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Jackknife empirical likelihood for the skewness
and kurtosis

Yichuan Zhao, Anna Moss, Hanfang Yang
∗
, and Yan Zhang

Coefficients of skewness and kurtosis provide convenient
measures for describing the shape of a distribution based
on a sample of independent observations. In this paper, we
propose jackknife empirical likelihood (JEL) confidence in-
tervals for the skewness and kurtosis coefficients, proving
that the limiting distribution of the JEL ratio is a standard
chi-squared distribution, and conduct an extensive simula-
tion study comparing JEL with bootstrap methods. Com-
pared with bootstrap methods, the JEL-based confidence
intervals perform well in simulations with data from nor-
mal, t, γ, log-normal, and uniform distributions. We also
illustrate the application of our proposed JEL methods us-
ing data from the behavioral risk factor surveillance system,
an annual US health survey.
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pseudo-values, Kurtosis and skewness, Nonparametric con-
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1. INTRODUCTION

Measures of skewness and kurtosis are useful tools for
examining characteristics of a given distribution and test-
ing normality (Wilcox (1990) and D’Agostino, Belanger, &
D’Agostino (1990)), which is often a basic assumption in ap-
plying statistical methods. Inference methods have mainly
focused on testing hypotheses of normality, and few stud-
ies have investigated confidence interval (CI) construction,
which may be due to the non-linearity and non-normality of
estimators of the skewness and kurtosis. While bootstrap-
ping is possible, at least one informal study by Wright &
Herrington (2011) indicated that bootstrap methods for the
skewness and kurtosis had very poor coverage. To address
this gap in the literature, we develop another promising CI
method, the jackknife empirical likelihood (JEL), for the
skewness and kurtosis.

The JEL introduced by Jing, Yuan, & Zhou (2009) is
a nonparametric method for constructing confidence inter-
vals (CIs), which may be well-suited to the skewness and
kurtosis. The JEL combines the bias reduction of the jack-
knife with the data-driven shape of the empirical likelihood
(EL) by applying the EL method for the mean of jackknife
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pseudo-values. Jing, Yuan, & Zhou (2009) originally devel-
oped the JEL method for U -statistics to address compu-
tational difficulties when applying the EL method directly.
Subsequently, the JEL has been successfully applied to other
nonlinear statistics faced with the same computational chal-
lenges of the EL method such as Gong, Peng, & Qi (2010),
Yang & Zhao (2013, 2015) and Zhao, Meng & Yang (2015).
Therefore, we apply the JEL method to CI construction for
the skewness and kurtosis. We then conduct a comprehen-
sive simulation study evaluating its performance along with
bootstrap methods.

The paper is organized as follows. In Section 2, we present
the skewness and kurtosis and derive the original JEL, the
adjusted JEL (AJEL) and the extended JEL (EJEL) meth-
ods. In Section 3, we conduct simulation studies to compare
coverage probability and average length of the three JEL
methods and three bootstrap methods using data from nor-
mal, gamma, t, log-normal, and uniform distributions. In
Section 4, we illustrate the proposed method by applying
the JEL and bootstrap methods to data from the behav-
ioral risk factor surveillance system (BRFSS), a national
health survey conducted annually in the United States. In
Section 5, we present a discussion and conclusion. Proof of
the theorems are put in the Appendix.

2. INFERENCE PROCEDURE

2.1 Skewness and kurtosis

Skewness and kurtosis of a random variable X, respec-
tively denoted as g3 and g4, are the third and fourth stan-
dardized moments defined as

g3 =
μ3

σ3
=

E [X − μ]
3(

E [X − μ]
2
)3/2

and

g4 =
μ4

σ4
=

E [X − μ]
4(

E [X − μ]
2
)2

where μ3 and μ4 are the third and fourth central moments,
E is the expectation operator, μ is the mean and σ is the
standard deviation of X.

From a sample of n i.i.d. observations, x1, . . . , xn, g3 and
g4 are commonly estimated from ĝ3 and ĝ4 proposed by

http://www.intlpress.com/SII/


Cramer (1946), using the corresponding sample moments
m3 and m4 as well as m2 as follows

ĝ3 =
m3

m
3/2
2

=

∑n
i=1(xi − x̄)3/n

(
∑n

i=1(xi − x̄)2/n)
3/2

and

ĝ4 =
m4

m2
2

=

∑n
i=1(xi − x̄)4/n

(
∑n

i=1(xi − x̄)2/n)
2

where x̄ and m2 are the sample mean and sample standard
deviation, respectively.

Under the assumption of normality, ĝ3 and ĝ4 have vari-
ances equal to

V ar (ĝ3) =
6n(n− 1)

(n− 2)(n+ 1)(n+ 3)

and

V ar (ĝ4) =
24n(n− 1)2

(n− 3)(n− 2)(n+ 5)(n+ 3)
.

which may be used to construct approximately (1−α)-level
confidence intervals (CIs) as

R1−α =

{
g̃r :

(ĝr − g̃r)
2

V ar(ĝr)
≤ χ2,1−α

1

}
; r = 3, 4,

for the skewness (r = 3) and kurtosis (r = 4), respectively,
and χ2,1−α

1 is the 1 − α quantile from the χ2
1 distribution.

However, in practice, the normality assumption is often im-
plausible for highly nonlinear estimators like ĝ3 and ĝ4, and
the resulting NA confidence intervals (CIs) can have poor
coverage even for large sample sizes. Therefore, we develop
CIs based on nonparametric methods, which may improve
coverage probabilities and have superior performance com-
pared with CIs based on NA methods.

2.2 Jackknife empirical likelihood

The jackknife empirical likelihood (Jing, Yuan, & Zhou
(2009)) combines the jackknife proposed by Quenouille
(1956) and the empirical likelihood (EL) method of Owen
(1990). Like the jackknife, the statistics of interest is the
sample mean of the jackknife pseudo-values based on a con-
sistent estimator of a parameter (e.g., skewness or kurtosis).
The EL method for the mean is applied to the jackknife
pseudo-values to construct confidence intervals.

