞.

Assumption A.3. Restricted eigenvalue assumption
RE(s, c01) for X with 1 ≤ s ≤ pn

κ2
1 ≡ min

J0⊆{1,··· ,pn}:|J0|≤s
minδ �=0,∈Rpn :|δJc

0
|1≤c01|δJ0

|1
∑n

i=1 δ
T
XT

i V∗
i
−1Xiδ

nδT

J0
δJ0

> 0

holds for c01 > 1 with probability one, and similarly re-
stricted eigenvalue assumption RE(d, c02) for Z with 1 ≤
d ≤ q2n

κ2
2 ≡ min

J0⊆{1,··· ,q2n}:|J0|≤d
min

δ �=0,∈Rq2n :|δJc
0
|1≤c02|δJ0

|1∑n
i=1 δ

T (Zi ⊗ Zi)
T (V∗

i ⊗V∗
i )

−1(Zi ⊗ Zi)δ

nδTJ0
δJ0

> 0

holds for c02 > 0 with probability one.

Assumption A.4. The eigenvalues of n−1
∑n

i=1 V
∗−1
i ⊗

V∗−1
i are positive and bounded with probability one.

Assumption A.5. Denote |‖X[j]‖|(ν)n =

(n−1
∑n

i=1 X
T
i[j]V

∗
i
−νXi[j])

−1/2 where Xi[j] is the j-th
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column of Xi. Assume |‖X[j]‖|(1)n = Op(1) and |‖X[j]‖|(2)n =

Op(1). Define α = maxj |‖X[j]‖|(1)n

Proof of Theorem 4.1. The main idea of the proof follows
Lam and Fan (2009)’s paper. Due to the high-dimensionality
of pn and qn, some techniques in Bickel et al. (2009) will
be applied. We divide the proof into three parts. In the
first part we prove Qn(β

∗,L∗, σ∗2) ≥ Qn(β
∗,L, σ∗2) for

‖L − L∗‖2F = Op(log qn/n). In the second part we show
that Qn(β

∗,L, σ∗2) ≥ Qn(β
∗,L, σ2) for |σ2 − σ∗2|2 =

Op(logm/n). Finally Qn(β
∗,L, σ2) ≥ Qn(β,L, σ

2) for ‖β−
β∗‖2 = Op(log pn/n) is shown in the third part of the proof.

We write �̃n(β,L, σ
2) as the sum of two terms:

1

2
�̃n(β,L, σ

2) =

1

2n

(
n∑

i=1

log |Vi|+
n∑

i=1

(Yi −Xiβ)
TV−1

i (Yi −Xiβ)

)
.

Using Taylor expansion, we have I1 = �̃n(β
∗,L, σ∗2) −

�̃n(β
∗,L∗, σ∗2) = K1 +K2 + op(1), where

K1 =
1

n

n∑
i=1

Tr
[
ZT

i V
∗
i
−1Zi−

ZT
i V

∗
i
−1(εi + Zibi)(εi + Zibi)

TV∗
i
−1Zi)ΔD

]
,

K2 = vec(ΔD)T ·Gn · vec(ΔD),

with ΔD = ΔLL
∗T + L∗ΔT

L + ΔLΔ
T
L with ΔL = L − L∗,

and Gn = 1
n

∑n
i=1 Gi and the i-th term is given by

Gi =

ZT
i V

∗−1
i Zi ⊗ ZT

i V
∗−1
i (εi + Zibi)(εi + Zibi)

TV∗−1
i Zi

+ ZT
i V

∗−1
i (εi + Zibi)(εi + Zibi)

TV∗−1
i Zi ⊗ ZT

i V
∗−1
i Zi

− ZT
i V

∗−1Zi ⊗ ZT
i V

∗−1
i Zi.

