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Clinical trial design using a stopped negative
binomial distribution
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We introduce a discrete distribution suggested by cur-
tailed sampling rules common in early-stage clinical trials.
We derive the distribution of the smallest number of inde-
pendent and identically distributed Bernoulli trials needed
to observe either s successes or t failures. This report
provides a closed-form expression for the mass function,
moment generating function, and provides connections to
other, standard distributions.
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1. INTRODUCTION AND MOTIVATION

Consider a prototypical early phase, single-arm clinical
trial in which 17 patients are enrolled and treated. The trial
is modeled as a sequence of independent Bernoulli(p) sam-
ples. Suppose the Bernoulli probability of a patient respond-
ing to treatment is p = 0.2 under the null hypothesis that
the treatment is not any more effective than the current
standard of care. If seven or more patients out of these 17
respond to the treatment then we reject this hypothesis and
claim the treatment has successfully showed superiority at a
significance level of 0.1. If fewer than seven respond then the
null hypothesis is not rejected and the treatment is said to
have failed to show superiority. The trial ends when either
seven responders or 11 non-responders are observed.

If all 17 patients are enrolled at once, as in the classic
design, then the sample size is 17; however, in most clinical
trials the patients are enrolled sequentially over time. In the
present example, observing seven successful patients ends
the trial and so the number of enrollees required could be
as small as seven. Similarly, 11 observed treatment failures
would also end the trial. This sampling mechanism, in which
the experiment ends as soon as either predefined endpoint is
reached, is called curtailed sampling. Under curtailed sam-
pling, the range of the sample size for this trial is seven
through 17.
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Figure 1. The distribution of the sample size in a trial that
stops after either seven patients respond to treatment or 11

do not when p = 0.2.

The distribution of the number of trial enrollments is
shown in Figure 1. There is relatively little probability mass
for values of sample sizes from 7 through 10 since p is small
and it is unlikely the treatment will succeed quickly. Fig-
ure 2 shows the expected value and variance for the number
of trial enrollments varying the success rate p between zero
and one. When p is small then the treatment is likely to
fail shortly after the 11th enrollment. When p is large then
the treatment is more likely to succeed and the number of
enrollees approaches seven from above.

When p = 0 or 1 then the processes are deterministic and
variance is zero. Values of p between zero and one change
the mixing proportions of the two endpoints. When p is
close to zero, most of the variance is contributed from the
failure endpoint. The saddle around p = 0.25 results from a
trade-off between the success and failure endpoints.

In the rest of this work, we derive the distribution of the
number of enrollees needed to observe either s successes or t
failures. We refer to this distribution as the Stopped Nega-
tive Binomial (SNB). In Section 2, we derive the distribution
function and explores its properties. Section 3 derives the
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Figure 2. The mean and variance of the sample size for the probability of success p when the trial stops after s = 7 patients
respond or t = 11 fail to respond.

moment generating function. Section 4 describes the likeli-
hood function. Section 5 describes the posterior and predic-
tive probability distributions. Section 6 relates the distribu-
tion to other standard distributions and connects the SNB
tail probability to the binomial tail probability. Section 7
shows how to design a trial using the SNB in a prototypical
setting.

2. PROBABILITY MASS FUNCTION

Let b1, b2, . . . denote a sequence of independent, identi-
cally distributed, Bernoulli random variables with P[bi =
1] = p and P[bi = 0] = 1 − p, for probability parameter
0 ≤ p ≤ 1. In the clinical trial setting bi = 1 corresponds to
the ith patient responding to treatment.

Let s and t be positive integers. Define the SNB
random variable Y as the smallest integer value such
that {b1, . . . , bY } contains either s responders or t non-
responders. That is, the SNB distribution of Y is the small-
est integer such that either

∑Y
i bi = s or

∑Y
i (1− bi) = t.

