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Additive nonlinear functional concurrent model
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We propose a flexible regression model to study the as-
sociation between a functional response and multiple func-
tional covariates that are observed on the same domain.
Specifically, we relate the mean of the current response to
current values of the covariates by a sum of smooth unknown
bivariate functions, where each of the functions depends on
the current value of the covariate and the time point itself.
In this framework, we develop estimation methodology that
accommodates realistic scenarios where the covariates are
sampled with or without error on a sparse and irregular de-
sign, and prediction that accounts for unknown model corre-
lation structure. We also discuss the problem of testing the
null hypothesis that the covariate has no association with
the response. The proposed methods are evaluated numeri-
cally through simulations and two real data applications.
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1. INTRODUCTION

Functional regression models where both the response
and the covariate are functional have been long researched
in the literature. Such models typically assume that the cur-
rent response depends on the full trajectory of the covari-
ate. The dependence is modeled through a weighted integral
of the full covariate trajectory through an unknown bivari-
ate coefficient surface as weight. Estimation procedures for
this model have been discussed in [27], [43] and [40], among
others. The crucial dependence assumption for this type of
model may be impractical in many real data situations. To
bypass this limitation, one might use the functional his-
torical models (see, e.g., [19]), where the current response
is modeled using only the past observations of the covari-
ate. Such models quantify the relation between the response
and the functional covariate/s using a linear relationship via
an unknown bivariate coefficient function. Another alterna-
tive is to assume a concurrent relationship, where the cur-
rent response is modeled based on only the current value of
the covariate function. Functional linear concurrent models
(see, e.g., [27]; [26]; [31]) assume a linear relationship; they
can be thought of as a series of linear regressions for each
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time point, with the constraint that the regression coeffi-
cient is a univariate smooth function of time. These types
of models, commonly known as varying coefficient models
[11] are useful in many situations. There is a substantial
amount of literature on such models for both scalar and lon-
gitudinal/functional response variables. In the latter case,
several methods to estimate the model components have
been developed, such as local polynomial kernel smooth-
ing [13, 39, 5, 1], regression and smoothing spline methods
[14, 4], and penalized spline and quadratic inference func-
tion based methods [25]. There have been many subsequent
developments in this area such as an extension to spatial
imaging [45], ridge regression [12]. We refer the readers to
[6] and [22], and references therein, for detailed reviews on
varying coefficient models and functional concurrent mod-
els. While the linear approach provides easy interpretation
for the estimated coefficient function, it may not capture all
the variability of the response in practical situations where
the underlying relationship is complex.

In this article, we consider the functional concurrent
model where we allow the relationship between the response
and the covariate functions to be nonlinear. Specifically, we
propose a model where the value of the response variable
at a certain time point depends on both the time point
and the values of the covariates at that time point through
smooth unknown bivariate functions. Such formulation al-
lows us to capture potential complex relationships between
response and predictor functions as well as better capture
out-of-sample prediction performance, as we will observe in
our numerical investigation. Our model contains the stan-
dard linear concurrent model as a special case. We will show
through numerical study that when the true underlying re-
lationship is linear (that is, the linear concurrent model is
correct), fitting our proposed model maintains prediction
accuracy. On the other hand, when the true relationship is
nonlinear, fitting the linear concurrent model results in high
bias and loss of prediction accuracy.

We make three main contributions. First, we propose a
general nonlinear functional concurrent model to describe
the complex association between two or more functional
variables measured on the same domain. We model the re-
lationship via unknown bivariate functions, which we rep-
resent using tensor products of B-spline basis functions and
estimate using a penalized least squares estimation proce-
dure in conjunction with difference penalties ([3]; [18]; [21]).
We discuss prediction of the response trajectory and de-
velop point-wise prediction intervals that account for the
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correlated error structure. Accounting for the non-trivial de-
pendence of the residuals is key for constructing valid infer-
ence in regression models with functional outcomes; see for
example [10] and [23] who considered inference in a func-
tional mixed model framework. [28] proposed inference for
the fixed effects parameters in function-on-scalar regression
by using estimates of the residual covariance obtained us-
ing an iterative procedure, and [9] extended these ideas to
generalized multilevel function-on-scalar regression. [30], ex-
tending the work of [16], considered function-on-function re-
gression models with flexible residual correlation structure,
but did not numerically investigate the effect of different
correlation structures on estimation and inference. We also
assume a flexible correlation structure for the residuals and
account for this non-trivial dependence in the proposed sta-
tistical inference. Specifically, we estimate the residual co-
variance using a two-step estimation procedure: 1) estimate
the population level parameters using an independent er-
ror assumption; and 2) employ standard functional princi-
pal component analysis (FPCA) based methods (see, e.g.,
[43]; [46]; [8]) to the residuals. The proposed inference uses
the resulting estimate of the residual covariance.