Denote S0n = 1
n

∑n
i=1 Z

T
i V

∗
i
−1Zi and

Sn =
1

n

n∑
i=1

ZT
i V

∗
i
−1(εi + Zibi)(εi + Zibi)

TV∗
i
−1Zi,

and we have

|K1| ≤ L1 + L2,

where

L1 = |
∑

(i,j)∈S
(S0n − Sn)ij(ΔD)ij |,

L2 = |
∑

(i,j)∈Sc

(S0n − Sn)ij(ΔD)ij |.

If Assumption A.1 is satisfied, similar to Lemma A.2 and
Lemma A.3 in Bickel and Levina (2008), we have

max
ij

|(S0n − Sn)ij | ≤ Op

(
(log qn/n)

1/2
)
.

Consequently, we have

L1 ≤ max
ij

|(S0n − Sn)ij ||vec(ΔD)Sv |1

≤ Op

(
(log qn/n)

1/2
)
|vec(ΔD)Sv |1,

where Sv denotes the nonzero element set of vec(D∗). Let
S1 = {i : (i, j) ∈ S} and Sc

1 = {i : (i, j) ∈ Sc}, and we write

I2 = λ2n

∑
i∈Sc

1

(‖L(i)‖ − ‖L∗
(i)‖),

I3 = λ2n

∑
i∈S1

(‖L(i)‖ − ‖L∗
(i)‖).

Then we have

I2 − L2

≥
∑
i∈Sc

1

λ2n‖L(i)‖− max
ij

|(S0n − Sn)ij |
∑

(i,j)∈Sc

‖L(i)‖‖L(j)‖

≥
∑
i∈Sc

1

λ2n‖L(i)‖− max
ij

|(S0n − Sn)ij |
∑
i∈Sc

1

‖L(i)‖‖ΔL‖F

≥
∑
i∈Sc

1

[
λ2n −Op

(
(log qn/n)

1/2
)
Op

(
(log qn/n)

1/2
)]

‖L(i)‖

≥ 0

for λ2n = Op

(
( log qn

n )1/2
)
. For the term I3, we have

I3 = λ2n

∑
i∈S1

(‖L(i)‖ − ‖L∗
(i)‖)

≤ λ2n

∑
i∈S1

‖(ΔL)(i)‖

≤ λ2nd
1/2‖(ΔL)S‖F

≤ 2λ2nd
1/2‖L∗−1‖F ‖(ΔD)S‖F

≤ Op

(
(log qn/n)

1/2
)
|vec(ΔD)Sv |1

Therefore, |L1 + I3| ≤ Op

(
(log qn/n)

1/2
)
|vec(ΔD)Sv |1.

From Assumption A.2 and Kolmogorov’s one series Theo-
rem, we have

K2 = vec(ΔD)T
1

n

n∑
i=1

ZT
i V

∗−1Zi ⊗ ZT
i V

∗−1
i Zivec(ΔD)

+ op(1)

= vec(ΔD)T
1

n

n∑
i=1

(Zi ⊗ Zi)
T (V∗

i ⊗V∗
i )

−1(Zi ⊗ Zi)

× vec(ΔD) + op(1).

Consequently from Assumption A.3, if |vec(ΔD)Sc
v
|1 ≤

c02|vec(ΔD)Sv |1, we have

K2 = vec(ΔD)TGnvec(ΔD)
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≥ κ2
2‖vec(ΔD)Sv‖2

≥ κ2
2|vec(ΔD)Sv |21/d.

From above, if |vec(ΔD)Sv |1 ≥ Op

(
(log qn/n)

1/2
)
,

we have |L1 + I3| ≤ K2. Using the condition
|vec(ΔD)Sc

v
|1 ≤ c02|vec(ΔD)Sv |1, we have |vec(ΔD)|1 ≤

(c02 + 1)|vec(ΔD)Sv |1. This means |L1 + I3| ≤ K2 if
|vec(ΔD)|1 ≥ Op

(
(log qn/n)

1/2
)
.