The sequence of Bernoulli random variables can be mod-
eled as the process X = {Xk : k = 0, 1, ...} with X0 = 0
and

Xk+1 = Xk + bk+1 1{k−t<Xk<s}.

where 1{f} is the indicator function, taking the value of one
if f is true and zero otherwise, and at each step a patient’s
outcome is measured. If it is a response, then the response
count increases; otherwise, it stays the same. The process
continues until either Xk = s or Xk = k − t corresponding
to the success and failure boundaries

Figure 3 provides a graphical illustration of Xk against k
for one possible realization where s = 7 and t = 11. The ver-
tical axis denotes the number of successful outcomes. The
vertical axis counts the number of responders observed. The
horizontal axis counts the number of patients enrolled. It is
strictly increasing in sequence size and the failure bound-
ary is tilted so that no more than t (in this case 11) failure
can occur. The horizontal and tilted boundaries represent
the two endpoints for the trial. In this case, the seventh re-
sponse was reached on the 15th enrollment. Since the success
boundary is reached, we would reject the null hypothesis in
this example.

We next derive the probability mass function of Y . The
distribution of Y has support on integer values in the range

min(s, t) ≤ Y ≤ s+ t− 1.

In Proposition 1 below, we show the probability mass func-
tion of Y is

P[Y = k] = S(k, p, s) 1{s≤k≤s+t−1}

+ S(k, 1− p, t) 1{t≤k≤s+t−1}(1)

where

(2) S(k, p, s) =

(
k − 1

s− 1

)
ps(1− p)k−s

is a translated version of the negative binomial probability
mass.

The negative binomial cumulative distribution function
can be expressed in terms of the regularized incomplete beta
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Figure 3. A hypothetical realization of the trial.

function [5]

I1−p(l − s+ 1, s) =

l∑
k=s

S(k, p, s)

for all integer values l satisfying s ≤ l ≤ s + t − 1. It has
property [8]

(3) I1−p(l − s+ 1, s) = 1− Ip(s, l − s+ 1).

Proposition 1. The distribution of the stopping time

Y = argmin
k

[Xk ≥ s ∪Xk ≤ k − t]

is given at (1).

Proof. The endpoint Xk = s can only occur if Xk−1 = s−1
followed by a success. That is,

P[Xk = s] = pP[Xk−1 = s− 1]

= p

(
k − 1

s− 1

)
ps−1(1− p)k−s

=

(
k − 1

s− 1

)
ps(1− p)k−s.(4)

This expression is given in (2). Similarly, the probability a
given realization reaches the endpoint Xk = k − t satisfies

P[Xk = k − t] = (1− p)P[Xk−1 = k − t]

= (1− p)

(
k − 1

t− 1

)
(1− p)t−1pk−t

=

(
k − 1

t− 1

)
(1− p)tpk−t.(5)

The result (1) follows by summing (4) and (5).

To show (1) sums to one, define

R =
s+t−1∑
k=s

S(k, p, s) +
s+t−1∑
k=t

S(k, 1− p, t).

Substitute i = k − s in the first summation and j = k − t
in the second. Then R can be written as the cumulative
distribution function (CDF) of two negative binomial dis-
tributions:

R =

t−1∑
i=0

(
i+ s− 1

i

)
ps(1− p)i +

s−1∑
j=0

(
j + t− 1

j

)
pj(1− p)t

= 1− Ip(s, t) + 1− I1−p(t, s)

= 1

using (3). This completes the proof that (1) is the distribu-
tion of the stopping time and it is a valid probability mass
function.

We next consider an interim analysis of a clinical trial
after s′ patients have responded to treatment and t′ failed
to respond for s′ < s and t′ < t.

Corollary 1. The number of subsequent enrollments needed
to reach either s or t endpoints behaves as SNB(p, s − s′,
t− t′).

Having observed s′ responders and t′ non-responders,
there are s − s′ additional responders needed to reach the
success endpoint and t−t′ additional non-responders needed
to reach the failure endpoint.

3. THE MOMENT GENERATING
FUNCTION

Proposition 2. Let Y be distributed SNB with parameters
p, s, and t. Then the moment generating function (MGF)
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of Y is

E exY =

(
pex

1− qex

)s

I1−qex(s, t) +

(
qex

1− pex

)t

I1−pex(t, s)

(6)

for q = 1−p and is defined for x < min {log(1/p), log(1/q)}.
The moment generating function for the SNB is calcu-

lated in a manner similar to that of two negative binomial
distributions. Appendix 1 provides a proof for the deriva-
tion.