Second, our model allows us to incorporate multiple func-
tional and scalar covariates, assuming that the effects of the
covariates are additive. Specifically, we represent the effects
of the covariates by a sum of smooth bivariate functions,
each of which separately quantifies the dependence between
the response and one of the covariates. The model involv-
ing a single functional covariate is a particular case of these
models. Another way to incorporate multiple functional co-
variates in a functional regression is proposed by [17], where
they use a single index model by first forming a linear effect
of the functional covariates and then modeling the combined
effect via a nonparametric function. Nevertheless, the mod-
els proposed by [17] are not our special case, and neither
is our model a special case of theirs. This is because our
methodology models the individual effect of each functional
covariate nonlinearly and develops an additive model. We
also employ a bivariate tensor product of B-spline based
estimation procedure. Recently, [7] proposed a function-on-
function nonlinear additive model with multiple functional
and scalar covariates. They propose to summarize each func-
tional covariate by taking an integral of the product of the
covariate and an unknown two-dimensional index function,
and then model the resulting single indices using a nonlin-
ear additive model. As such, this model uses the entirety of
each functional covariate to model the response function at
any given time point. In contrast, we consider a concurrent
relationship.

Third, we develop a testing procedure for assessing
whether any of the functional covariates are related to the
response variable. To the best of our knowledge, no other
work considers testing for nonlinear concurrent models in
functional setting and provides numerical results. We dis-
cuss two particular testing problems: 1) testing the global

effect of the functional covariate against a model involving a
single functional covariate, and 2) testing the null hypothesis
of no association between the response and a particular co-
variate against a model involving two functional covariates.
We consider an F-ratio type test statistic (see, e.g., [32]; [42])
and propose a resampling based algorithm to construct the
null distribution of the test statistics. Our resampling pro-
cedure takes into account the correlated error structure and
thus maintains the correct nominal size.

Our model is inspired by the model proposed in [21].
In particular, the nonlinear relationship that describes the
conditional mean of the current response given the cur-
rent value of the covariate is reminiscent of the one used in
[21]. The key differences come from 1) the type of response
considered, 2) ability to accommodate various sampling de-
signs and 3) the covariance model assumed for the residuals.
Specifically, we consider functional responses in this paper,
whereas [21] studied scalar responses. Also, the proposed es-
timation and prediction procedures can accommodate vari-
ous sampling designs for both responses and covariates, such
as densely or sparsely sampled predictors with or without
error. In contrast, the methods of [21] are presented only
for densely sampled functional covariates. Additionally, we
assume unknown complex dependence structure of the resid-
uals, whereas [21] assume independent and identically dis-
tributed (iid) normal residuals, which is reasonable in their
scalar-on-function regression setting. Accounting for the de-
pendence within the error process is an important develop-
ment in the proposed inference methodology.

2. ADDITIVE NONLINEAR FUNCTIONAL
CONCURRENT MODEL

In this section, we introduce our model framework for
a functional response and functional covariates, develop an
estimation procedure for unknown model components, and
discuss prediction of a new trajectory. For simplicity of pre-
sentation, our model and methodology are outlined for the
setting involving two functional covariates; nevertheless, our
methodology is general and can accommodate more than
two scalar or functional covariates via linear or smooth ef-
fects.

2.1 Modeling framework

Suppose for i = 1, . . . , n, we observe {(W1ij , t1ij) : j =
1, . . . ,m1i}, {(W2ij , t2ij) : j = 1, . . . ,m2i} and {(Yik, tik) :
k = 1, . . . ,mY,i}, where W1ij ’s and W2ij ’s denote the co-
variates observed at points t1ij and t2ij , respectively, and
Yik’s are the response observed at tik. It is assumed that
t1ij , t2ij , tik ∈ T for all i, j and k andWqij = Xq,i(tqij)+δqij
for q = 1, 2 where Xq,i(·) are realizations from random
square-integrable processes, Xq(·), defined on the compact
interval T ; for convenience we take T = [0, 1]. It is assumed
that δ1ij and δ2ij are the iid measurement errors with mean
zero and variances equal to τ21 and τ22 , respectively. To il-
lustrate our ideas, we first consider W1ij = X1,i(t1ij) and
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W2ij = X2,i(t2ij), which is equivalent to τ21 = τ22 = 0. Fur-
thermore, we assume that the response and the covariates
are observed on a common regularly spaced grid of points
t1, . . . , tm. Adaptation of our methods to more realistic sce-
narios where τ2q > 0 and different sampling designs for Xq,i’s
and Yi’s, e.g., sparsely observed data or when the covariates
and response are not observed on the same grid of points, are
discussed in Section 4 and Section A of the Supplementary
Material.

We introduce the following additive nonlinear functional
concurrent model (ANFCM)

(1) Yi(t) = μY (t) + F1{X1,i(t), t}+ F2{X2,i(t), t}+ εi(t),

where μY (t) is an unknown and smooth intercept function,
F1 and F2 are smooth unknown bivariate functions defined
on R×T , and εi(·) is a Gaussian error process independent
of the predictors X1,i(·) and X2,i(·). The error process εi(·)
is assumed to have mean zero and unknown autocovariance
function G(·, ·). For identifiability of the two functions F1

and F2, we assume that E [Fq{Xq(t), t}] = 0 for any t ∈ T ,
q = 1, 2, and thus μY (t) is the marginal mean function of the
response. We introduce two main innovations in (1). First,
the general bivariate functions Fq(·, ·) allow us to model po-
tentially complicated relationships between Y (·) and Xq(·)
for q = 1, 2, and extends the effect of the covariate beyond
linearity. Second, we estimate and incorporate the unknown
covariance structure for the residual process εi(t) in our in-
ference, e.g., in prediction of a new response curve and hy-
pothesis testing.

