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likelihood problem in the Cox regression model
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The monotone likelihood is a phenomenon that may af-
fect the fitting process of well-established regression mod-
els such as the Cox proportional hazards model. In short,
the problem occurs when the likelihood converges to a fi-
nite value, while at least one parameter estimate diverges
to ±infinity. In survival analysis, monotone likelihood pri-
marily appears in samples with substantial censored times
and containing many categorical covariates; it is often ob-
served when one level of a categorical covariate has not ex-
perienced any failure. A solution suggested in the literature
(known as Firth correction) is an adaptation of a method
originally created to reduce the bias of maximum likelihood
estimates. The method leads to a finite estimate by means
of a penalized maximum likelihood procedure. In this case,
the penalty might be interpreted as a Jeffreys type of prior
widely used in the Bayesian context; however, this approach
has some drawbacks, especially biased estimators and high
standard errors. The present paper explores other penalties
for the partial likelihood function in the flavor of Bayesian
prior distributions. A simulation study is developed, based
on Monte Carlo replications and distinct sample sizes, to
evaluate the impact of the suggested priors in terms of in-
ference. Results show that a greater bias reduction can be
achieved with respect to the Firth correction; however, this
performance depends on the uncertainty level of the prior
(vague priors do not manage well the monotone shape). A
real application is also presented to illustrate the analysis
using a melanoma skin data set.

AMS 2000 subject classifications: 62N02.
Keywords and phrases: Firth correction, MCMC, Pro-
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1. INTRODUCTION

The proportional hazards model (PHM) [6] is proba-
bly one of the most important statistical methods for the
analysis of time-to-event data, perhaps because of its flex-
ibility to explore the association of covariates with fail-
ure rates. Over the past decades, the PHM has been ap-
plied to several practical situations ranging from medical
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studies [2, 12, 34, 35] to the analysis of economic data on
employment/unemployment cycle duration or bank failure
[27, 24].

When fitting the PHM to some data sets, one may observe
a phenomenon known as monotone likelihood or separation
[1, 4, 29]. This issue occurs when the likelihood function is
configured with a flat monotone shape indicating conver-
gence to a finite value while one (or more) parameter esti-
mate diverges to±infinity. The monotone likelihood tends to
occur in situations involving small sample sizes and contain-
ing unbalanced (highly predictive) covariates; an in-depth
examination of the conditions of the monotone likelihood
for the PHM is presented in [42]. In particular for survival
data, a large number of censored observations can lead to
this problem; for example, it occurs when only censored re-
sponses are associated with a category of a categorical co-
variate. In this sense, the larger the number of dichotomous
regressors included in the model, the higher is the chance
of monotone likelihood. The problem is rarely experienced
when using only continuous covariates.

This paper is motivated by the analysis of a melanoma
data set [5] obtained in a study developed between 1995-
2012 at Hospital das Cĺınicas/UFMG (Brazilian public uni-
versity hospital). Melanoma is a neoplasm that shows high
mortality when diagnosed in advanced stages; therefore, the
premature identification of patients in the high-risk group to
develop metastasis is a key strategy to reduce mortality. The
main aim of the mentioned study in Brazil is to assess the
influence of five epidemiological and histopathologic features
on the development of metastasis in patients diagnosed with
invasive primary cutaneous melanoma. The PHM analysis
is used here to determine the factors associated with the
follow-up time until metastasis occurrence. However, a very
important binary covariate (presence of mitosis) is clearly
related to the monotone likelihood issue since, according to
the histologic exam, the main event metastasis is not as-
sociated with those tumors in the level “without mitosis”.
The data set is composed by 221 patients and contains 33
metastasis detections; i.e., the censoring percentage is ap-
proximately 85%.

A solution to the problem is suggested in [23] and it
is based on a procedure reported in [8], originally devel-
oped to reduce the bias of maximum likelihood estimates.
The method (hereafter called “Firth correction/method”)
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produces finite parameter estimates through a penalized
maximum likelihood estimation. It is incorporated in com-
putational packages available for different softwares; e.g.,
SAS [20, 22, 19] and R [41] (logistf in [21], coxphf in [37],
brglm in [26]).

Penalization is a very general method for stabilizing esti-
mates, which has both frequentist and Bayesian rationales.
Firth method is a well known example of a penalization,
which can be derived from a Jeffreys type of prior [25] in
the Bayesian inference; however, this approach is not perfect
and may suffer with biased estimators and high standard er-
rors [16, 36, 28]. Naturally, one might consider other prior
distributions being easier to compute and also more con-
venient to handle the monotone likelihood issue. The main
goal of this paper is to evaluate and compare the impact of
different prior distributions on the inferences developed for
the Cox PHM. These priors can be interpreted as penalties
for the partial likelihood function in a frequentist analysis.
In summary, the main contributions of the present study
are:

• Development of a broad comparative analysis evalu-
ating the impact (in terms of bias) of different prior
distributions for the regression coefficients (Normal,
log-F, Jeffreys and the non-penalized case without
prior).

• Investigation of the monotone likelihood issue in dis-
tinct simulation scenarios for Monte Carlo replications.
Different sample sizes and percentages of monotone
likelihood are considered.

• Examination of the effect of different levels of prior
information to shine some light on the relationship
between this factor and the level of observed bias in
the estimation process.

The outline of this paper is as follows: Section 2 presents
the notation related to the PHM. Section 3 introduces the
elements of the Bayesian inference for the PHM, including
the prior distributions seen as penalizations for the mono-
tone partial likelihood. Section 4 describes the aspects of
a simulation study, involving Monte Carlo replications, to
investigate both Firth and non-Jeffreys approaches under
different data scenarios. Section 5 shows the results for the
real data analysis using the aforementioned melanoma data
set. Finally, Section 6 presents the main conclusions and
final remarks.