If |vec(ΔD)Sc
v
|1 > c02|vec(ΔD)Sv |1, we can obtain

|L1 + L2 + I3| ≤ Op

(
(log qn/n)

1/2
)
|vec(ΔD)Sv |1

+Op

(
(log qn/n)

1/2
)
|vec(ΔD)Sc

v
|1

≤ Op

(
(log qn/n)

1/2
)
|vec(ΔD)Sc

v
|1

≤ Op

(
(log qn/n)

1/2
) ∑

(i,j)∈Sc

‖L(i)‖‖L(j)‖

≤ Op

(
(log qn/n)

1/2
) ∑

i∈Sc
1

‖L(i)‖‖ΔL‖F

≤ Op

(
(log qn/n)

1/2
)
Op

(
(log qn/n)

1/2
) ∑

i∈Sc
1

‖L(i)‖

≤ I2,

for λ2n = Op

(
(log qn/n)

1/2
)
. Since q−1

n |vec(ΔD)|1 ≤
‖ΔD‖F ≤ |vec(ΔD)|1, we complete the first part of the
proof.

Now we start to show the second part of the proof. Let
Δσ2 = σ2 − σ∗2 and Ĩ1 = �̃(β∗,L, σ)− �̃(β∗,L, σ∗) = K̃1 +
K̃2 + op(1), where

K̃1 =
1

n

n∑
i=1

Tr
[
Ṽ−1

i −

Ṽ−1
i (εi + Zibi)(εi + Zibi)

T Ṽ−1
i

]
Δσ2 ,

K̃2 = (Δσ2)2vec(Im)T G̃nvec(Im),

with Ṽi = V∗
i + ZiΔDZT

i , and

G̃n =
1

n

n∑
i=1

Ṽ−1
i ⊗ Ṽ−1

i (εi + Zibi)(εi + Zibi)
T Ṽ−1

i

+Ṽ−1
i (εi + Zibi)(εi + Zibi)

T Ṽ−1
i ⊗ Ṽ−1

i

−Ṽ−1
i ⊗ Ṽ−1

i .

Due to ‖ΔD‖2F = Op(log qn/n) = op(1), we have

K̃1 =
Δσ2

n

n∑
i=1

Tr
[
V∗

i
−1−

V∗
i
−1(εi + Zibi)(εi + Zibi)

TV∗
i
−1
]
+ op(1).

Denote S̃0n = 1
n

∑n
i=1 V

∗
i
−1 and

S̃n =
1

n

n∑
i=1

V∗
i
−1(εi + Zibi)(εi + Zibi)

TV∗
i
−1.

From Assumption A.1 and similar argument in the first part,
we have

max
ij

|(S̃0n − S̃n)ij | ≤ Op

(
(logm/n)1/2

)
.

Then we have

|K̃1| ≤ m ·Op(logm/n),

for |Δσ2 |2 = Op(logm/n).
From Assumption A.2 and Kolmogorov’s one series The-

orem, we have

K̃2 = (Δσ2)2vec(Im)T

(
1

n

n∑
i=1

V∗−1
i ⊗V∗−1

i

)
vec(Im)

+op(1)

≥ λmin(
1

n

n∑
i=1

V∗−1
i ⊗V∗−1

i )(m/2)|Δσ2 |2(1 + op(1))

= Cm logm/n.

The last inequality is due to Assumption A.4. Hence K̃1 is
dominated by K̃2 and we complete the second part of the
proof.

For the third part, we use similar notations as the first
part and let Δβ = β − β∗ and I ′1 = �̃n(β,L, σ

2) −
�̃n(β

∗,L, σ2) = K ′
1 +K ′

2, where

K ′
2 =

2

n

n∑
i=1

ΔT
βX

T
i V

−1
i XiΔβ ,

K ′
1 = − 2

n

n∑
i=1

(εi + Zibi)
TV−1

i XiΔβ .(19)