An important advantage of our framework is that it can
easily accommodate multiple functional covariates with var-
ious types of effects; a few examples are shown in Table 1.
We assume that models in Table 1 have flexible correlation
structure for the residuals. The standard linear functional
concurrent model with only one functional covariate is a spe-
cial case of the model in (a) with F1(x, t) = β0(t) + xβ1(t)
and F2(x, t) = 0, where β0(·) and β1(·) are unknown param-
eter functions. All the above models can easily accommodate
scalar (time invariant) covariate effects of the form Xβ(t)
or F (X, t) as well. While we present our methodology using
only two functional covariates, the proposed framework can
easily include more. This comes at the cost of computational
time due to increasing number of model components and
penalty parameters; although an efficient implementation
(e.g., using the bam function instead of the default gam func-
tion in R package mgcv) helps to reduce computational time
substantially. We have conducted a numerical study with

up to five functional covariates (results shown in Supple-
mentary Material, Section D.5), observed that our proposed
methods perform reasonably well in all the cases considered,
with increasing computation time.

2.2 Estimation

We focus on model (1) and describe estimation of the
marginal mean function μY (t) and the bivariate surfaces
F1(·, ·) and F2(·, ·). We model the mean function μY (t) by
spline-based estimation methodology which represents the
smooth effect by a linear combination of univariate B-spline

basis functions. Let {Bμ,d(t)}Kμ

d=1 be a set of univariate B-
spline basis functions defined on [0,1], where Kμ is the
basis dimension. Using the basis functions, we can write

μY (t) =
∑Kμ

d=1Bμ,d(t)θμ,d = BT
μ (t)Θμ, where Bμ(t) is the

Kμ-dimensional vector of Bμ,d(t)’s, and Θμ is the vector
of unknown parameters θμ,d’s. We also model F1(·, ·) and
F2(·, ·) using bivariate basis expansion using tensor prod-
uct of univariate B-spline basis functions ([20]; [36]; [21];

[30]). For q = 1, 2 let {BXq,k(x)}Kxq

k=1 and {BTq,l(t)}Ktq

l=1

be the B-spline basis functions for x and t, respectively,
used to model Fq(x, t). Then, F1(·, ·) can be represented as

F1{X1,i(t), t} =
∑Kx1

k=1

∑Kt1

l=1BX1,k{X1,i(t)}BT1,l(t)θ1,k,l =
ZT

1,i(t)Θ1, where Z1,i(t) is the Kx1Kt1-dimensional vec-
tor of BX1,k{X1,i(t)}BT1,l(t)’s, and Θ1 is the vec-
tor of unknown parameters, θ1,k,l’s. Similarly, we write

F2{X2,i(t), t} =
∑Kx2

k=1

∑Kt2

l=1BX2,k{X2,i(t)}BT2,l(t)θ2,k,l =
ZT

2,i(t)Θ2, where Z2,i(t) is theKx2Kt2-dimensional vector of
BX2,k{X2,i(t)}BT2,l(t)’s, and Θ2 is the vector of unknown
parameters, θ2,k,l’s. Based on the above expansions, model
(1) can be written as

(2) Yi(t) = BT
μ (t)Θμ + ZT

1,i(t)Θ1 + ZT
2,i(t)Θ2 + εi(t).

In this representation, a larger number of basis functions
would result in a better but rougher fit, while a small num-
ber of basis functions results in overly smooth estimate. As
is typical in the literature, we use a large number of basis
functions to fully capture the complexity of the function,
and penalize the coefficients to ensure smoothness of the
resulting fit.

We propose to estimate Θμ, Θ1 and Θ2 by minimizing
a penalized criterion

∑n
i=1||Yi(·) − BT

μ (·)Θμ − ZT
1,i(·)Θ1 −

ZT
2,i(·)Θ2||2 + ΘT

μPμΘμ + ΘT
1 P1Θ1 + ΘT

2 P2Θ2, where Pμ,
P1 and P2 are the penalty matrices for smoothness of μY (t),
F1(x, t) and F2(x, t), respectively, and contain penalty pa-
rameters that regularize the trade-off between the good-
ness of fit and the smoothness of fit. The notation || · ||2

Table 1. Examples of general additive functional concurrent models

Model Form

(a) General model E{Y (t)|X1(t), X2(t)} = μY (t) + F1{X1(t), t}+ F2{X2(t), t}
(b) Linear concurrent model E{Y (t)|X1(t), X2(t)} = μY (t) +X1(t)β1(t) +X2(t)β2(t)
(c) Partially linear concurrent model E{Y (t)|X1(t), X2(t)} = μY (t) + F1{X1(t), t}+X2(t)β2(t)
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is the usual L2-norm corresponding to the inner product
< f, g >=

∫
fg. In practice, we observe Yi(·), X1,i(·) and

X2,i(·) at fine grids of points t1, . . . , tm; thus, we approxi-
mate the L2-norm terms using numerical integration. The
penalized sum of square fitting criterion becomes