2. NOTATION AND THE COX REGRESSION

The most popular form of the Cox regression model has
an exponential formulation for the hazard function:

(1) λ(t) = λ0(t) exp(β
�x),

in which λ0(t) is a baseline hazard (an unknown non-
negative function of time), β is a p × 1 vector of unknown

parameters (to be estimated), and x = (x1, x2, . . . , xp)
� is

a vector of covariates.
The estimation of β in (1) is based on the partial log-

likelihood function denoted by �(β) = logL(β). In the ab-
sence of ties and in a sample with n individuals, where k ≤ n
failures are observed at t1 < t2 < · · · < tk, this function can
be written for (1) as:

(2) �(β) =
n∑

i=1

δi

⎡
⎣βTxi − log

⎛
⎝ ∑

j∈R(ti)

exp(βTxj)

⎞
⎠
⎤
⎦ ,

where R(ti) = {k : tk ≥ ti} is the risk set at time ti, δi is the

failure binary indicator and xi = (xi1, xi2, . . . , xip)
� corre-

sponds to the covariate column vector for the i-th individ-
ual. As an additional notation, consider δ = (δ1, . . . , δn)

�.
The Maximum Partial Likelihood Estimator (MPLE) of

β, notation β̂, is obtained through the maximization of
(2). Inference for β is usually based on: (i) Wald statis-

tic W = (β̂ − β)�I(β)(β̂ − β) with I(β) being the neg-
ative Hessian −�′′(β) and (ii) the Likelihood Ratio (LR)

statistic given by −2 log[L(β)/L(β̂)]. Both statistics have a
chi-squared asymptotic distribution.

As mentioned in Section 1, L(β) might be monotone and
so the MPLE cannot be found in this case. The penalty
considered in [8] is a well known solution proposed in the
literature for this problem; see [23]. The Firth method, ini-
tially designed for bias reduction, estimates β through the
maximization of �(β) penalized by log |I(β)|1/2. In other
words, it maximizes �∗(β) = �(β) + (1/2) log |I(β)|. Here,
|A| denotes the determinant of the matrix A.

Note that the extra term (1/2) log |I(β)| is the log of a
Jeffreys prior (apart from a constant); therefore, the max-
imizer of �∗(β) can be seen as the mode of the poste-
rior distribution under this prior. There is a large the-
oretical literature on the Jeffreys prior; see, for example
[25, 3, 38, 10].

Other penalties structures have been recently proposed
and explored in [16]. In this reference, the main interest is
to evaluate the properties of the Jeffreys prior and to study
other priors in the monotone partial likelihood situation.
These interests are also incorporated in our paper, however,
the simulated data analyses developed ahead are more com-
plete, allowing the study of these and related points still
unclear in the literature.

3. PRIOR DISTRIBUTIONS AND THE
NON-JEFFREYS APPROACH

The essential characteristic of the Bayesian approach for
inference is the explicit use of probability distributions to
specify our uncertainty about unknown quantities. Here,
the researcher expresses the initial information, available be-
fore observing the data, about the unknown elements of the
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model. This can be done by choosing a proper probability
distribution (prior distribution highly informative or vague)
or using an improper specification, which is considered non-
informative given some criterion. In summary, a Bayesian
data analysis has three mains steps: (i) choosing a full
probability model, i.e., a joint probability distribution for
all observable and unobservable quantities in the problem,
(ii) calculating via Bayes’ rule the posterior distribution –
conditional distribution given the observed data – for the
unobserved quantities of interest and (iii) evaluating and
interpreting the information from the posterior distribu-
tion.

The partial likelihood modeling version based on (2) can
be used in a Bayesian analysis. The Bayesian inference tak-
ing into account the Cox’s partial likelihood is a central topic
explored in [40] using the context of time-dependent covari-
ates and time-varying regression parameters. According to
the authors the regression coefficients can be well estimated
in this situation.

The main focus of our study is to investigate the im-
pact of different prior specifications, for the coefficients as-
sociated with the covariates included in the Cox regression
model, used to fit a data set configured with the mono-
tone likelihood scenario. The following cases are examined
(k = 1, . . . , p):

• βk ∼ N(m, v) with m = 0 and v > 0 small/large be-
ing typical choices to explore informative/vague initial
uncertainty.

• βk ∼ log-F(l1/2, l2/2) with l1 and l2 being the de-
grees of freedom of the original F distribution. In this
case, E(βk) = Ψ(l1/2) − Ψ(l2/2) + log(l2/l1) and
V ar(βk) = Ψ′(l1/2) + Ψ′(l2/2), with Ψ(.) and Ψ′(.)
being the digamma and trigamma functions, respec-
tively. Higher variability is associated with small values
of (l1, l2). The distribution is symmetric around 0 for
l1 = l2. See [7] for more details.

Naturally, other prior distributions might be evaluated in
this study; however, we choose to follow the steps of [16],
which have investigated the previous options to deal with
the monotone likelihood issue in both the logistic and sur-
vival regression modelings. The authors compare weakly in-
formative configurations of these priors as penalizations for
the likelihood to circumvent the monotone shape issue com-
promising the inference through maximization. The main
conclusions of the paper are drawn from a real data anal-
ysis in a neonatal death study. They do not explore sim-
ulated data to evaluate and compare the behavior of the
model fit, especially in terms of bias, when increasing the
sample size or choosing distinct levels of prior information.
The authors conclude that the log-F(1, 1) is easier to inter-
pret and it provides simpler implementation for applications
in health sciences than the Jeffreys or the t-Student penal-
izations. In [17], the log-F(2, 2) prior is recommended for
typical noninfectious-disease epidemiology applications. In

logistic regression, see [31] for a discussion of other possibil-
ities of likelihood penalties and their relative advantage and
disadvantages.