The JEL may be applied to skewness and kurtosis as
follows. Recall that x1, . . . , xn are a sample of n independent
observations from an unknown distribution of parameter gr
with consistent estimator ĝr (r = 3, 4). Define the jackknife
pseudo-values Vr,1, . . . , Vr,n as

Vr,i = n ĝr − (n− 1)ĝr,i , i = 1, . . . , n,

where ĝr,i is computed on the sample of n− 1 observations
with the ith observation removed, which is similar to ĝr. The
jackknife estimator of gr is

ĝr,J =
1

n

n∑
i=1

Vr,i,

which is the average of the jackknife pseudo-values.
Following Jing, Yuan, & Zhou (2009), we define the jack-

knife empirical likelihood ratio R(gr) at a true value of gr
as

R(gr) = max

{
n∏

i=1

nwi :

n∑
i=1

wiVr,i = gr,

n∑
i=1

wi = 1

}

where wi ≥ 0 for i = 1, . . . , n. Using Lagrange multipliers,
we obtain

wi =
1

n

1

1 + λ(Vr,i − gr)

with λ satisfying

1

n

n∑
i=1

Vr,i − gr
1 + λ(Vr,i − gr)

= 0.

Plugging wi’s into the log-likelihood ratio equation, we ob-
tain

logR(gr) = −
n∑

i=1

log {1 + λ(Vr,i − gr)} .

For the true value gr, we have the following result

Theorem 1. Under regularity conditions, μ6 = E|x−μ|6 <
∞, μ8 = E|X − μ|8 < ∞ and μ2 = E|X − μ|2 > 0,

− 2logR(gr)
d−→ χ2

1,

where χ2
1 is a chi-square random variable with one degree of

freedom.

Using Theorem 1, we can construct JEL confidence in-
tervals as

RJEL,1−α =
{
g̃r : −2logR(g̃r) ≤ χ2,1−α

1

}
,

where χ2,1−α
1 is the 1−α quantile from the χ2

1 distribution.

2.3 Adjusted jackknife empirical likelihood

The adjusted empirical likelihood of Chen, Variyath, &
Abraham (2008) expands the domain of the EL method by
adding a single artificial data point to the set of sample
values. The data point is constructed so that the true pa-
rameter value will be located in the interior of the convex
hull of the augmented data set, and thus eliminating the so-
called “empty set” problem. As a benefit, this adjustment
can improve coverage probabilities of the EL method partic-
ularly in small samples. For pseudo-values Vr,1, . . . , Vr,n, we
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perform the adjusted JEL (AJEL) by defining a function
gadr,i = gad(Vr,i, gr) = Vr,i − gr, for i = 1, . . . , n, where gr
is the skewness (r=3) or kurtosis (r=4) parameter. Then
an artificial point gadr,n+1 is constructed as −anḡrn with

an = max{1, log(n)/2}, and ḡrn =
∑n

i=1 g
ad
r,i/n = ĝr,J − gr.

We define the adjusted jackknife empirical likelihood ra-
tio, W (gr), at the true value gr as

W (gr) = max

{
n+1∏
i=1

(n+ 1)wi :
n+1∑
i=1

wig
ad
r,i = 0,

n+1∑
i=1

wi = 1

}

where wi ≥ 0 for i = 1, . . . , n+ 1. Using Lagrange multipli-
ers, we obtain

wi =
1

(n+ 1)

1

1 + λgadr,i

with λ satisfying

1

(n+ 1)

n+1∑
i=1

gadr,i
1 + λgadr,i

= 0.

We plug the wi’s into the adjusted jackknife empirical log-
likelihood ratio to obtain logW (gr) as

logW (gr) = −
n+1∑
i=1

log
{
1 + λgadr,i

}
.

For the true value gr, we establish the following Wilks’ the-
orem,

Theorem 2. Under regularity conditions, μ6 < ∞, μ8 < ∞
and μ2 > 0,

− 2logW (gr)
d−→ χ2

1.

Using Theorem 2, we can construct JEL confidence in-
tervals as

RAJEL,1−α =
{
g̃r : −2logW (g̃r) ≤ χ2,1−α

1

}
; r = 3, 4.

2.4 Extended jackknife empirical likelihood

We perform the extended JEL (EJEL) using extended
empirical likelihood method of Tsao & Wu (2013). This
method also eliminates the empty set problem and achieves
the domain expansion by mapping the EL domain Θn onto
the full parameter space, which is R for both skewness and
kurtosis. The extended EL method can also improve the
coverage of EL-based confidence intervals. By applying it to
the JEL, we define a bijective mapping hn : Θn → R as

hn(gr) = ĝr + γ(l(gr), n)(gr − ĝr); gr ∈ Θn

where γ(l(gr), n) = 1 + l/(2n) with l = l(gr) = −2logR(gr).
In this case, gr is the parameter value (i.e., the skewness or
kurtosis) in the EL domain Θn. For parameter gr ∈ R, we
perform the JEL with h−1

n ∈ Θn like Tsao and Wu (2014) to

obtain the extended jackknife empirical log-likelihood ratio
l∗(gr) as

l∗(gr) = −2logR(h−1
n ).

For the true value gr ∈ R, we have the following theorem,

Theorem 3. Under regularity conditions, μ6 < ∞, μ8 < ∞
and μ2 > 0,

l∗(gr)
d−→ χ2

1.

Using Theorem 3, we can construct EJEL confidence in-
tervals as follows,

REJEL,1−α =
{
g̃r : l∗(g̃r) ≤ χ2,1−α

1

}
; r = 3, 4.

3. NUMERICAL STUDIES

We conducted a simulation study to evaluate the per-
formance of the three JEL CI methods: the original JEL,
AJEL, and EJEL, for the skewness and kurtosis. We com-
pared performance of the JEL methods to three bootstrap
CI methods: original, percentile, and bias-corrected acceler-
ated (BCa) bootstrap. We generated samples from normal,
N(μ = 0, σ = 1), gamma (α = 4, β = 1), t10, log-normal
(μ = 0, σ = 0.25), and uniform (0, 1) distributions of sam-
ples sizes n = 30, 60, 120 and 240. For each setting we calcu-
lated the coverage probability and average interval length for
confidence levels of 1-α = 0.90, 0.95 and 0.99 from 5000 sim-
ulations. For bootstrap methods, CIs were calculated from
400 bootstrap samples taken with replacement. Tables 1 -
10 display the results for coverage probability and average
length of CIs for the skewness (Tables 1-5) and the kurtosis
(Tables 6-10) for all five distributions.