∑n
i=1

∑m
j=1

{
Yi(tj)−BT

μ (tj)Θμ − ZT
1,i(tj)Θ1

(3)

− ZT
2,i(tj)Θ2

}2
/m+ΘT

μPμΘμ +ΘT
1 P1Θ1 +ΘT

2 P2Θ2.

Here, Pμ is given by Pμ = λμD
T
μDμ, where Dμ represents

the second order difference penalty ([3]; [20]; [21]), and λμ

is its penalty parameter. Also, Pq (q = 1, 2) is given by
Pq = λxqD

T
xqDxq

⊗
IKtq + λtqIKxq

⊗
D

T
tqDtq, where the no-

tation
⊗

stands for the Kronecker product, IK is the iden-
tity matrix with dimension K, and Dxq and Dtq are matrices
representing the row and column of second order difference
penalties. The penalty parameters λxq and λtq control the
roughness of the function in directions x and t, respectively.

An explicit form of the estimators Θ̂μ, Θ̂1 and Θ̂2 is
readily available for fixed values of the penalty parame-
ters. Define the m-dimensional vector of response Yi =
[Yi(t1), . . . , Yi(tm)]T and the m-dimensional vector of errors
Ei = [εi(t1), . . . , εi(tm)]T . Also, we define Bμ as m × Kμ-
dimensional matrix with the j-th row given by BT

μ (tj)
and Zq,i as m × KxqKtq-dimensional matrix with the j-
th row given by ZT

q,i(tj) (q = 1, 2). For simplicity, de-

note Zi = [Bμ|Z1,i|Z2,i], Θ
T = [ΘT

μ ,Θ
T
1 ,Θ

T
2 ]

T and P =
diag(Pμ,P1,P2). Then the solution of Θ is calculated as

(4) Θ̂ = H{
∑n

i=1Z
T
i Yi},

where H = {
∑n

i=1Z
T
i Zi + P}−1. The penalty parameters

can be chosen based on some appropriate criteria such as
generalized cross validation (GCV) ([29]; [36]) or restricted
maximum likelihood (REML) ([29]; [36]). Estimation un-
der (3) can be fully implemented in R using functions of
the mgcv package [37]. Then, given X1,i(t) and X2,i(t), the

response curve can be estimated by Ŷi(t) = BT
μ (t)Θ̂μ +

ZT
1,i(t)Θ̂1 + ZT

2,i(t)Θ̂2. Furthermore, one can estimate the

marginal mean of response by μ̂Y (t) = BT
μ (t)Θ̂μ. Modifica-

tion of the estimation procedure for the case where the grid
of points is irregular and sparse is presented in the Supple-
mentary Material, Section A.

2.3 Variance estimation

The penalized criterion (3) does not account for the pos-
sibly correlated error process. For valid inference about
Θ, one needs to account for the dependence of the
residuals when deriving the variance of Θ̂. The vari-
ance of the parameter estimate Θ̂ can be calculated as
var(Θ̂) = H{

∑n
i=1 Z

T
i GZi}HT , where G = cov(Ei) =

[G(tj , tk)]1≤j,k≤m is the m×m covariance matrix evaluated
corresponding to the observed time points. We model the

non-trivial dependence of the errors process ε(t) assuming
that the error process has the form ε(t) = εS(t) + εWN (t),
where εS is a zero-mean smooth stochastic process, and
εWN (t) is a zero-mean white noise measurement error with
variance σ2. Let Σ(s, t) be the autocovariance function of
εS . It follows that the autocovariance of the random devi-
ation ε(t), G(s, t) = Σ(s, t) + σ2I(s = t) where I(·) is the
indicator function, is unknown and needs to be estimated.
To this end, we assume that Σ admits a spectral decomposi-
tion Σ(s, t) =

∑
k≥1 φk(s)φk(t)λk, where {φk(·), λk} are the

pairs of eigenfunctions/eigenvalues. We first compute the

residuals eij = Yi(tj) − Ŷi(tj) from the model fit, and em-
ploy FPCA methods (e.g., [44]; [46]) to estimate φk(·), λk,
and σ2. Specifically, we obtain an initial smooth estimate
of the covariance Σ, remove the negative eigenvalues, and
obtain a final estimate of Σ, Σ̂(s, t) =

∑K
k=1φ̂k(s)φ̂k(t)λ̂k,

where {φ̂k(·), λ̂k} are the eigenfunctions/eigenvalues of the

estimated covariance Σ̂(s, t) with λ̂1 > λ̂2 > . . . > λ̂K > 0,
andK is the number of eigencomponents used in the estima-
tion. Then, we estimate G by Ĝ(s, t) ≈

∑K
k=1λ̂kφ̂k(s)φ̂k(t)+

σ̂2I(s = t) for any s, t ∈ [0, 1], where σ̂2 is the estimated er-
ror variance. The finite truncation K is typically chosen by
setting the percent of variance explained (PVE) by the first
few eigencomponents to some pre-specified value, such as
90% or 95%.