The joint posterior distribution of β, given the observed
time points and covariates, does not have a closed form, i.e.,
a proper probability density cannot be identified via Bayes’
rule in this case. Indirect methods are required to sample
from this unknown target distribution. The Markov Chain
Monte Carlo (MCMC) algorithm called Gibbs Sampler is
widely used for this task; see [11] and [9].

Depending on the model – true for those investigated
in this paper – we may not be able to identify some of
the full conditional posterior distributions required in the
Gibbs Sampler. In this case, other methods must be con-
sidered to allow indirect sampling within the Gibbs Sam-
pler structure itself. Some options are: Metropolis-Hastings
[32, 18], Adaptive Rejection Sampling [15, 13], Adaptive
Rejection Metropolis Sampling [14] and Slice Sampling
[33]. In our work, we choose the random walk Metropolis-
Hasting MCMC algorithm to sample from the full con-
ditional π(βk|β−k,x, t, δ); notation: β−k is the vector β
without βk. The algorithm must be appropriately tuned
for a good performance with reasonable acceptance rates
related to the step generating and testing candidate val-
ues.

4. MONTE CARLO SIMULATION STUDY

In this section, a Monte Carlo (MC) simulation study
is considered to compare the performances of the standard
(Firth method) and the non-Jeffreys approaches to handle
the monotone likelihood. This analysis is based on simulated
data and is primarily designed to evaluate the properties of
the estimators in each context.

Two covariates are included in the regression structure.
The first one x1 = (x11, . . . , x1n)

� is binary with exactly
5 values (subjects) set to be 1 (the remaining cases are ze-
ros); n is the sample size. This configuration is chosen to
force the monotone likelihood occurrence in the MC sam-
ples, since the problem will appear when all subjects related
to a category of a categorical covariate are not associated
with failure times. The quantity 5 is good enough for this
purpose and the difficulty to control the percentage of sam-
ples with monotone likelihood tend to increase when choos-
ing larger values. The second covariate x2 = (x21, . . . , x2n)

�

is continuous being generated from the standard normal dis-
tribution. This structure of covariates is considered for all
sample sizes explored here.

In order to generate the data, the true values of the pa-
rameters are chosen in such a way to determine around 75%
or 25% of the samples with monotone likelihood. They also
provide a censoring fraction of approximately 75% (recall
that this fraction is ≈ 85% in the melanoma data set).
The failure times are generated via Ti ∼ Weibull(α, ϕi)
for i = 1, . . . , n. Here, ϕi = exp(β�xi) is the scale and
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α > 0 is the shape parameter. The censored observations
are generated assuming Ci ∼ Exp(λc). As a consequence
of this procedure, the corresponding baseline hazard can be
written as λ0(t) = αϕ∗ tα−1

i , with ϕ∗ = eβ0 . In order to
simplify the analysis, we chose to work with a simpler ver-
sion of the model without the intercept. This implies that
ϕ∗ = 1.

Two scenarios are considered in the simulations (assume
β1 = −2.00 and α = 1.50 for both):

• Scenario 1:≈ 75% of samples with monotone likelihood;
β2 = −0.74 and λc = 2.10.

• Scenario 2:≈ 25% of samples with monotone likelihood;
β2 = 4.97 and λc = 4.70.

In terms of prior distributions expressing different levels
of initial information for βk, k = 1 or 2, consider:

Case 1: βk ∼ N(0, 5); Case 2: βk ∼ N(0, 1);
Case 3: βk ∼ log-F(1, 1); Case 4: βk ∼ log-F(2, 2).

For simplicity, we chose the log-F hyperparameters l1 = l2 to
have a prior distribution symmetric around zero. The mean
0 is set for the regression coefficients in all cases, which sug-
gests lack of information about the sign of these parameters.
Figure 1 presents the shapes of the proposed priors. Compar-
ing the Gaussian priors, note that Case 1 expresses higher
uncertainty (larger variance for βk) than Case 2. Similarly
for the log-F distribution, Case 3 is vaguer than Case 4. It
can also be seen that the N(0,5) has the highest uncertainty
(among all cases) and the tail of the log-F(2,2) is slightly
heavier than that of the N(0,1).

This study is based on the analysis of 1,000 samples gen-
erated in a Monte Carlo scheme for both standard and non-
Jeffreys approaches. In the Bayesian context, the MCMC is
applied to each sample leading to a total of 1,000 chains for
each parameter of the model. The posterior inferences are
focused on the 1,000 posterior means computed from these
chains.

Figure 1. Comparing the shapes of the densities (Normal and
log-F) chosen as prior distributions in the present study.

The MCMC algorithm is set to perform 7,000 iterations
with the first 1,000 assumed as the burn-in period (discarded
from the analysis). The Gaussian proposal distributions in
the Metropolis-Hastings step of the Gibbs Sampler were ad-
justed to determine acceptance rates between 40− 50%, as
recommended in the literature [39].

In each scenario, different sample sizes are considered:
n = 50, 200, 600 and 1,000. The nominal value of the cov-
erage probability is assumed to be 0.95. The performance
of the estimators were evaluated by the mean square er-
ror (MSE), relative bias (RB) and coverage rate (CR). The
coverage rate provides the proportion of times (in the 1,000
MC replications) that the 95% confidence or credible in-
tervals, built for each parameter, contain the correspond-
ing true value. In addition, consider: MSEβ̂k

= V ar(β̂k) +

[E(β̂k − βk)]
2 and %RBβ̂k

= 100E(β̂k − βk)/|βk|, where

βk is the true value and β̂k is the corresponding estimate
(posterior mean or maximum likelihood estimate).