For the skewness, all methods performed as expected with
increasing coverage and decreasing length with the increas-
ing sample size. For the normal data, JEL and bootstrap
methods had similar coverage reaching nominal levels for the
largest sample size of n = 240. For t distribution, only the
BCa bootstrap achieved nominal level coverage rates and
only for the largest sample size n = 240. For asymmetrical
distributions, gamma and log-normal, JEL performed about
the same as bootstrap, but all methods demonstrated under-
coverage for all sample sizes and confidence levels. For the
uniform distribution, both JEL and bootstrapping achieved
nominal coverage levels for all sample sizes. With the excep-
tion of the uniform distribution, bootstrap methods tended
to produce slightly shorter intervals than the JEL methods.
With uniformly distributed data, the original JEL method
produced shortest intervals.

For the kurtosis, both JEL and bootstrapping consis-
tently under-covered true values for all distributions except
the uniform data. Under the uniform sampling, both JEL
and bootstrap methods achieved nominal coverage for all
confidence levels and sample sizes. With other distributions,
under-coverage was generally worse with bootstrapping and
particularly severe for t-distributed data. Also notable for
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Table 1. Coverage probability (average interval length) for the skewness with N(0, 1)

n JEL AJEL EJEL Bootstrap Percentile BCa

α = 0.90
30 0.82 (1.41) 0.84 (1.51) 0.83 (1.48) 0.90 (1.15) 0.90 (1.14) 0.84 (1.15)
60 0.85 (1.05) 0.87 (1.08) 0.86 (1.07) 0.89 (0.86) 0.90 (0.86) 0.87 (0.86)
120 0.85 (0.76) 0.86 (0.78) 0.86 (0.77) 0.88 (0.66) 0.88 (0.65) 0.87 (0.66)
240 0.88 (0.54) 0.88 (0.55) 0.90 (0.54) 0.89 (0.48) 0.88 (0.48) 0.88 (0.49)

α = 0.95
30 0.89 (1.68) 0.91 (1.79) 0.91 (1.78) 0.95 (1.35) 0.95 (1.35) 0.91 (1.37)
60 0.91 (1.27) 0.92 (1.32) 0.91 (1.31) 0.94 (1.03) 0.94 (1.02) 0.92 (1.03)
120 0.92 (0.91) 0.92 (0.93) 0.92 (0.93) 0.93 (0.77) 0.93 (0.76) 0.93 (0.77)
240 0.93 (0.66) 0.94 (0.67) 0.94 (0.66) 0.94 (0.57) 0.94 (0.57) 0.94 (0.58)

α = 0.99
30 0.97 (2.35) 0.98 (2.53) 0.99 (2.61) 0.99 (1.80) 0.99 (1.87) 0.98 (1.87)
60 0.98 (1.77) 0.98 (1.84) 0.98 (1.87) 0.99 (1.35) 0.99 (1.37) 0.98 (1.38)
120 0.98 (1.30) 0.98 (1.33) 0.98 (1.34) 0.99 (1.03) 0.99 (1.04) 0.99 (1.04)
240 0.98 (0.92) 0.98 (0.93) 0.98 (0.93) 0.99 (0.76) 0.99 (0.77) 0.99 (0.77)

Table 2. Coverage probability (average interval length) for the skewness with t10

n JEL AJEL EJEL Bootstrap Percentile BCa

α = 0.90
30 0.69 (2.08) 0.73 (2.22) 0.72 (2.17) 0.86 (1.46) 0.87 (1.43) 0.78 (1.42)
60 0.72 (1.84) 0.74 (1.91) 0.73 (1.88) 0.84 (1.28) 0.85 (1.24) 0.83 (1.25)
120 0.76 (1.53) 0.77 (1.57) 0.76 (1.55) 0.84 (1.11) 0.86 (1.09) 0.86 (1.10)
240 0.79 (1.25) 0.80 (1.27) 0.80 (1.26) 0.87 (0.96) 0.86 (0.94) 0.88 (0.95)

α = 0.95
30 0.78 (2.55) 0.82 (2.72) 0.81 (2.71) 0.93 (1.74) 0.93 (1.70) 0.87 (1.69)
60 0.80 (2.27) 0.81 (2.35) 0.81 (2.34) 0.91 (1.52) 0.92 (1.46) 0.90 (1.46)
120 0.83 (1.90) 0.84 (1.94) 0.84 (1.93) 0.91 (1.32) 0.92 (1.27) 0.93 (1.30)
240 0.86 (1.55) 0.86 (1.57) 0.86 (1.56) 0.93 (1.14) 0.93 (1.11) 0.94 (1.11)

α = 0.99
30 0.90 (3.54) 0.93 (3.81) 0.94 (3.94) 0.98 (2.28) 0.99 (2.26) 0.96 (2.25)
60 0.90 (3.21) 0.91 (3.33) 0.92 (3.38) 0.97 (2.00) 0.98 (1.88) 0.98 (1.87)
120 0.92 (2.70) 0.93 (2.76) 0.93 (2.78) 0.97 (1.74) 0.98 (1.63) 0.98 (1.61)
240 0.94 (2.21) 0.94 (2.23) 0.94 (2.24) 0.98 (1.50) 0.98 (1.42) 0.99 (1.40)

Table 3. Coverage probability (average interval length) for the skewness with gamma (4, 1)

n JEL AJEL EJEL Bootstrap Percentile BCa

α = 0.90
30 0.70 (1.60) 0.73 (1.71) 0.72 (1.67) 0.69 (1.26) 0.69 (1.24) 0.71 (1.22)
60 0.74 (1.32) 0.75 (1.37) 0.75 (1.35) 0.72 (1.01) 0.72 (0.99) 0.74 (0.99)
120 0.77 (0.99) 0.78 (1.01) 0.77 (1.00) 0.73 (0.79) 0.73 (0.78) 0.75 (0.78)
240 0.80 (0.77) 0.81 (0.78) 0.81 (0.78) 0.78 (0.64) 0.78 (0.63) 0.80 (0.64)

α = 0.95
30 0.76 (1.98) 0.79 (2.12) 0.79 (2.11) 0.76 (1.52) 0.76 (1.49) 0.79 (1.50)
60 0.81 (1.57) 0.83 (1.63) 0.82 (1.62) 0.77 (1.19) 0.77 (1.16) 0.79 (1.16)
120 0.84 (1.25) 0.85 (1.27) 0.85 (1.27) 0.80 (0.96) 0.81 (0.93) 0.82 (0.94)
240 0.87 (0.94) 0.88 (0.95) 0.88 (0.94) 0.83 (0.76) 0.83 (0.74) 0.84 (0.75)