2.4 Prediction

A main focus in this paper is prediction of response tra-
jectory when a new covariate and its evaluation points are
given. For example, in fire management, an important prob-
lem is the prediction of fuel moisture content, defined as pro-
portion of free and absorbed water in the fuel. Study of fuel
moisture content remains important for understanding fire
dynamics and adequately predicting fire danger in an area
of interest (see, e.g., [33]; [34]). However, dynamically mea-
suring fuel moisture content on the spot over time is diffi-
cult, and a substantial amount of research has been directed
to develop physical models for predicting moisture content
profiles over time based on predictors that are easily avail-
able either from weather forecast (e.g., relative humidity and
temperature) or predictable from seasons (e.g., solar radia-
tion); see for example [33] for a discussion on this topic. One
viable alternative is to model the past year’s available data
using the proposed function-on-function regression model
and then predict the fuel moisture trajectory for a future
day based on the day’s weather forecast, so that an infor-
mative decision about fire danger can be made a priori.

However, while the research was motivated by the fire
management data, we have been unable to gain access to
the data at the time of preparing this article. Instead, we
will analyze the dietary calcium absorption data [2] and the
gait data [27]. For the dietary calcium absorption data, our
interest is to predict calcium absorption (as a function of
age) of an individual based on their calcium intake over their
age. In the context of gait data, the problem is to predict
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knee angle of an individual as a function of percent of the
gait cycle based on the hip angle. We will analyze both the
data sets in Section 6.

Suppose that we wish to predict new, unknown response
Ynew(tj) when new observations X1,new(tj) and X2,new(tj)
(j = 1, . . . ,m) are given. We assume that the model
Ynew(t) = μY (t) + F1{X1,new(t), t} + F2{X2,new(t), t} +
εnew(t) still holds for the new data, where the error pro-
cess εnew(t) has the same distributional assumption as εi(t)
in (1) and is independent of the new covariates X1,new(t)
and X2,new(t). We predict the new response by

Ŷnew(t) =
∑Kμ

d=1Bμ,d(t)θ̂μ,d

+
∑Kx1

k=1

∑Kt1

l=1BX1,k{X1,new(t)}BT1,l(t)θ̂1,k,l

+
∑Kx2

k=1

∑Kt2

l=1BX2,k{X2,new(t)}BT2,l(t)θ̂2,k,l,

where θ̂μ,d, θ̂1,k,l and θ̂2,k,l are estimated based on (4).
Uncertainty in the prediction depends on how small the

difference is between the predicted response Ŷnew(t) and
the true response Ynew(t). We follow an approach sim-
ilar to [29] to estimate the prediction variance. Specif-
ically, conditional on the new covariates X1,new(t) and

X2,new(t), we have var{Ynew(t)− Ŷnew(t)} = var{εnew(t)}+
var{Ŷnew(t)}. Note that εnew(t) is a realization of the
same error process with zero-mean and covariance struc-
ture G(·, ·). Let Z1,new(t) be the Kx1Kt1-dimensional vec-
tor of BX1,k{X1,new(t)}BT1,l(t)’s, and Z2,new(t) be the
Kx2Kt2-dimensional vectors of BX2,k{X2,new(t)}BT2,l(t)’s

as defined earlier. Also, let Ynew and Ŷnew be the m-
dimensional vector of Ynew(tj)’s and Ŷnew(tj)’s respec-
tively. Then the prediction variance becomes var{Ynew −
Ŷnew} = G + ZnewH{

∑n
i=1Z

T
i GZi}HT

Z
T
new, where

Znew = [Bμ|Z1,new|Z2,new] is m × (Kμ + Kx1Kt1 +
Kx2Kt2)-dimensional matrix with the jth row given by
[BT

μ (tj)|ZT
1,new(tj)|ZT

2,new(tj)]. Then, the prediction vari-
ance can be estimated by plugging-in the sample esti-
mate of G(·, ·) in this formula. One can further define
a 100(1 − α)% point-wise prediction interval for the new

observation Ynew(t) by C1−α(t) = Ŷnew(t) ± Φ−1(1 −
α/2)

[
v̂ar{Ynew(t)− Ŷnew(t)}

]1/2
where Φ(·) is the standard

Gaussian cumulative distribution function. In Section 4, we
provide details about performing prediction in the more gen-
eral case when the new covariates X1,new(·) and X2,new(·)
are only observed on a sparsely sampled grid or with mea-
surement error.

Remark. The proposed estimation and prediction requires
some preliminary steps. To be specific, we propose to trans-
form the covariate functions by subtracting the point-wise
mean and dividing by point-wise standard deviation func-
tion before applying the estimation and prediction proce-
dures. The transformation of the covariates is important
since the set of the covariate values {Xi(tj) : i, j} may not

be necessarily dense over the entire domain on which the B-
spline functions are defined. Therefore, there might be some
situations when there are no observed data on the support
of some of the B-spline basis functions. Such transforma-
tion strategies are also discussed in [21]. Details about the
preliminary transformation are given in the Supplementary
Material, Section B.