The simulation results discussed in the next sections are
obtained for the standard (Firth correction) and the non-
Jeffreys approaches. Additional results, involving the square
root of the MSE and the hazard ratio exp(β̂k) estimators,
are shown in Appendix A.

4.1 Standard approach analysis

Table 1 summarizes the results of the so-called standard
approach analysis, which is based on the current classical
solution (Firth correction) to deal with the monotone like-
lihood problem. The reported quantities are: the MSE, rel-
ative bias (in %) and confidence intervals based on Wald
(CR.wβk

) and likelihood ratio (CR.pβk
) statistics. As can

be seen, a huge relative bias is observed for the maximum
partial likelihood estimates of β1, in both scenarios repre-
senting 75% and 25% of monotone likelihood. In addition,
the relative bias of β1 does not decrease with the sample
size increasing. Note that, for the different sample sizes, the
RBβ̂1

, MSEβ̂1
, and the standard error SEβ̂1

are around 52%,

1.92 and 1.24 in Scenario 1 and around 49%, 3.10 and 1.02
in Scenario 2, respectively. The coverage rates for β1 (Wald
and likelihood ratio) are smaller than the nominal value.
As an example, the Wald coverage rates for β1 are approxi-
mately: 85% (Scenario 1) and 78% (Scenario 2). The profile
coverage rate for β1 is close to the nominal value when the
sample size is small, but it decreases when the sample size
increases for both scenarios. The estimates of β2, which is
not directly related to the monotone likelihood issue, show
good asymptotic properties in this analysis.

4.2 Non-Jeffreys approach analysis

This section is devoted to the analysis of the Cox PHM
based on the Bayesian approach assuming the Gaussian and
log-F prior distributions (i.e., non-Jeffreys priors) previously
specified as Cases 1–4. The main results are presented in
Tables 2 and 3, for 75% and 25% of monotone likelihood,
respectively.
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Table 1. Simulation results based on the Firth correction. Scenarios 1 and 2 are indicated by the
percentage of MC samples with monotone likelihood (%ML)

n %ML %RBβ̂1
%RBβ̂2

MSEβ̂1
MSEβ̂2

SEβ̂1
SEβ̂2

CR.wβ1 CR.pβ1
CR.wβ2 CR.pβ2

50 75 53.930 -2.400 2.200 0.150 1.430 0.360 86.900 91.680 95.100 94.100
25 46.910 2.750 3.840 2.650 1.350 1.260 85.900 91.780 93.800 94.680

200 75 52.280 -1.660 1.860 0.030 1.280 0.160 85.100 94.500 94.500 94.100
25 50.450 0.870 3.050 0.260 1.040 0.490 78.900 90.130 94.800 95.800

600 75 53.770 -0.700 1.920 0.010 1.240 0.090 83.200 74.090 95.100 95.100
25 52.100 0.280 3.130 0.080 1.000 0.270 76.400 84.200 93.600 93.800

1,000 75 49.400 -0.540 1.720 0.001 1.270 0.070 86.800 72.730 95.400 95.300
25 48.980 0.480 2.880 0.040 1.000 0.200 77.900 82.810 95.600 95.700

Table 2. Simulation results based on the non-Jeffreys priors for βk. Case 1 = N(0,5), Case 2 = N(0,1),
Case 3 = log-F(1,1) and Case 4 = log-F(2,2). Scenario 1: ≈ 75% of MC samples with monotone likelihood

n Cases RBβ̂1
RBβ̂2

MSEβ̂1
MSEβ̂2

SEβ̂1
SEβ̂2

CRβ1 CRβ2

50 1 16.740 -9.640 0.821 0.171 0.840 0.400 96.700 95.400
2 66.210 1.760 1.910 0.110 0.390 0.320 77.500 96.200

200 1 14.430 -0.960 0.670 0.030 0.770 0.170 96.400 94.000
2 61.090 0.210 1.650 0.020 0.410 0.150 79.700 95.400

600 1 12.411 -0.860 0.660 0.010 0.790 0.090 95.900 94.600
2 60.890 0.200 1.650 0.011 0.410 0.090 78.200 94.500

1,000 1 9.550 -0.640 0.660 0.004 0.790 0.060 96.600 95.300
2 60.400 0.180 1.630 0.004 0.410 0.060 79.000 95.100

50 3 -8.890 -13.260 1.270 0.180 1.120 0.410 96.800 94.100
4 34.560 -8.110 0.970 0.140 0.700 0.380 93.500 95.400

200 3 -14.890 -2.040 1.170 0.020 1.040 0.160 97.000 94.100
4 28.640 -1.380 0.760 0.022 0.660 0.151 93.300 95.300

600 3 -15.100 -0.750 1.190 0.011 1.050 0.091 96.200 93.300
4 28.550 -0.570 0.771 0.010 0.670 0.090 93.700 94.300

1,000 3 -16.190 0.150 1.240 0.004 1.060 0.071 96.100 94.300
4 27.730 0.311 0.770 0.005 0.681 0.060 92.800 95.300

Table 3. Simulation results based on the non-Jeffreys priors for βk. Case 1 = N(0,5), Case 2 = N(0,1),
Case 3 = log-F(1,1) and Case 4 = log-F(2,2). Scenario 2: ≈ 25% of MC samples with monotone likelihood

n Cases RBβ̂1
RBβ̂2

MSEβ̂1
MSEβ̂2

SEβ̂1
SEβ̂2

CRβ1 CRβ2

50 1 26.920 -11.370 0.995 0.711 0.840 0.620 95.400 92.500
2 68.420 -41.290 2.009 4.278 0.370 0.260 58.400 0.200

200 1 17.070 -2.160 0.822 0.214 0.841 0.450 95.800 94.800
2 56.050 -15.920 1.517 0.704 0.510 0.280 70.800 41.300