α = 0.99
30 0.87 (2.65) 0.89 (2.86) 0.90 (2.95) 0.87 (1.98) 0.89 (2.01) 0.89 (2.00)
60 0.91 (2.23) 0.92 (2.32) 0.93 (2.36) 0.89 (1.59) 0.89 (1.56) 0.90 (1.54)
120 0.93 (1.69) 0.93 (1.73) 0.93 (1.74) 0.89 (1.24) 0.89 (1.21) 0.90 (1.20)
240 0.95 (1.31) 0.95 (1.33) 0.95 (1.33) 0.91 (1.00) 0.91 (0.98) 0.91 (0.97)

712 Y. Zhao et al.



Table 4. Coverage probability (average interval length) for the skewness with lognormal (0, 0.25)

n JEL AJEL EJEL Bootstrap Percentile BCa

α = 0.90
30 0.72 (1.59) 0.75 (1.69) 0.74 (1.66) 0.74 (1.23) 0.74 (1.23) 0.73 (1.22)
60 0.75 (1.26) 0.77 (1.30) 0.76 (1.29) 0.74 (0.98) 0.74 (0.97) 0.75 (0.96)
120 0.79 (1.00) 0.80 (1.02) 0.80 (1.01) 0.78 (0.80) 0.78 (0.78) 0.79 (0.79)
240 0.82 (0.75) 0.82 (0.76) 0.82 (0.75) 0.80 (0.63) 0.80 (0.62) 0.82 (0.63)

α = 0.95
30 0.80 (1.93) 0.83 (2.07) 0.82 (2.06) 0.82 (1.49) 0.82 (1.48) 0.82 (1.47)
60 0.83 (1.54) 0.84 (1.59) 0.84 (1.59) 0.81 (1.17) 0.81 (1.15) 0.82 (1.14)
120 0.86 (1.22) 0.87 (1.25) 0.87 (1.24) 0.84 (0.95) 0.84 (0.93) 0.84 (0.93)
240 0.88 (0.92) 0.88 (0.93) 0.88 (0.93) 0.86 (0.75) 0.86 (0.74) 0.86 (0.74)

α = 0.99
30 0.90 (2.65) 0.92 (2.85) 0.93 (2.94) 0.91 (1.95) 0.91 (2.00) 0.91 (1.99)
60 0.92 (2.13) 0.93 (2.21) 0.93 (2.25) 0.91 (1.53) 0.90 (1.51) 0.91 (1.51)
120 0.95 (1.70) 0.95 (1.74) 0.95 (1.75) 0.92 (1.24) 0.92 (1.21) 0.92 (1.20)
240 0.95 (1.28) 0.95 (1.29) 0.95 (1.29) 0.93 (0.98) 0.93 (0.96) 0.93 (0.96)

Table 5. Coverage probability (average interval length) for the skewness with U(0, 1)

n JEL AJEL EJEL Bootstrap Percentile BCa

α = 0.90
30 0.92 (0.88) 0.94 (0.94) 0.93 (0.92) 0.92 (0.92) 0.91 (0.91) 0.89 (0.92)
60 0.91 (0.61) 0.92 (0.63) 0.92 (0.63) 0.91 (0.63) 0.91 (0.62) 0.90 (0.63)
120 0.90 (0.43) 0.91 (0.44) 0.91 (0.44) 0.91 (0.43) 0.90 (0.44) 0.90 (0.44)
240 0.90 (0.30) 0.91 (0.31) 0.94 (0.31) 0.90 (0.31) 0.90 (0.31) 0.90 (0.31)

α = 0.95
30 0.96 (1.04) 0.98 (1.11) 0.98 (1.11) 0.97 (1.09) 0.96 (1.11) 0.94 (1.11)
60 0.96 (0.73) 0.96 (0.75) 0.96 (0.75) 0.96 (0.75) 0.95 (0.75) 0.94 (0.76)
120 0.95 (0.51) 0.96 (0.52) 0.96 (0.52) 0.95 (0.52) 0.95 (0.53) 0.94 (0.53)
240 0.95 (0.36) 0.96 (0.37) 0.97 (0.37) 0.95 (0.37) 0.96 (0.37) 0.95 (0.37)

α = 0.99
30 1.00 (1.35) 1.00 (1.46) 1.00 (1.50) 0.99 (1.43) 0.99 (1.53) 0.99 (1.54)
60 0.99 (0.95) 1.00 (0.99) 1.00 (1.00) 0.99 (0.98) 0.99 (1.02) 0.98 (1.03)
120 0.99 (0.67) 0.99 (0.69) 0.99 (0.69) 0.99 (0.68) 0.99 (0.71) 0.99 (0.71)
240 0.99 (0.48) 0.99 (0.48) 0.99 (0.48) 0.99 (0.48) 0.99 (0.50) 0.99 (0.50)

Table 6. Coverage probability (average interval length) for the kurtosis with N(0, 1)

n JEL AJEL EJEL Bootstrap Percentile BCa

α = 0.90
30 0.72 (2.40) 0.75 (2.56) 0.74 (2.51) 0.78 (2.02) 0.82 (1.93) 0.81 (2.34)
60 0.78 (1.79) 0.79 (1.86) 0.78 (1.83) 0.78 (1.48) 0.80 (1.45) 0.82 (1.66)
120 0.81 (1.38) 0.82 (1.41) 0.81 (1.39) 0.80 (1.16) 0.81 (1.14) 0.83 (1.28)
240 0.84 (1.00) 0.85 (1.02) 0.84 (1.01) 0.83 (0.88) 0.83 (0.87) 0.86 (0.97)

α = 0.95
30 0.78 (2.82) 0.80 (3.01) 0.80 (3.00) 0.83 (2.36) 0.89 (2.31) 0.88 (2.75)
60 0.84 (2.18) 0.85 (2.26) 0.85 (2.25) 0.83 (1.77) 0.87 (1.73) 0.88 (2.02)
120 0.87 (1.61) 0.87 (1.64) 0.87 (1.63) 0.84 (1.34) 0.87 (1.31) 0.89 (1.50)
240 0.90 (1.21) 0.91 (1.22) 0.90 (1.22) 0.88 (1.04) 0.89 (1.02) 0.91 (1.17)