3. HYPOTHESIS TESTING

In many situations, testing for association between the
response and the predictor variables is as important, if not
more, as it is to estimate the model components. Often be-
fore performing any estimation, it is preferred to test for
association first to determine whether there is association
to begin with and then a more in-depth analysis is done to
determine the form of the relationship. However, to the best
of our knowledge, there are no currently available methods
that allow testing the effect of functional covariates in non-
linear concurrent models. In this section, we consider the
problem of testing whether the functional predictor variable
is associated with the response. To illustrate our ideas, two
particular cases of the proposed framework are considered:
1) testing the no effect of the covariate against a model in-
volving a single functional covariate (see Section 3.1); and
2) testing the significance of a particular covariate against a
model involving two functional covariates (see Section 3.2).

3.1 Testing of global effect

Our focus in this section is testing the global effect of the
functional covariate. Specifically, we want to test

H0 : E[Y (t)|X1(t) = x1] = F0(t) ∀x1 versus(5)

H1 : E[Y (t)|X1(t) = x1] = F1(x1, t),

where F0(t) is univariate function and F1(x1, t) is bivari-
ate function, both assumed unknown; see Section 5.2.2 for
examples. Our testing procedure is based on first modeling
the null effect F0(t) and the full model F1(x1, t) using basis
function expressions in a manner that ensures that the null
model is nested within the full model. Specifically, we pro-
pose to use {BT,l(t), l ≥ 1} to model F0(·) under the null
model, where BT,l(t) are the B-splines evaluated at time
point t. To model F1(·, ·) under the full model, we use the
same set of basis functions defined over the domain T , but
{BX,0(x1) = 1, BX,k(x1), k ≥ 1} for x1, where BX,k(x1) are
the B-splines defined over X1 - the state space of the process
X1, where X1,i(·) ∼ X1(·). Under the full model, we can
write F1(x1, t) = F0(t) +

∑∞
k=1

∑∞
l=1 BX,k(x1)BT,l(t)θk,l.

We propose to use the following F -type test statistic

(6) Tn =
(RSS0 −RSS1)/(df1 − df0)

RSS1/(N − df1)
,

where RSS0 and df0 are the residual sums of squares and the
effective degrees-of-freedom [36] under the null model; RSS1

and df1 are defined similarly but corresponding to the full
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model. Here, N denotes the total number of observed data
points. In this case, we have n subjects and m observations
per subject, and thus the total number of observed data
becomes N = nm. This can be easily generalized when each
subject has a different number of observations. In general,
it is difficult to derive the null distribution of the proposed
test statistic Tn (6) due to the smoothing techniques and
the dependence in the data.

To bypass this complication, we propose to approximate
the null distribution of the test statistic Tn using bootstrap
of the subjects. Specifically, we follow the steps provided in
Algorithm 1.

Algorithm 1 Bootstrap algorithm for testing global effect

1: Fit the full model described by the alternative hypothesis in
(5) using the estimation procedure of the ANFCM. Calculate

the residuals ei(tj) = Yi(tj)− Ŷi(tj) for all i and j.
2: Fit the null model described by the null hypothesis in (5)

using the estimation procedure of the ANFCM and estimate
F0(t), F̂0(t).

3: Calculate the value of the test statistic in (6) based on the
null and the full model fits; call this value Tn,obs.

4: Resample B sets of bootstrap residuals E
∗
b(t) = {e∗b,i(t)}ni=1

(b = 1, . . . , B) with replacement from the residuals {ei(t)}ni=1

obtained in step 1.

for b = 1 to B
5: Generate response curves under the null model as Y ∗

b,i(t) =

F̂0(t) + e∗b,i(t).
6: Given the bootstrap data set {X1,i(t), Y

∗
b,i(t)}ni=1, fit the null

and the full models and evaluate the test statistic in (6), T ∗
b .

end for

7: Compute the p-value by p̂ = [1+
∑B

b=1 I{T
∗
b ≥ Tn,obs}]/(B+

1).

In Algorithm 1, the test statistics {T ∗
b }Bb=1 obtained from

each of the bootstrap samples can be viewed as realizations
from the distribution of Tn under the assumption that H0

is true.

3.2 Testing of inclusion

In the context of multiple predictors, one might be in-
terested to know which of the predictors are related to the
response variable. Suppose we want to test

H0 : E[Y (t)|X1(t) = x1, X2(t) = x2] = μY (t) + F1(x1, t)
(7)

versus the alternative H1 : E[Y (t)|X1(t) = x1, X2(t) =
x2] = μY (t) + F1(x1, t) + F2(x2, t), where F1(x1, t) and
F2(x2, t) are bivariate functions assumed unknown. For sim-
plicity, denote by F0(x1, t) = μY (t) + F1(x1, t). To test
the null hypothesis in (7), we represent the null and the
full models using B-spline basis functions, and follow a
similar logic used in the previous section. Specifically, we
propose to use {BX1,0(x1) = 1, BX1,k(x1) : k ≥ 1} and
{BT,l(t) : l ≥ 1} for x1 and t to model F0(x1, t) under

the null hypothesis; here, BX1,k(x1) are the B-splines de-
fined over the state space of the process X1, and BT,l(t) are
the B-splines defined over T . To formulate the full model,
we use the same set of basis functions defined over the do-
main T , but {BX1,0(x1) = 1, BX1,k(x1), BX2,k(x2) : k ≥ 1}
for x1 and x2, where BX2,k(x2) are defined over the state
space of the process X2. Therefore, under the alternative,
we can write E[Y (t)|X1(t) = x1, X2(t) = x2] = F0(x1, t) +∑Kx2

k=1

∑Kt2

l=1BX2,k(x2)BT,l(t)θ2,k,l.
The null hypothesis in (7) can be tested using Algorithm

2 with the test statistic in (6).