600 1 17.210 -0.720 0.841 0.064 0.850 0.250 94.900 94.300
2 52.920 -5.930 1.457 0.135 0.580 0.220 70.200 77.500

1,000 1 14.690 -0.460 0.826 0.041 0.860 0.200 96.000 93.800
2 50.900 -3.650 1.408 0.065 0.610 0.181 72.100 84.100

50 3 -14.610 9.901 1.026 1.088 0.971 0.922 97.900 98.300
4 40.001 -12.252 1.188 0.918 0.740 0.742 92.500 90.500

200 3 -13.802 2.670 0.868 0.268 0.890 0.501 97.800 94.700
4 28.650 -2.311 0.981 0.234 0.801 0.471 92.200 94.600

600 3 -12.451 0.731 0.854 0.069 0.891 0.260 97.400 94.900
4 28.530 -0.770 0.948 0.069 0.810 0.261 91.900 94.000

1,000 3 3.056 0.220 1.078 0.041 1.037 0.203 95.200 94.600
4 26.260 -0.491 0.950 0.041 0.821 0.201 92.600 93.500
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Table 2 shows that the N(0,1) and log-F(2,2) (more in-
formative cases) have much larger relative bias (%RB) for
β1 than the N(0,5) and log-F(1,1) (less informative cases).
In terms of coverage rates, note that the values of CRβ1 ,
for the N(0,5) and the log-F(1,1), are close to the nominal
level of 95%. This behavior is not observed (especially) for
the N(0,1). A possible reason for these results is the fact
that the distributions N(0,1) and log-F(2,2) have low uncer-
tainty, but in the wrong direction. The true value is β1 = −2
and these priors are centered at 0, with a small variability.
This idea also explains the better results for N(0,5) and
log-F(1,1). These options are also centered at 0, but with
higher uncertainty. A justification for the better coverage
rate and the lower relative bias obtained for the log-F(2,2),
in a comparison with the N(0,1), is the fact that this log-F
has variance larger than 1. This means that the probabil-
ity mass is more concentrated around 0 for the Gaussian
prior, making the PHM with log-F(2,2) less affected by the
incorrect informative specification.

As expected, the analysis of β2 in Table 2 shows that
this coefficient is well estimated. The quality of the estima-
tion improves with the sample size increasing. Recall that
this parameter is not associated with the binary covariate
responsible for the monotone likelihood problem.

The analysis of Table 3 leads to similar conclusions re-
garding β1 in the scenario with 25% of monotone likelihood;
i.e., better results are obtained for the less informative priors
and an increase in the sample size does not seem to improve
significantly the estimates. In terms of β2, a poor result can
be detected for the prior N(0,1) when the sample size is
n = 50. This behavior can be explained by the fact that the
true value of β2 is 4.97, which is clearly distant from the
prior mean 0. In other words, the prior distribution N(0,1)
is concentrating too much mass of probability in a region
that does not include the true value. This strong prior in-
formation dominates the likelihood due to the small sample
size. Naturally, better results are observed as the sample size
increases.

Comparing Table 1 with Tables 2 and 3, note that the
vaguer priors (Cases 1 and 3) provide better results for β1

than the standard approach in the literature based on the
Firth correction. As an example, the smallest %RBβ1 ob-
tained through Firth correction (Scenario 1: 75%) is 49.40,
whereas, the largest absolute %RBβ1 in Table 2 (for Cases
1 and 3) is 16.74. This is one of the main conclusions in the
present paper, the previous analyses clearly indicate that
the quality of the estimates under monotone likelihood can
be significantly improved by using non-Jeffreys priors.

The reader should also have in mind that assuming an in-
formative prior for a coefficient (usually centered at 0) can
be problematic if the true value is far from 0. This is the
situation observed in Table 3 for the N(0,1) prior (Scenario:
≈ 25% of monotone likelihood). It seems safer to choose a
vaguer prior; however, the bias may increase again if the
prior is too vague, especially for the coefficient associated

with the monotone likelihood. A key question is: how vague
should be the prior? This discussion motivated the next sec-
tion with some extra simulations to approach this topic.

4.3 Prior uncertainty against monotone
likelihood

This section explores extra results focused on the most
severe scenario (in terms of bias) exhibited in Table 3. Here,
recall that the MC replications are configured with: ≈ 25%
of monotone likelihood (Scenario 2), n = 50 (the smallest
tested sample) and true values of coefficients away from 0
(β1 = −2.00 and β2 = 4.97). The main goal is to evaluate
the behavior of RB, MSE, CR and standard errors, when
the prior variance increases (the mean is fixed at 0). Nine
different specifications are used to study the Gaussian prior;
variance ranging from 1 to the much vaguer case of 200. In
addition, five specifications of variability are tested for the
log-F prior; the smallest is 0.24 and the largest is 9.87.

It is important to emphasize that using samples with
n = 50 is a central strategy for the analysis developed in
this section. The goal here is to investigate how the prior
distribution affects a not too strong likelihood (based on
only 50 observations). The uncertainty level, expressed in
the prior, is certainly a key factor controlling the influence
of this distribution on the likelihood. The uncertainty level
also represents the strength of the penalty (in the classical
interpretation) and this strength seems (as indicated ahead)
crucial to handle the monotone shape.