where Vi = V∗
i + ZiΔDZT

i +Δσ2Im. It can be seen

|K ′
1| ≤ L′

1 + L′
2

where

L′
1 =

∣∣∣∣∣∣
2

n

n∑
i=1

∑
j∈J

(εi + Zibi)
TV−1

i Xi[j]Δβj

∣∣∣∣∣∣ ,

L′
2 =

∣∣∣∣∣∣
2

n

n∑
i=1

∑
j∈J c

(εi + Zibi)
TV−1

i Xi[j]Δβj

∣∣∣∣∣∣ .
Define the random variables ηj = n−1

∑n
i=1(εi +

Zibi)
TV−1

i Xi[j]Δβj
, 1 ≤ j ≤ p, and the event

A = ∩p
j=1{2|ηj | ≤ c1λ1n},

734 Y. Li et al.



where c1 < (c01 − 1)/(c01 + 1) < 1 since c01 > 1. Denote
|‖X[j]‖|

′

n = (n−1
∑n

i=1 X
T
i[j]V

−1
i V∗

iV
−1
i Xi[j])

−1/2. We can

have |‖X[j]‖|
′
n = |‖X[j]‖|n + op(1), using probability bound

on the tails of standard Gaussian distribution, we have that
the probability of Ac satisfies

P (Ac) ≤
p∑

j=1

P (
√
n|ηj | >

√
nλ1n/2)

≤
p∑

j=1

P (|z| >
√
nλ1n/(2|‖X[j]‖|∗n))

≤
p∑

j=1

exp

(
− nc1λ

2
1n

8|‖X[j]‖|∗2n

)

≤ pn exp

(
−nc21λ

2
1n

8α2

)
,

which tends to 0 when λ1n = C1α(log pn/n)
1/2 for c1C1 >

2
√
2. Denote

I ′2 = λ1n

∑
j∈J c

|Δβj
|,

I ′3 = λ1n

∑
j∈J

|β∗
j +Δβj

| − |β∗
j |.

By considering the event A, we have L′
2 ≤ I ′2 for c1 < 1 and

|L′
1 + I ′3| ≤ (c1 + 1)λ1n|ΔβJ

|1.
Since K ′

2 = 2
n

∑n
i=1 Δ

T
βX

T
i V

∗
i
−1XiΔβ + op(1), if

|ΔβJc
|1 ≤ c01|ΔβJ

|1, by applying Assumption A.3, then

K ′
2 ≥ κ2

1‖ΔβJ
‖2 ≥ κ2

1|ΔβJ
|21/s. If (c1 + 1)λ1nκ

−2
1 s <

|ΔβJ
|1, we have |L′

1 + I ′3| < K ′
2. By using |Δβ |1 <

(c01 + 1)|ΔβJ |1, if |Δβ |1 > (c1 + 1)(c01 + 1)sκ−2
1 λ1n =

Op((log pn/n)
1/2), we have |L′

1 + I ′3| < K ′
2.

If |ΔβJc
|1 > c01|ΔβJ

|1, K ′
2 ≥ 0, and

|L′
1 + L′

2 + I ′3| ≤ (c1 + 1)λ1n|ΔβJ
|1 + c1λ1n|ΔβJc

|1
≤ ((c1 + 1)c−1

01 + c1)λ1n|ΔβJc
|1

≤ λ1n|ΔβJc
|1 = I ′2,

as c1 < (c01 − 1)/(c01 + 1) < 1 for c01 > 1. Since

p
−1/2
n |Δβ |1 ≤ ‖Δβ‖ ≤ |Δβ |1, we complete the proof.

A.3 Proof of Theorem 4.2

Proof of Theorem 4.2. Suppose (β̂, L̂, σ̂) is one set of mini-

mizers of Qn(β,L, σ
2) satisfying ‖β̂−β∗‖2 = Op(log pn/n),

‖L̂ − L∗‖2F = Op(log qn/n) and |σ̂2 − σ∗2|2 = Op(logm/n).
Taking the derivative of Qn(β,L, σ

2) w.r.t βj for j ∈ J c at

(β̂, L̂, σ̂2), we have

∂Qn(β̂, L̂, σ̂)

∂βj
= − 2

n

n∑
i=1

(Yi −Xiβ̂)V
−1
i Xi[j] + λ1nsgn(βj)

= |β̂ − β∗|T
[
2

n

n∑
i=1

XT
i V

−1
i Xi[j]

]
− 2ηj

+ λ1nsgn(βj)

= Op(λ1n) + λ1nsgn(βj).