Algorithm 2 Bootstrap algorithm for testing significance

1: Fit the full model described by the alternative hypothesis
using the estimation procedure of the ANFCM. Calculate
the residuals ei(tj) = Yi(tj)− Ŷi(tj) for all i and j.

2: Fit the null model described by the null hypothesis in (7)
using the estimation procedure of the ANFCM and estimate
F0(x1, t), F̂0(x1, t).

3: Calculate the value of the test statistic in (6) based on the
null and the full model fits; call this value Tn,obs.

4: Resample B sets of bootstrap residuals E
∗
b(t) = {e∗b,i(t)}ni=1

(b = 1, . . . , B) with replacement from the residuals {ei(t)}ni=1

obtained in step 1.

for b = 1 to B
5: Generate response curves under the null model as Y ∗

b,i(t) =

F̂0(x1, t) + e∗b,i(t).
6: Given the bootstrap data set {X1,i(t), X2,i(t), Y

∗
b,i(t)}ni=1, fit

the null and the full models and evaluate the test statistic in
(6), T ∗

b .
end for

7: Compute the p-value by p̂ = [1+
∑B

b=1 I{T ∗
b ≥ Tn,obs}]/(B+

1).

Our proposed resampling algorithms described in Sec-
tions 3.1 and 3.2 account for the correlated error process,
ε(·). This is done by sampling the entire residual vectors
(“curve”) for each subject and thus preserving the corre-
lation structure within the residuals. We observed in our
numerical study (results not shown) that ignoring the cor-
relation results in severely inflated type I error.

4. EXTENSIONS

This section discusses modifications of the methodology
that are required by realistic situations. In particular, we
consider the case when the functional covariate is observed
densely with error, or sparsely with or without noise, as well
as when the sparseness of the covariate is different from that
of the response.

Assume first that functional covariate is observed on a
fine and regular grid of points but with error; i.e., the ob-
served predictors are Wij ’s with Wij = Xi(tj)+ δij , and the
deviation δij has variance τ2 > 0. Several approaches have
been proposed to adjust for the measurement errors; [46]
proposed to first smooth each noisy trajectory using local
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polynomial kernel smoothing, and then estimate the mean
and standard deviation of the covariate Xi(tj) by their sam-

ple estimators. The recovered trajectories, say X̂i(·), will
estimate the latent ones Xi(·) with negligible error. The
methodology described in Section 2.2 can be applied with
X̂i(·) in place of Xi(·). Numerical investigation of this ap-
proach is included in the simulation section.

Then consider the case that the functional covariate is
observed on a sparse and irregular grid of points with mea-
surement error, i.e., Wij = Xi(tij) + δij . The common as-
sumption made for this setting is that the number of ob-
servations mi for each subject is small, but

⋃n
i=1{tij}

mi
j=1 is

dense in [0,1]. Reconstructing the latent trajectories Xi(·)
is based on employing FPCA for sparse design ([44]) to the
observed Wij ’s. [44] proposed to 1) estimate the mean and
covariance functions using local linear smoothers; 2) esti-
mate eigenvalues/eigenfunctions from spectral decomposi-
tion of the estimated covariance; and 3) predict FPC scores
via conditional expectation. Then, the latent trajectories
are predicted by combining the newly estimated FPC scores
and the estimated eigenfunctions. This method may be fur-
ther applied to the response variable when the sampling
design of the response is sparse as well; i.e., Yik = Yi(tik) for
k = 1, . . . ,mY,i. An alternative for the latter situation is to
use the prediction of the covariates at the time points tik at
which the response is observed, X̂i(tik) and then continue
the estimation using the data {Yik, X̂i(tik) : k}ni=1. Prelim-
inary investigation indicated that the latter method shows
good performance in both estimation and testing evaluation;
the former approach seems to yield slightly increased type I
error rates.

The prediction procedure can also be extended to ac-
commodate the more general case when the new covariate
Xnew(tj) is only observed on a sparsely sampled grid. We
first construct a smooth version of this new covariate using
the FPCA. To this end, we compute the FPCA scores for
the new covariate via the conditional expectation formula
in [44] with the estimated eigenfunctions from the training
data, implicitly assuming that the new covariate Xnew(·)
and the originally observed covariate Xi(·) are generated
from the same distribution. Then the prediction procedure
can be readily applied with the smooth version of this new
covariate in place of Xnew(tj).

5. NUMERICAL STUDY

In this section, we investigate the finite sample perfor-
mance of our proposed methodology. Prediction accuracy
is studied in Section 5.2.1, and testing performance is pre-
sented in Section 5.2.2. Finally in Section 6 we apply the
proposed method to the gait study [24, 27, 15] and the di-
etary calcium absorption study [2, 31].