Proposition 3. The MGF of the SNB converges to that of
the negative binomial when either s or t gets large. That is

limt→∞ EexY =

(
pex

1− qex

)s

as. The analogous result holds when s → ∞.

Proof. The second incomplete beta function in (6) can be
written in terms of a cumulative binomial distribution

I1−pex(t, s) = P [B ≤ s− 1]

where B is distributed as Binomial(t−k, pex). From Cheby-
chev’s inequality it follows that

(7) P [B ≤ s− 1] ≤ (t− k)pex(1− pex)

(s− (t− k)pex)
2

As t gets large I1−pex(t, s) tends to zero and I1−qex(s, t)
approaches one. The proof follows by realizing

0 <
qex

1− pex
< 1

over the support of x.

4. THE LIKELIHOOD FUNCTION

In this section we derive the likelihood function for the
SNB for a single trial. In early-stage clinical trial only a
single trial is performed, usually because of resource con-
straints, and the object of interest is p parameter, which
determines if a therapy will be delivered to the market. A
multi-sample version is less relevant for this use case, but is
represented as a product of mixtures of Beta distributions.
Deriving it’s theoretical characteristics not straight-forward.

Let Y be distributed SNB(p, s, t). Then, the likelihood of
Y is proportional to a mixture of Beta distributions.

L(p|s, t, Y ) = B1 1{s≤Y1} +B2 1{t≤Y1}

where B1 = Beta(s, Y − s) and B2 = Beta(Y − t, t) and

Beta (α, β) =
Γ(α+ β)

Γ(α) Γ(β)
pα−1(1− p)β−1.

Proposition 4. The mode of B1 occurs at a value of p
greater than that of B2 in the likelihood function.

Proof. The mode of the Beta(α, β) distribution is (α −
1)/(α + β − 2). Plugging in the shape parameters of B1

and B2 into the expression of the mode, the proposition is
equivalent to showing

s− 1

Y − 2
>

Y − t− 1

Y − 2

which is true when s > Y − t. The maximum value of the
right hand of the inequality occurs when Y1 = s+ t− 1 and
the inequality is equivalent to s > s− 1, which is true.

Proposition 5. The difference between the modes of B1

and B2 is bounded by

MODE(B1)−MODE(B2) ≥ 1

s+ t− 3
.

Proof. Proposition 4 shows that the mode of B1 is greater
than that of B2. The difference between the two can be
expressed as

s− 1

Y − 2
− Y − t− 1

Y − 2
=

s+ t− Y

Y − 2
.

This function is strictly increasing in Y over its support and
obtains its minimum at s+ t− 1. The result follows.

As an example, the likelihood function for Y = 7, 11, 13
and 17 is shown in Figure 4. When Y = 7 the trial must have
ended in success and the likelihood function concentrates
near 1. The success and failure endpoints can be reached
for any value of Y ≥ 11. When Y = 11 we see a bimodal
likelihood function which one mode, at p = 0.6 provided
by the success endpoint and the other, at p = 0, from the
failure endpoint where no responses are observed. Similarly,
when Y1 = 13 we see contributions from both the success
and failure endpoints but the two modes are converging. At
Y = 17 the endpoints contributed likelihoods with similar
modes and the result is unimodal.

After an endpoint has been reached, the resulting condi-
tional likelihood is either B1 or B2, depending if the trial
was a success or failure. However, when the endpoint is not
known, such as the planning phase of a trial, unintuitive sit-
uations may arise. Since the likelihood is bimodal, there are
even settings where we may reject the null despite a poorer
alternative. Suppose in the hypothetical trial p0 = 0.25 and
p1 = 0.5, the outcome is unknown, and the trial completes
after 11 enrollees, as shown in Figure 4 labeled Y = 11.
Since the null is at a “trough” in the likelihood we fail to
reject even though it is closer to the most likely value of
p = 0.
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Figure 4. Shapes of the likelihood function for given values of Y with s = 7 and t = 11.