α = 0.99
30 0.86 (3.95) 0.89 (4.26) 0.89 (4.39) 0.92 (3.16) 0.98 (3.32) 0.97 (3.62)
60 0.91 (2.99) 0.92 (3.11) 0.92 (3.15) 0.91 (2.32) 0.96 (2.35) 0.96 (2.57)
120 0.94 (2.31) 0.94 (2.36) 0.94 (2.37) 0.93 (1.81) 0.95 (1.80) 0.96 (1.98)
240 0.96 (1.68) 0.96 (1.70) 0.96 (1.71) 0.94 (1.38) 0.96 (1.37) 0.97 (1.51)
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Table 7. Coverage probability (average interval length) for the kurtosis with t10

n JEL AJEL EJEL Bootstrap Percentile BCa

α = 0.90
30 0.41 (4.19) 0.42 (4.46) 0.42 (4.38) 0.32 (3.00) 0.35 (2.86) 0.34 (3.64)
60 0.47 (4.36) 0.48 (4.52) 0.47 (4.46) 0.36 (2.89) 0.37 (2.74) 0.26 (3.33)
120 0.52 (4.18) 0.52 (4.27) 0.52 (4.23) 0.41 (2.80) 0.43 (2.63) 0.23 (3.11)
240 0.56 (3.94) 0.57 (3.98) 0.57 (3.96) 0.48 (2.79) 0.49 (2.61) 0.14 (3.08)

α = 0.95
30 0.47 (5.12) 0.48 (5.46) 0.48 (5.44) 0.38 (3.58) 0.44 (3.45) 0.49 (4.29)
60 0.53 (5.35) 0.54 (5.56) 0.55 (5.52) 0.41 (3.46) 0.44 (3.22) 0.43 (3.98)
120 0.59 (5.14) 0.59 (5.25) 0.59 (5.22) 0.47 (3.33) 0.48 (3.04) 0.38 (3.71)
240 0.65 (4.84) 0.65 (4.90) 0.65 (4.88) 0.53 (3.30) 0.54 (3.00) 0.30 (3.65)

α = 0.99
30 0.56 (7.06) 0.58 (7.60) 0.59 (7.84) 0.48 (4.71) 0.64 (4.70) 0.70 (5.17)
60 0.63 (7.48) 0.65 (7.78) 0.65 (7.90) 0.50 (4.53) 0.58 (4.19) 0.63 (4.65)
120 0.70 (7.23) 0.71 (7.39) 0.71 (7.43) 0.55 (4.38) 0.58 (3.84) 0.61 (4.26)
240 0.77 (6.82) 0.77 (6.90) 0.77 (6.91) 0.61 (4.34) 0.64 (3.72) 0.58 (4.13)

Table 8. Coverage probability (average interval length) for the kurtosis with gamma (4, 1)

n JEL AJEL EJEL Bootstrap Percentile BCa

α = 0.90
30 0.46 (4.58) 0.47 (4.88) 0.47 (4.79) 0.45 (3.30) 0.49 (3.10) 0.57 (3.89)
60 0.57 (4.58) 0.59 (4.75) 0.58 (4.68) 0.53 (3.17) 0.56 (3.01) 0.61 (3.70)
120 0.63 (3.84) 0.63 (3.92) 0.63 (3.88) 0.57 (2.77) 0.58 (2.66) 0.64 (3.13)
240 0.70 (3.33) 0.70 (3.37) 0.70 (3.35) 0.64 (2.53) 0.65 (2.45) 0.70 (2.87)

α = 0.95
30 0.52 (5.78) 0.54 (6.18) 0.54 (6.15) 0.51 (4.00) 0.58 (3.79) 0.66 (4.66)
60 0.64 (5.41) 0.65 (5.62) 0.65 (5.59) 0.57 (3.68) 0.62 (3.46) 0.69 (4.28)
120 0.71 (4.93) 0.72 (5.03) 0.71 (5.01) 0.63 (3.40) 0.67 (3.17) 0.74 (3.84)
240 0.77 (4.02) 0.77 (4.07) 0.77 (4.06) 0.69 (2.98) 0.71 (2.81) 0.77 (3.43)

α = 0.99
30 0.59 (7.71) 0.61 (8.30) 0.62 (8.56) 0.62 (5.17) 0.76 (5.15) 0.79 (5.56)
60 0.71 (7.85) 0.73 (8.16) 0.73 (8.29) 0.67 (4.16) 0.77 (4.71) 0.80 (5.20)
120 0.80 (6.62) 0.80 (6.75) 0.81 (6.80) 0.71 (4.96) 0.78 (4.02) 0.82 (4.44)
240 0.86 (5.75) 0.86 (5.82) 0.86 (5.83) 0.78 (4.34) 0.81 (3.64) 0.86 (4.06)

Table 9. Coverage probability (average interval length) for the kurtosis with lognormal (0, 0.25)

n JEL AJEL EJEL Bootstrap Percentile BCa

α = 0.90
30 0.49 (3.91) 0.51 (4.17) 0.50 (4.09) 0.48 (2.88) 0.51 (2.73) 0.60 (3.43)
60 0.56 (3.66) 0.57 (3.80) 0.57 (3.75) 0.51 (2.60) 0.54 (2.48) 0.61 (3.02)
120 0.64 (3.38) 0.65 (3.45) 0.64 (3.42) 0.58 (2.43) 0.60 (2.32) 0.67 (2.73)
240 0.69 (2.83) 0.69 (2.87) 0.69 (2.85) 0.64 (2.16) 0.65 (2.09) 0.71 (2.46)

α = 0.95
30 0.54 (4.77) 0.57 (5.10) 0.56 (5.08) 0.54 (3.44) 0.62 (3.31) 0.69 (4.06)
60 0.63 (4.49) 0.64 (4.66) 0.64 (4.63) 0.57 (3.10) 0.62 (2.94) 0.69 (3.61)
120 0.71 (4.16) 0.72 (4.25) 0.72 (4.25) 0.64 (2.89) 0.67 (2.71) 0.74 (3.29)
240 0.76 (3.48) 0.77 (3.52) 0.77 (3.51) 0.69 (2.57) 0.72 (2.44) 0.78 (2.95)