Table 4 summarizes the results for the Gaussian prior dis-
tribution. Note that the relative bias for β1 decreases from
68.41% to 7.16%, when the variance increases from 1 to 10.
The RB closest to 0 is registered for variance 10. When mov-
ing from variance 10 towards 200, the absolute RB clearly
increases reaching 158.3% with the vaguer specification. A
similar reaction is observed for the RB of β2; however, the
magnitudes of the bias are lower than those of the β1 case.
Note that the N(0,10) specification is also the one provid-
ing the best estimation for β2 (% RB = -1.14). As expected
for both coefficients, when increasing the uncertainty level: a
decreasing-increasing trend is also obtained for the MSE val-
ues and an increasing-only trend is reported for the standard
errors. In terms of coverage rates, only the small variances
specifications determine values below the nominal level of
95%. Intermediate and large variances lead to better ap-
proximations.

Table 5 shows the results based on the log-F prior spec-
ifications. The conclusions are quite similar to those drawn
from the Gaussian prior analysis evaluating the impact of
the increasing uncertainty level. In brief, the absolute RBs
and the MSEs are configured with a decreasing-increasing
trend, where the best estimation (for both coefficients) is
related to the log-F(1,1), which is the option having the
second largest variance in the tested group. The standard
errors show again an increasing-only behavior and the cover-
age rates reach the 95% level as the prior variance increases.
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Table 4. Analysis using the Normal prior with mean 0; the variances are indicated in the rows.
Estimates based on Monte Carlo replications (≈ 25% ML and n = 50)

σ2
prior RBβ̂1

RBβ̂2
MSEβ̂1

MSEβ̂2
SEβ̂1

SEβ̂2
CRβ1 CRβ2

1 68.410 -41.302 2.011 4.282 0.373 0.261 60.320 0.100

3 41.538 -20.628 1.147 1.264 0.676 0.461 92.704 79.310

5 26.335 -11.692 0.954 0.719 0.823 0.618 96.200 92.102

10 7.158 -1.140 1.274 0.780 1.120 0.882 95.140 97.000

15 -9.812 4.971 1.701 1.139 1.290 1.039 96.510 97.501

20 -22.342 7.943 2.211 1.544 1.419 1.179 96.700 96.604

50 -59.393 16.821 5.912 2.938 2.123 1.497 96.201 95.700

100 -102.143 18.174 13.153 4.052 2.998 1.800 95.310 94.210

200 -158.301 23.610 30.031 5.562 4.481 2.050 95.501 94.501

Table 5. Analysis using the log-F prior centered at 0; l1 = l2 and the variances are indicated in the rows.
Estimates based on Monte Carlo replications (≈ 25% ML and n = 50)

lk/2 σ2
prior RBβ̂1

RBβ̂2
MSEβ̂1

MSEβ̂2
SEβ̂1

SEβ̂2
CRβ1 CRβ2

9.0 0.240 80.247 -48.388 2.640 5.859 0.253 0.275 2.500 0.000

5.0 0.441 68.797 -34.243 2.062 3.065 0.411 0.410 60.601 26.930

2.0 1.290 39.347 -12.602 1.163 0.924 0.738 0.730 93.600 90.240

1.0 3.291 -14.610 9.901 1.026 1.088 0.971 0.922 97.900 98.300

0.5 9.870 -33.607 11.044 3.567 2.289 1.766 1.411 95.701 96.805

Figure 2 compares the shapes of the penalized profile like-
lihoods constructed using the Gaussian and log-F priors (as
penalties) centered at 0 and with different variances (dif-
ferent penalization strengths). This analysis is based on a
simulated data set (n = 50) affected by the monotone likeli-
hood issue. The profile curve for each coefficient is obtained
by fixing the other coefficient at its true value and assum-
ing the prior variance as specified at the top of each graph.
Note that the vertical axes are not the same in these graphs,
since the distinct penalized profile likelihoods have different
scales. This is a necessary action to allow the visual inspec-
tion. The reader should also note that the scale presented
in the horizontal axes are the same for each parameter.

Looking at the curves for β1, exhibited in Figure 2, one
can clearly see that the shape of the penalized profile likeli-
hood seems to modify in the direction of a monotone shape
as the variance increases. For the small variance cases, the
maximum is centered between −2 and 0. This suggests that
the likelihood is not strong enough to correct the prior in-
formation centered at 0. Assuming higher uncertainty a pri-
ori reduces the strength of the prior to dominate the likeli-
hood. The transformation towards the typical flat shape of
a monotone likelihood is not evident for the curves related
to β2 (coefficient of the continuous covariate unrelated to
the monotone likelihood issue). Again, the small variance
prior has a strong influence on the likelihood determining a
curve centered between 0 and 4.97. This domination seems
to reduce as the prior uncertainty increases.

The discussion presented in this section highlight some
key aspects to be considered when fitting the Cox PHM
to a data set affected by the monotone likelihood issue. In
many practical situations, the researcher does have initial
information about the coefficients; therefore, centering the
prior distribution at 0 is a very usual choice. In this case,
setting a small prior variance can be extremely dangerous
(especially when n is small). Vague priors are safer; how-
ever, a prior expressing a high uncertainty can be viewed as
a weak penalization unable to change the undesirable mono-
tone shape, thus implying in biased estimates.

5. REAL DATA ANALYSIS

In this section, the standard (non-penalized or Firth
method) and the non-Jeffreys approaches are applied to the
melanoma data set mentioned in Section 1. The prognostics
factors under consideration are: (i) Gender (“female” with
coefficient β2); (ii) Histological type with levels “nodular”
(β31), “acral lentiginous” (β32) and the reference category
“extensive superficial + lentigo maligna”; (iii) Breslow in-
dex with levels “1− 4 mm” (β41), “> 4 mm” (β42) and the
reference “< 1 mm”; (iv) Ulceration (“yes” with coefficient
β5). The fifth factor, “mitosis” (β1), is the one associated
with the monotone likelihood issue. This binary factor is
coded as 1 when the mitotic rate is high for the patient.
Metastasis is the response event under study and the follow-
up time goes from the diagnosis of melanoma to the date of
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Figure 2. Penalized profile likelihoods built with the Normal and log-F priors (as penalties) for β1 (rows 1 and 2) and β2 (rows
3 and 4). The priors are centered at 0 with variance (Normal) or degree of freedom (log-F) indicated at the top of the graphs.
The true value of the coefficient is identified by the vertical dashed line. For both cases, the variability expressed in the prior
distribution increases from the left to right panel. Analysis based on a simulated data set (n = 50) detected with monotone

likelihood.

the last visit (censoring) or the date when metastasis is de-
tected (failure).