5. THE POSTERIOR AND PREDICTIVE
PROBABILITY DISTRIBUTION

Consider the Bayesian setting where Y is an SNB(P , s,

t) distribution and the rate parameter, P is distributed as

Beta(α, β). The posterior distribution P |Y is proportional

to the likelihood, given by the function

fP |Y (p, k, s, t, α, β) ∝
(
k−1
s−1

)
B(α, β)

pα+s−1(1− p)k+β−s−1

(8)

+

(
k−1
t−1

)
B(α, β)

pk+α−t−1(1− p)β+t−1

where 0 ≤ p ≤ 1 and min(s, t) ≤ k ≤ s+ k − 1.

The predictive distribution of the SNB can be found as

by integrating p over the interval zero to one and applying

the definition of the beta function.

fY (k, s, t, α, β) =

∫ 1

0

fP (p|α, β)fY |P (p, k, s, t)dp(9)

=

(
k − 1

s− 1

)
B (α+ s, k − s+ β)

B(α, β)

+

(
k − 1

t− 1

)
B (α+ k − t, t+ β)

B(α, β)

If both α and β are non-negative integers then the predictive

distribution is a mixture of negative-hypergeometric distri-

butions.

fY (k, s, t, α, β) =

(
k−1
s−1

)(
α+β
α

)
(
α+β+k−1

α+s

) α

α+ β

β

k − s+ β

+

(
k−1
t−1

)(
α+β
β

)
(
α+β+k−1

t+β

) β

α+ β

α

k − t+ α

The ratio of combinations in the first term can be inter-
preted as the probability of s− 1 responders from k− 1 pa-
tients in α+s draws from a population size of α+β+k−1.
This value is multiplied by α/(α+β), the expected response
rate of the prior. The final term in the product weights the
prior based on the number of non-responders (k− s). Terms
in the second summand are interpreted similarly for non-
responders.

The ratio of (8) divided by (9) gives the posterior dis-
tribution of P . It is a mixture of beta distributions. The
mixing parameter depend on the endpoints (s and t), the
number of enrollees needed to reach an endpoint (k), and
the prior parameters (α and β).

6. CONNECTIONS AND
APPROXIMATIONS TO OTHER

DISTRIBUTIONS

Examples of different shapes of the SNB are shown in
in Figure 5 varying parameters p, s, and t. The SNB dis-
tribution is a generalization of the negative binomial. As a
result, the SNB can approximate other distributions in the
same manner as the negative binomial. When t is large then
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Figure 5. Different shapes of the SNB mass function with parameters (p, s, t) given. Black areas indicate the mass contributed
by reaching s responders before t non-responders. Grey indicates mass contributed by reaching t non-responders first.

Y − s has a negative binomial distribution with

P[Y = s+ j] =

(
s+ j − 1

s− 1

)
ps(1− p)j

for j = 0, 1, . . . . A similar statement can be made when s is
large and t is moderate. As a result, with proper parameter
choice, the SNB can mimic other probability distributions
in a manner similar to those described in [2] and [7]. As
a generalization of the negative binomial distribution the
SNB inherits the ability to approximate other distributions.
For example, when s = 1 and t → ∞, the SNB(p, s, t)
converges to an negative binomial distribution with index
parameter s and rate parameter p. When s = 1, this is the
geometric distribution. The connection between the negative
binomial and the gamma distribution are well-studied in the
literature (see [2, 6, 3] for examples) as well the connection
to the Poisson [1].

The SNB generalizes both the minimum (riff-shuffle) and
maximum negative binomial distributions up to a transla-
tion of the support. For the special case of s = t, the SNB
distribution is the maximum negative binomial [4, 9, 10] -
the smallest number of outcomes necessary to observe at
least s responders and s non-responders. This is equivalent
to a translated version of the riff-shuffle or minimum nega-
tive binomial distribution [4, 8].