α = 0.99
30 0.63 (6.57) 0.66 (7.07) 0.67 (7.29) 0.65 (4.52) 0.80 (4.56) 0.82 (4.95)
60 0.72 (6.25) 0.73 (6.50) 0.73 (6.60) 0.66 (4.07) 0.76 (3.89) 0.81 (4.32)
120 0.80 (5.83) 0.80 (5.96) 0.81 (5.99) 0.72 (3.80) 0.78 (3.47) 0.83 (3.87)
240 0.86 (4.89) 0.87 (4.95) 0.87 (4.96) 0.77 (3.38) 0.81 (3.09) 0.86 (3.45)

714 Y. Zhao et al.



Table 10. Coverage probability (average interval length) for the kurtosis with U(0, 1)

n JEL AJEL EJEL Bootstrap Percentile BCa

α = 0.90
30 0.91 (0.98) 0.91 (1.04) 0.91 (1.02) 0.99 (1.14) 0.96 (1.07) 0.97 (0.98)
60 0.92 (0.59) 0.93 (0.61) 0.92 (0.60) 0.96 (0.65) 0.93 (0.63) 0.96 (0.60)
120 0.91 (0.38) 0.92 (0.39) 0.91 (0.39) 0.94 (0.40) 0.92 (0.40) 0.96 (0.39)
240 0.91 (0.26) 0.91 (0.26) 0.94 (0.26) 0.92 (0.26) 0.91 (0.26) 0.96 (0.26)

α = 0.95
30 0.94 (1.16) 0.95 (1.24) 0.95 (1.24) 1.00 (1.35) 0.99 (1.34) 0.99 (1.20)
60 0.95 (0.73) 0.96 (0.73) 0.96 (0.73) 0.99 (0.77) 0.97 (0.77) 0.99 (0.72)
120 0.95 (0.46) 0.96 (0.47) 0.96 (0.46) 0.97 (0.48) 0.96 (0.48) 0.98 (0.47)
240 0.96 (0.31) 0.96 (0.31) 0.96 (0.31) 0.96 (0.32) 0.96 (0.32) 0.98 (0.31)

α = 0.99
30 0.98 (1.52) 0.98 (1.65) 0.98 (1.69) 1.00 (1.78) 1.00 (1.95) 1.00 (1.71)
60 0.98 (0.92) 0.99 (0.96) 0.99 (0.97) 1.00 (1.01) 1.00 (1.07) 1.00 (1.00)
120 0.99 (0.60) 0.99 (0.61) 0.99 (0.62) 1.00 (0.63) 0.99 (0.66) 1.00 (0.64)
240 0.99 (0.40) 0.99 (0.41) 0.99 (0.41) 0.99 (0.41) 0.99 (0.43) 1.00 (0.42)

Table 11. Interval estimates of coefficients of skewness and
kurtosis for body weight distribution

Skewness (ĝ3 =0.72) Kurtosis (ĝ4 =2.84)

Method 95% CI Length 95% CI Length
JEL 0.43, 1.02 0.59 2.13, 3.57 1.44
AJEL 0.43, 1.03 0.60 2.11, 3.58 1.47
EJEL 0.42, 1.02 0.60 2.11, 3.58 1.47
Bootstrap 0.43, 0.99 0.56 2.16, 3.51 1.35
Percetile Bootstrap 0.45, 1.00 0.55 2.26, 3.65 1.39
BCa Bootstrap 0.49, 1.03 0.54 2.32, 3.70 1.38

t-distributed data was the BCa bootstrap with decreasing
the coverage (with increasing sample size) for all confidence
levels. As with the skewness, bootstrap produced shorter in-
tervals compared with the JEL methods except for uniform
data, where the original JEL produced shortest intervals.

4. DATA ANALYSIS

The BRFSS is an annual US survey collecting data on
health risks and chronic conditions from adults in all US
states and territories. The BRFSS is a national dataset,
which provides state-level health and risk factor data for
all US states and territories. Both US national and state
health agencies use BRFSS data to monitor health trends in
the US population. For example, the BRFSS has been used
to estimate the growing obesity epidemic in the US over
the past few decades. Consequently, an abundance of health
studies have analyzed the body weight, which is typically
assumed to have a normal distribution in statistical models
and tests. For this data analysis, we characterized the dis-
tribution of body weight in kilograms (kg) among women,
aged 18 to 25, from Georgia, US (n = 160). A histogram
of the distribution of the variable for self-reported weight in
kilograms (kg) indicates a slightly skewed and highly peaked

Figure 1. Histogram of self-reported body weight.

distribution (Figure 1). Point estimates for the skewness and
kurtosis were ĝ3 = 0.72 and ĝ4 = 2.84, respectively. Results
in Table 5 show that JEL and bootstrap methods produce
similar interval estimates for skewness and kurtosis coef-
ficients; the JEL methods produce slightly wider intervals
compared with bootstrap methods. The CIs also confirm
observations from the histogram. For the skewness, all CIs
exclude the value of zero indicating that body weight among
young women in Georgia may be more skewed than a normal
distribution. For the kurtosis, all CIs include the value of 3
indicating that the central peakedness of the distribution of
body weight is consistent with that of a normal distribution.
The CIs provide evidence that further models and analysis
assuming normality or symmetry in the body weight dis-
tribution may not be appropriate in this population. But
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beyond the informal hypothesis test of normality, the CIs
also provide meaningful and robust interval estimates for
these population parameters of body weight among young
women in Georgia, US.

5. CONCLUSION

Coefficients of skewness and kurtosis provide informa-
tion about moment characteristics of a probability distri-
bution; however, accurate estimation of these quantities can
be difficult due to highly nonlinear behavior of the existing
estimators, and very few studies have evaluated nonpara-
metric methods for interval estimation. To address these
drawbacks, we developed JEL methods, proving the limit-
ing chi-square distribution for the JEL ratio, and compared
performance of JEL-based methods with standard boot-
strap methods through extensive simulations. Our simula-
tion studies showed that the JEL methods can attain supe-
rior coverage probabilities compared with bootstrap meth-
ods particularly for small sample sizes. However, in some
cases the bootstrap had better coverage than the JEL, and
coverage probabilities for both JEL and bootstrap methods
were substantially lower than nominal levels for small sam-
ple size.

For the kurtosis, all methods suffer from under-coverage
for distributions with long tails including the normal distri-
bution. The poor performance is likely due to the difficulty
sampling low probability observations in the tails. There-
fore, small to moderate sample sizes may not include a suf-
ficient number of tail points for ĝ4 to obtain an adequate
estimate of kurtosis and thus compromise JEL and boot-
strap methods, which are centered around these estimates.
Optimization of point estimators through weighting or other
strategies would improve both JEL and bootstrap methods.