In each covariate, the observations are distributed as
follows: gender (male 37.56%, female 62.44%), histologi-
cal type (reference 72.40%, nodular 17.19%, acral lentigi-
nous 10.41%), Breslow index (“< 1 mm” 60.63%, “1 − 4
mm” 29.41%, “> 4 mm” 9.96%), ulceration (no 79.64%, yes
20.36%), mitosis (low 35.29%, high 64.71%). Ignoring the
censored cases, the median time to metastasis is 4.6 months
(interquartile range is 11.14).

Table 6 presents the estimates of the coefficients for eight
different model fits. The standard approach columns show
the results for the ordinary Cox PHM analysis (without
penalty) and for the Firth method. As expected, the co-
efficients not connected with the monotone likelihood issue
have similar estimates across the rows of the table. A mi-

nor difference can be detected for the standard errors of
β̂1 using the priors N(0,1) and log-F(9,9); these values are
the smallest ones in that row. This result is probably due
to a highly informative configuration mistakenly centered
in the wrong part (around zero) of the parametric space.

The large values reported for β̂1, in the non-penalized Cox
regression fit, are exactly those found in the output of the
software R. These estimates are not valid for inference, since
their calculations are affected by the monotone likelihood
issue.

Figure 3 (a) shows estimates for β1 obtained through
the classical approach (with Firth correction) and the non-
Jeffreys approach. Some important aspects to be noted: (i)
all Bayesian credible intervals include the classical penalized
maximum likelihood estimate, (ii) the amplitude of the in-
tervals are not the same and some Bayesian intervals are
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Table 6. Parameter estimates based on the standard and non-Jeffreys approaches for the melanoma data set;
standard errors in parentheses. The column “Cox” refers to the Cox PHM model fit without penalization

Standard approach Non-Jeffreys approach

Cox Firth N(0,1) N(0,5) N(0,10) log-F(1,1) log-F(2,2) log-F(9,9)

β̂1 18.52 (5131) 2.221 (1.50) 1.403 (0.70) 2.772 (1.43) 3.664 (1.94) 3.691 (2.32) 2.431 (1.42) 1.080 (0.56)

β̂2 -0.651 (0.36) -0.641 (0.36) -0.589 (0.33) -0.633 (0.35) -0.643 (0.36) -0.630 (0.35) -0.620 (0.35) -0.531 (0.31)

β̂31 0.984 (0.45) 0.958 (0.45) 1.038 (0.39) 1.077 (0.45) 1.052 (0.45) 1.049 (0.44) 1.047 (0.44) 0.994 (0.37)

β̂32 0.236 (0.63) 0.298 (0.62) 0.172 (0.53) 0.233 (0.63) 0.207 (0.64) 0.215 (0.61) 0.211 (0.59) 0.149 (0.45)

β̂41 0.110 (0.69) 1.036 (0.67) 0.731 (0.49) 1.061 (0.66) 1.115 (0.68) 1.060 (0.61) 0.922 (0.59) 0.526 (0.40)

β̂42 0.184 (0.73) 1.760 (0.71) 1.423 (0.53) 1.782 (0.70) 1.849 (0.72) 1.798 (0.65) 1.649 (0.63) 1.207 (0.43)

β̂5 0.699 (0.38) 0.685 (0.39) 0.793 (0.36) 0.759 (0.39) 0.744 (0.39) 0.733 (0.39) 0.766 (0.38) 0.784 (0.34)

Figure 3. Panel (a) compares estimates for β1 (covariate mitosis): 95% confidence intervals (dashed lines), 95% credible
intervals (vertical solid segments), penalized maximum likelihood estimate (horizontal solid line) and the posterior mean (dot
mark). Panel (b) shows the shapes of the non-penalized and penalized profile likelihoods based on the real data set (melanoma

study) - the Gaussian prior (centered at 0) is used here as the penalty.

much smaller than the classical one, (iii) the largest ampli-
tude corresponds to the log-F(1,1) prior (the least informa-
tive option in the tested log-F group), (iv) small amplitudes
are found for the N(0,1) and log-F(9,9) (more informative
cases), (v) the interval built with Firth correction includes
the value 0 (z = 2.221/1.50) suggesting that mitosis is not
significant, (vi) some Bayesian intervals indicate that mi-
tosis is indeed an important factor affecting the time-to-
metastasis.

Results for the covariates not associated with the mono-
tone likelihood issue are presented in Appendix B. In sum-
mary, small differences are observed when comparing the
amplitude of the intervals and only the conclusions regard-
ing the significance of β5 (ulceration) change between meth-
ods/priors.

Figure 3 (b) compares the shapes of the non-penalized
(first panel) and the penalized profile likelihoods using the
Normal prior centered at zero. The curves related to three
different variances (1, 200 and 10,000) are presented in this
illustration. The main conclusion is similar to the one ob-
tained from Figure 2; the monotone shape (shown in the
first panel) is clearly recovered when increasing the prior
variance.