There is also an equivalence between the probability of
reaching an endpoint in the SNB model and the tail prob-
ability of the binomial distribution. Specifically, the proba-
bility the number of responders is at least s in the binomial
model is the same as the probability the treatment succeeds
(reaches s) in the SNB model.

Proposition 6. Let Y be distributed as SNB(p, s, t) and
let XY correspond to the number of responders at the end of
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the trial. Let B be distributed binomial with index parameter
n = s+ t− 1 and response probability p. Then

(10) P[B ≥ s] = P[XY = s].

Proof. The binomial tail probability is

P[B ≥ s] = 1− I1−p(s, t)

The corresponding success probability is

(11) P[XY = s] =

s+t−1∑
k=s

(
k − 1

s− 1

)
ps(1− p)k−s.

Let i = k − s. Since(
i+ s− 1

s− 1

)
=

(
i+ s− 1

i

)
,

the summation in (11) can be rewritten as

P[XY = s] =

t−1∑
i=0

(
i+ s− 1

i

)
ps(1− p)i

= 1− I1−p(t, s)

completing the proof.

To illustrate this result, let us return to our initial ex-
ample where s = 7, t = 11, and p = 0.2. The probability
masses in Figure 6 represented in black are equal in panels
(a) and (b) as are the masses in grey. The probability s re-
sponders are reached in the SNB process is the same as the
binomial probability of at least seven responders. Likewise,
the probability t non-responders reached in the SNB process
is the same as the binomial probability of zero through six
responders.

7. TRIAL DESIGN WITH THE SNB

Consider the problem of designing a trial using curtailed
sampling and the SNB. Assume that the maximum number
of patients n is given along with the null and alternative
hypotheses. In this case, the parameter s tells how many
responses are needed to reach the success endpoint, can vary
between 1 and n − 1. For fixed s and n the value of t is
determined by the relation t = n − s + 1. The ROC curves
for all trial designs in the prototype, where n = 17, p = 0.2
under the null, and p = 0.4 under the alternative, are shown
in Figure 7. In designing these trials, small significance and
large power values are attained by either increasing the value
of n or increasing the difference between the alternative and
null response rates. Figure 8 shows the expected number of
enrollees for each of these trials as a function of the number
of responses required to reach the success endpoint.

The expected number of enrollees for each trial is shown
in Figure 8. The curve reaches its maximum of 15 patients
when s = 5. The prototype design (p = 0.2, s = 7, and
t = 11) has an expected sample size of 14 enrollees.

Figure 6. SNB(0.2, 7, 11) with mass contributed from 7
responders (black) or 11 non-responders (grey) along with

Binomial(0.2, 17) with at least 2 responders (black) or fewer
(grey).
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Figure 7. ROC curve of the all trial designs where the
maximum number of patients is 17, p = 0.2 under the null
and p = 0.4 under the alternative. The numerical values

indicate the number of responses s required reach the success
endpoint.

Figure 8. The expected sample size all trial designs where the
maximum number of patients is 17 and p = 0.2.

APPENDIX: PROOF OF PROPOSITION 2

The MGF of the SNB is, by definition:

E exY =

s+t−1∑
k=s

(
k − 1

s− 1

)
psqk−sekx

+

s+t−1∑
k=t

(
k − 1

t− 1

)
pk−tqtekx

and can be rewritten as:

E exY =

s+t−1∑
k=s

(
k − 1

s− 1

)
(pex)s(qex)k−s

+

s+t−1∑
k=t

(
k − 1

t− 1

)
(qex)t(pex)k−t.(12)

The first summation in (12) satisfies

s+t−1∑
k=s

(
k − 1

s− 1

)
(pe)sx(qex)k−s

=

(
pex

1− qex

)s s+t−1∑
k=s

(
k − 1

s− 1

)
(qex)k−s(1− qex)s

=

(
pex

1− qex

)s

I1−qex(s, t).

Since the p parameter in Ip has domain zero to one, we have
0 ≤ pex < 1. This implies x < − log(p). A similar expression
can be derived for the second summation in (12) and results
in the constraint x < − log(1− p).
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