Future research could theoretically focus on improving
the performance of nonparametric inference methods for
skewness and kurtosis parameters. For example, the ker-
nel method may be incorporated into the JEL framework.
Moreover, it is possible to estimate the skewness and kur-
tosis by JEL methods under the multivariate p-dimensional
distribution or even the high-dimensional setting. The ex-
tended empirical likelihood method similar to Tsao and Wu
(2014) could be applied to increase the accuracy in the sec-
ond order. In terms of application, our approach could be
extended to a general JEL theorem of other statistics con-
structed from the skewness and kurtosis, such as Jarque-
Bera test statistics, which is to test whether sample skew-
ness and kurtosis fit the normal distribution assumption.

APPENDIX A. APPENDIX: PROOFS OF
THEOREMS

Let x1, . . . , xn be a sample of independent
and identically-distributed observations. Define
x̄ = 1/n

∑n
j=1 xj and σ̂2 = 1/n

∑n
j=1(xj − x̄)2 and

μ̂r = 1/n
∑n

i=1(xi − x̄)r, r = 3, 4. Their deleting one
empirical estimators are represented as follows,

x̄i =
1

n− 1

n∑
j=1j �=i

xj , i = 1, . . . , n,

σ̂2
i =

1

n− 1

n∑
j=1j �=i

(xj − x̄i)
2, i = 1, . . . , n,

μ̂r,i =
1

n− 1

n∑
j=1j �=i

(xj − x̄i)
r, i = 1, . . . , n; r = 3, 4.

We consider the function fr(z, y) = zy−r/2 for z, y ∈ R and
r = 3, 4. Skewness and kurtosis denoted in Section 2.2 can
be summarized as gr = f(μr, σ

2), where μr = E[(X − μ)r],
σ2 = E[(X − μ)2], and μ = E[X]. The empirical estima-
tor based on the full sample denoted in Section 2.2 can be
represented as ĝr = fr(μ̂r, σ̂

2). The jackknife pseudo-sample
based on the empirical estimators of skewness and kurtosis is
Vr,i = nfr(μ̂r, σ̂

2)−(n−1)fr(μ̂r,i, σ̂
2
i ) for i = 1, . . . , n, where

fr(μ̂r,i, σ̂
2
i ) = ĝr,i, μ̂r,i and σ̂2

i are estimated by original data
except the ith observation. The corresponding jackknife es-
timator defined in Section 2.2 is ĝr,J = 1/n

∑n
i=1 Vr,i. The

jackknife sample variance is

σ̂2
gr,J =

1

n− 1

n∑
i=1

(Vr,i − ĝr,J )
2

and the jackknife variance with given true value is

σ̂2
gr,T =

1

n

n∑
i=1

(Vr,i − gr)
2.

Lemma 1. Under regularity conditions,

√
n(ĝr,J − gr)

σ̂gr,T

d−→ N(0, 1),

where r = 3, 4.

Proof of Lemma 1. From Theorem 1 of Heffernan (1997)
and Lee (1990) the rth central moments may be represented
as U -statistics. Abassi (2009) found U -statistics representa-
tions of σ̂2, μ̂3 and μ̂4 which we denote as Û2, Û3 and Û4 as
follows.

Û2 =
n

n− 1
σ̂2,

Û3 =
n2

(n− 1)(n− 2)
μ̂3,

Û4 =
n3

(n− 1)(n− 2)(n− 3)
μ̂4 +

−2n2 + 3n

(n− 1)(n− 2)(n− 3)
x4

+
8n2 − 12n

(n− 1)(n− 2)(n− 3)
x3x+

−6n2 + 9n

(n− 1)(n− 2)(n− 3)
x2

2
.
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Hence, we have

σ̂2 = Û2 + σ̂2Op(n
−1),

μ̂3 = Û3 + μ̂3Op(n
−1),

μ̂4 = Û4 +
(
μ̂4 + x4 + x3x+ x2

2
)
Op(n

−1).(1)

From the properties of fr(·), Taylor series expansion, and
Equation (1), we have

ĝ3 = f3(μ̂3, σ̂
2) = f3(Û3, Û2) + (σ̂2 + μ̂3)Op(n

−1),

ĝ4 = f4(μ̂4, σ̂
2)

= f4(Û4, Û2) +
(
μ̂4 + x4 + x3x+ x2

2
)
Op(n

−1).(2)

Denote Ûr,i and Û2,i which is obtained by the deleting-i
data set. From Equation (2), the jackknife estimator ĝr,J is
as follows,

ĝr,J

= ĝr +
n− 1

n

n∑
i=1

(ĝr − ĝr,i)

= fr(Ûr, Û2) +
n− 1

n

n∑
i=1

(ĝr − ĝr,i) +Op(n
−1)

= fr(Ûr, Û2)+
n− 1

n

n∑
i=1

(
fr(Ûr, Û2)− fr(Ûr,i, Û2,i)

)

+
n− 1

n

n∑
i=1

(
ĝr − ĝr,i − fr(Ûr, Û2) + fr(Ûr,i, Û2,i)

)
+ Op(n

−1)

= fr(Ûr, Û2)+
n− 1

n

n∑
i=1

(
fr(Ûr, Û2)− fr(Ûr,i, Û2,i)

)
+ Op(n

−1).(3)

Denote kernels of Û2, Û3, and Û4 as φ̂2, φ̂3, and φ̂4 with
expectations η2, η3, and η4. We know that

gr = fr(μr, σ
2) = fr(E(μ̂r) +Op(n

−1), E(σ̂2) +Op(n
−1)).