6. CONCLUSIONS

Monotone likelihood is a recurrent condition that can
happen very often in situations involving: rare events, small
sample sizes, large percentages of censored observations and
the presence of many categorical covariates. The standard
classical procedure, available in the literature to deal with
this problem in a Cox regression model, is based on the so-
called Firth correction originally created to reduce bias of
maximum likelihood estimates. This method can be seen,
under the Bayesian point of view, as the maximization of a
penalized partial likelihood function, with the penalty being
the Jeffreys prior specification for the regression coefficients.
This vision motivated the present paper, where the main
goal was to study the impact and benefit (if any) of other
prior choices in the analysis of the Cox PHM.

An extensive simulated data analysis (using Monte Carlo
replications) was developed to understand the behavior of
the estimates in different configurations of data and levels
of initial information expressed by the tested prior distri-
butions. This study was focused on prior specifications cen-
tered at 0, with the level of information being controlled
through its variance magnitude. The analyses have shown
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Table 7. Simulation results related to the coefficients. Analysis involving: Firth, Case 1 = N(0,5) and Case 3 = log-F(1,1).
Comparing standard errors and the square root of the MSE (RMSE). Scenario with ≈ 75% of MC samples affected by the

monotone likelihood

n Cases RMSEβ̂1
RMSEβ̂2

SEβ̂1
SEβ̂2

Firth 1.483 0.388 1.434 0.360
50 1 0.886 0.412 0.819 0.401

3 1.127 0.418 1.113 0.407

Firth 1.390 0.066 1.243 0.067
1,000 1 0.809 0.064 0.787 0.064

3 1.134 0.064 1.084 0.064

Table 8. Simulation results related to the exponential of the coefficients (hazard ratios). Analysis involving: Firth, Case 1 =
N(0,5) and Case 3 = log-F(1,1). Scenario with ≈ 75% of the MC samples affected by the monotone likelihood

n Cases RBexp(β̂1)
RBexp(β̂2)

MSEexp(β̂1)
MSEexp(β̂2)

RMSEexp(β̂1)
RMSEexp(β̂2)

SEexp(β̂1)
SEexp(β̂2)

Firth 430.149 5.468 3.296 0.038 1.815 0.195 0.194 0.172
50 1 113.919 -2.126 0.208 0.031 0.456 0.177 0.429 0.177

3 75.797 -2.116 0.233 0.032 0.483 0.178 0.472 0.178

Firth 342.858 -0.025 0.721 0.001 0.849 0.031 0.168 0.032
1,000 1 76.332 -0.267 0.094 0.001 0.306 0.030 0.288 0.030

3 41.611 -0.246 0.093 0.001 0.305 0.030 0.300 0.030

that, depending on the size of the variance, the bias of the
estimates can be significantly reduced with respect to the
Firth method. As expected, poor results were observed when
assuming small variance a priori for a parameter having a
true value far from 0. The performance improves as this
variance increases, but it deteriorates again when the prior
becomes too vague. The reason for this decay can be the
fact that a vague prior is not strong enough to impose an
effective penalization to handle the monotone shape. A pos-
sible strategy that may be used to guide the choice of the
prior variance is summarized in the steps listed below:

1. Fit the Cox PHM using the standard approach based on
the Firth correction in the context of the Jeffreys prior;

2. Identify the estimate of the coefficient affected by the
monotone likelihood issue (denote it by β̂Firth

k );
3. Choose a prior variance (Gaussian or log-F) such that

the credible a priori interval (say 95%) contains the

value of β̂Firth

k close to one of its borders.

In a real application, the Firth correction and the tested
priors were confronted in a comparative study evaluating the
relationship between some epidemiological and histopatho-
logic factors and the time-to-metastasis for patients with
melanoma. The main conclusions were drawn from the anal-
ysis of the binary covariate “mitosis” (directly associated
with the monotone likelihood issue). The effect of this co-
variate is not significant via Firth method and this result
changes for some of the prior specifications. This alteration
illustrates how crucial can be the use of alternative priors
in order to reach greater bias reduction with respect to the
standard Jeffreys option implemented for the Firth correc-
tion.

APPENDIX A. ADDITIONAL RESULTS FOR
THE SIMULATION STUDY

Table 7 compares the MSE and the square root of the

MSE (RMSE) obtained in an additional MC simulation de-

veloped for the sample sizes 50 and 1,000. The number of

MC replications is 1,000 and approximately 75% of them

are affected by the monotone likelihood issue. This analysis

evaluates the Firth correction and the less informative speci-

fications N(0,5) and log-F(1,1). Note that the RMSE is quite

close to the corresponding SE. The difference RMSE-SE are

slightly larger for β1 in all cases.

Table 8 reports results for hazard ratio estimators given

by exp(β̂k). This option differs from β̂k in terms of bias and

it has been regarded in the literature as relevant for clinical

decisions; see [30]. This analysis is also focused on the Firth

method, N(0,5) and log-F(1,1). As can be seen, RBexp(β̂1)
is

much bigger than RBexp(β̂2)
. The highest bias for exp(β̂1) is

related to the Firth correction for both samples sizes. Look-

ing at the differences RMSE-SE for each coefficient, note

that exp(β̂1) is the one associated with the largest values,

especially for the Firth correction case.

APPENDIX B. ADDITIONAL RESULTS FOR
THE REAL DATA ANALYSIS

Figure 4 compares estimates for the coefficients not as-

sociated with the monotone likelihood problem in the real

data analysis presented in Section 5.
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Figure 4. Results for the coefficients unrelated to the monotone likelihood issue: 95% confidence intervals (dashed lines), 95%
credible intervals (vertical solid segments), penalized maximum likelihood estimate (horizontal solid line) and the posterior

mean (dot mark).
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Av. Antônio Carlos, 6627
Departamento de Estat́ıstica
ICEx
Universidade Federal de Minas Gerais
Belo Horizonte, MG, 31270-901
Brazil
E-mail address: enricoc@est.ufmg.br

Vińıcius D. Mayrink
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