The last step is due to

|β̂ − β∗|T
[
2

n

n∑
i=1

XT
i V

−1
i Xi[j]

]

≤ ‖Δβ‖‖
2

n

n∑
i=1

XT
i V

−1
i Xi[j]‖

≤ ‖Δβ‖
(
4φmax

n

n∑
i=1

XT
i[j]V

−2
i Xi[j]

)1/2

≤ ‖Δβ‖
(
4φmax‖X[j]‖|(2)n + op(1)

)1/2
.

Then the sign of ∂Qn(β̂, L̂, σ̂)/∂βj depends on sgn(βj) only
with probability tending to one for j ∈ J c. and the sparsis-
tency property for β̂j in Theorem 4.2 is satisfied.

Next, taking the derivative of Qn(β,L, σ) w.r.t Dkk for

k ∈ Sc
D at the minimizer (β̂, L̂, σ̂), we have

∂Qn(β̂, L̂, σ̂)

∂Dkk
= (S̃0n − S̃n)kk +

λ2n

2
√
Dkk

,

where S′
0n = 1

n

∑n
i=1 Z

T
i V

−1
i Zi, and S′

n = 1
n

∑n
i=1 S

′
ni with

the i-th term S′
ni given by

ZT
i V

−1
i (XiΔβ + εi + Zibi)(XiΔβ + εi + Zibi)

TV−1
i Zi.

We decompose (S′
0n − S′

n)kk = I1 + I2 + I3 where

I1 = (S′
0n−S0n)kk, I2 = (S0n−Sn)kk, and I3 = (Sn−S′

n)kk

Since Vi −V∗
i = ZiΔDZT

i + Δσ2Im, we have I1 ≤ ‖S′
0n −

S0n‖ = op(1). From the argument in the proof of Theorem
4.1, we have I2 = Op

(
(log qn/n)

1/2
)
. Denote ei = εi +Zibi

and decompose I3 = I31 + I32 + I33, where

I31 =
1

n

n∑
i=1

(ZT
i V

−1
i XiΔβXiΔ

T
βV

−1
i Zi)kk,

I32 =
1

n

n∑
i=1

(
ZT

i V
−1
i XiΔβe

T
i V

−1
i Zi

)
kk

+
1

n

n∑
i=1

(
ZT

i V
−1
i XiΔβe

T
i V

−1
i Zi

)T
kk

,

I33 =
1

n

n∑
i=1

(ZT
i V

−1
i eie

T
i V

−1
i Zi − ZT

i V
∗
i
−1eie

T
i V

∗
i
−1Zi)kk.

From LLN, I32 = op(1), and

I33 = E[(ZT
i V

−1
i V∗

iV
−1
i Zi − ZT

i V
∗
i
−1Zi)kk] + op(1)
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≤ E‖ZT
i V

−1
i V∗

iV
−1
i Zi − ZT

i V
∗
i
−1Zi‖+ op(1)

= op(1).

For I31 we have

I31 =
1

n

n∑
i=1

‖(ZT
i V

−1
i Xi)(k)Δβ‖

2 ≥ 0.

Hence, we have (S′
0n−S′

n)kk = I31+Op

(
(log qn/n)

1/2
)
. For

k ∈ Sc
D, since D∗

kk = 0, then we have D̂kk ≤ ‖ΔD‖F =
Op

(
(log qn/n)

1/2
)
. Therefore

λ2n

2
√
D̂kk

≥ Op

(
(log qn/n)

1/2
)
,

Then the sign of ∂Qn(β̂, L̂, σ̂)/∂Dkk is always nonnegative
with probability tending to one for k ∈ Sc

D, and the spar-

sistency property for D̂kk in Theorem 4.2 is satisfied. The
proof of the theorem is completed.
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