(4)

Û2, Û3, and Û4 are unbiased estimates of η2, η3, and η4.
From Equation (1) we have that

gr = fr

(
E(Ûr) +Op(n

−1), E(Û2) +Op(n
−1)

)
= fr

(
ηr +Op(n

−1), η2 +Op(n
−1)

)
= fr(ηr, η2) +Op(n

−1).(5)

Based on (3) and (5), one has that

√
n(ĝr,J − gr) =

√
n (fJ − fr(ηr, η2)) + op(1),(6)

where fJ = fr(Ûr, Û2) + (n − 1)/

n
∑n

i=1

(
fr(Ûr, Û2)− fr(Ûr,i, Û2,i)

)
. The skewness and

kurtosis are real-valued functions fr of two arguments Ur

and U2. fr has continuous first partial derivatives and
bounded second partial derivatives in the neighborhood of
(η3, η2) or (η4, η2) for r = 3 or 4, respectively. By Theorem
8 from Arvesen (1969), we obtain

(7)
√
n (fJ − fr(ηr, η2))

d−→ N(0, σ2 (fr(ηr, η2)) ; r = 3, 4,

where σ2 (fr(ηr, η2)) is defined as in Theorem 8 of Arvesen
(1969) as

σ2 (fr(ηr, η2)) = ḟrΩḟ
T
r

with

Ω =

[
cov(φ̂r, φ̂r) cov(φ̂r, φ̂2)

cov(φ̂r, φ̂2) cov(φ̂2, φ̂2)

]

and

ḟr =
[
r ∂fr(ηr,η2)

∂ηr
2∂fr(ηr,η2)

∂η2

]
.

From Equation (6), one has

(8)
√
n (ĝr,J − gr)

d−→ N(0, σ2 (fr(ηr, η2)) , r = 3, 4.

In addition,

Vr,i = nfr(μ̂r, σ̂
2)− (n− 1)fr(μ̂r,i, σ̂

2
i )

= nfr(Ûr, Û2)− (n− 1)fr(Ûr,i, Û2,i)

+ n(μ̂r − Ûr)
∂fr
∂ηr

+ n(σ̂2 − Û2)
∂fr
∂η2

− (n− 1)(μ̂r,i − Ûr,i)
∂fr
∂ηr

− (n− 1)(σ̂2
i − Û2,i)

∂fr
∂η2

+ op(1)

= nfr(Ûr, Û2)− (n− 1)fr(Ûr,i, Û2,i)

+
(
n(μ̂r − Ûr)− (n− 1)(μ̂r,i − Ûr,i)

) ∂fr
∂ηr

+
(
n(σ2 − Û2)− (n− 1)(σ̂2

i − Û2,i

) ∂fr
∂η2

+ op(1).

By Equation (1) and similar results in jackknife samples

(9) Vr,i = nfr(Ûr, Û2)− (n− 1)fr(Ûr,i, Û2,i) + op(1).

Incorporating Equations (3) and (9), the jackknife variance
is as follows,

σ̂2
gr,J =

1

n− 1

n∑
i=1

(Vr,i − ĝr,J)
2

=
1

n− 1

n∑
i=1

(
nfr(Ûr, Û2)− (n− 1)fr(Ûr,i, Û2,i)− fJ

)2

+ op(1).(10)
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The first term of Equation (10) is the jackknife variance
estimator of a function of several U -statistics. By the con-
vergence of functions of U -statistics in Theorem 9 of Arvesen
(1969), we have that

(11) σ̂2
gr,J

p−→ σ2(fr(ηr, η2)), r = 3, 4.

Then, one has that

σ̂2
gr,J =

1

n− 1

n∑
i=1

(Vr,i − ĝr,J)
2

=
1

n− 1

n∑
i=1

(Vr,i − gr − ĝr,J + gr)
2

=
1

n− 1

n∑
i=1

(Vr,i − gr)
2

+
1

n− 1

n∑
i=1

(ĝr,J − gr)(ĝr,J − gr − 2Vr,i + 2gr)

=
1

n− 1

n∑
i=1

(Vr,i − gr)
2 +Op(ĝr,J − gr).

=
1

n− 1

n∑
i=1

(Vr,i − gr)
2 + op(1).(12)

From Equations (8) and (12) and Slutsky’s Theorem,
Lemma 1 holds.

Proof of Theorem 1. Based on Lemma 1, we finish the
proof of Theorem 1 by the standard arguments of Owen
(1990).

Proof of Theorem 2. Following Chen, Variyath & Abra-
ham (2008) and Lin, Li, Wang & Zhao (2017), we ob-
tain Theorem 2 from Theorem 1. First define Zn =
max1≤i≤n|Vr,i − gr|. Denote ḡr,n = 1/n

∑n
i=1 g

ad
r,i. We have

0 =
1

n+ 1

n+1∑
i=1

gadr,i
1 + λgadr,i

=
1

n+ 1

n+1∑
i=1

gadr,i +
λ

n+ 1

n+1∑
i=1

(gadr,i)
2

1 + λgadr,i

≤ ḡr,n

(
1− an

n

)
− λ

n(1 + λZn)

n∑
i=1

(gadr,i)
2

= ḡr,n

(
1− an

n

)
− λ

n(1 + λZn)

n∑
i=1

(Vr,i − gr)
2

= ḡr,n −
λσ̂2

gr,T

1 + λZn
+Op(n

− 3
2 an).

Then, λ = Op(n
−1/2) and an = op(n) and

λ = (σ̂2
gr,T

)−1ḡr,n + op(n
−1/2). The adjusted JEL ratio

−2 logW (gr) is as follows,

− 2 logW (gr) = 2

n+1∑
i=1

log(1 + λgadr,i)

= 2

n+1∑
i=1

(
λgadr,i −

λ2(gadr,i)
2

2

)
+ op(1)

= n(σ̂2
gr,T )

−1ḡ2r,n + op(1)

=

(
1

n

n∑
i=1

(Vr,i − gr)
2

)−1

nḡ2r,n + op(1)

d−→ χ2
1.

Proof of Theorem 3. Following Tsao and Wu (2013,
2014) and Lin, Li, Wang & Zhao (2017), we prove Theorem 3
for the parameter skewness g3 or kurtosis g4. Define the gen-
eralized inverse function h−1

n like Tsao and Wu (2013, 2014).
We have the extended EL ratio l∗(gr) as l∗(gr) = l(h−1

n ).
For any g̃r ∈ {g̃r : ‖g̃r − gr‖ ≤ n−1/2}, we apply the Taylor
expansion to obtain

l(g̃r) = l(g̃r + gr − gr)

= l(gr) +
dl(gr)

dgr
(g̃r − gr) +Op(1).

It implies that l(g̃r) = Op(1). We denote h−1
n (gr) = ĝr.

Following Tsao and Wu (2014), one has ĝr−gr = Op(n
−3/2).

By the Taylor expansion,

l∗(gr) = l(ĝr)

= l(ĝr + gr − gr)

= l(gr) +
dl(gr)

dgr
(ĝr − gr) +Op(n

−1).

Thus, the l∗(gr) has the same limiting distribution as the
l(gr). Hence, we prove Theorem 3.
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