5.1 Simulation design

We generate 1,000 samples for the three simulation sce-
narios: (A) Yi(t) = F1{X1,i(t), t} + εi(t) where F1(x1, t) =

1+x1+t; (B) Yi(t) = F1{X1,i(t), t}+εi(t) where F1(x1, t) =
1 + x1 + t + 2x2

1t; and (C) Yi(t) = F1{X1,i(t), t} +
F2{X2,i(t), t} + εi(t) where F1(x1, t) = 1 + x1 + t + 2x2

1t
and F2(x2, t) = 0.75 exp(x2t). In all experiments, the true
covariates are given by Xq(t) = aq0 + aq1

√
2 sin(πt) +

aq2
√
2 cos(πt), where aq0 ∼ N(0, {2−0.5(q−1)}2), aq1 ∼

N(0, {0.85 × 2−0.5(q−1)}2) and aq2 ∼ N(0, {0.70 ×
2−0.5(q−1)}2) for q = 1, 2. Throughout the study, it is
assumed that the covariates X1,i(t) and X2,i(t) are not
observed directly. Instead we observe W1i = X1,i(t) +
WN(0, 0.62) and W2i = X2,i(t) + WN(0, 0.62). For each of
the above scenarios, the response Yi(·) is generated under
all possible combinations of the following factors:

- Error process Ei = [εi(ti1), . . . , εi(timY,i
)]T : (i) E1

i ∼
N(0, 0.92Imi); (ii) E2

i ∼ N(0, 0.92Σ) + N(0, 0.92Imi)
where Σ has AR0.2(1) structure; and (iii) E3

i ∼
ξi1

√
2 cos(πt) + ξi2

√
2 sin(πt) + N(0, 0.92Imi), where

ξi1
iid∼ N(0, 2) and ξi2

iid∼ N(0, 0.752)
- Sampling design: (i) dense: m = 81 equidistant time

points in [0,1] for all i; and (ii) sparse: mi
iid∼

Unif(20, 31) points for response and covariates
- n ∈ 100, 300

Our aim is to investigate the prediction accuracy of our
method for both in-sample and out-of-sample prediction. To
achieve this, we construct training and test data sets assum-
ing both are independent. The test sets contain 100 subjects
and are obtained using the set of 81 equally spaced points
in [0,1].

5.2 Simulation results

5.2.1 Prediction performance

Our performance measure includes in-sample or out-of-
sample root mean squared prediction error (RMSPEin and
RMSPEout), integrated coverage probability (ICP) and in-
tegrated width (IW) of prediction bands. The definition of
these measures is given in the Supplementary Material, Sec-
tion C.
Result from Scenario A and B: For these two scenarios,
we fit both the standard linear functional concurrent model
(FCM) and our proposed ANFCM for each of these choices.
Our objective is two-fold: (i) When the true model is non-
linear, i.e. F1(x1, t) = 1 + x1 + t + 2x2

1t, we expect to see
that the ANFCM performs better than the FCM; and (ii)
If the true model is in fact linear, i.e. F1(x1, t) = 1+ x1 + t,
we expect the ANFCM still maintains prediction accuracy
relative to the FCM. We obtained both the ANFCM and
the linear FCM fits using 7 cubic B-splines for x1 and t. For
estimation of the residual covariance, the PVE is set equal
to 99%.

Table 2 summarizes the predictive performance of our
method for these two scenarios. We first discuss the case
when the true function is nonlinear (the top two panels
in Table 2). In this case, we observe that RMSPEin and
RMSPEout from fitting the ANFCM are smaller than those
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Table 2. Summary of RMSPEin, RMSPEout, ICP, IW, and R(SE) based on 1000 simulated data sets. The models fitted by our method and the linear FCM are
indicated by ANFCM and FCM, respectively

1− α = 0.95 1− α = 0.90 1− α = 0.85
RMSPEin RMSPEout ICP IW R(SE) ICP IW ICP IW

n Ei ANFCM FCM ANFCM FCM ANFCM FCM ANFCM FCM ANFCM FCM ANFCM FCM ANFCM FCM ANFCM FCM ANFCM FCM

Scenario B (true relationship is nonlinear), m = 81

E1
i 0.97 3.55 0.96 3.75 0.959 0.943 3.83 12.67 [3.54, 5.08] [3.65, 21.90] 0.916 0.919 3.21 10.64 0.871 0.896 2.81 9.31

100 E2
i 1.32 3.67 1.31 3.86 0.955 0.944 5.20 13.31 [4.96, 6.26] [5.03, 22.24] 0.909 0.917 4.37 11.17 0.861 0.891 3.82 9.77

E3
i 1.84 3.90 1.98 4.10 0.946 0.944 7.34 14.56 [5.53, 9.84] [8.37, 23.29] 0.895 0.915 6.16 12.22 0.844 0.884 5.39 10.69

E1
i 0.98 3.65 0.92 3.68 0.963 0.948 3.83 12.94 [3.54, 5.11] [3.63, 22.07] 0.921 0.925 3.21 10.86 0.877 0.902 2.81 9.50

300 E2
i 1.33 3.75 1.28 3.79 0.958 0.948 5.20 13.56 [4.96, 6.30] [5.02, 22.39] 0.912 0.923 4.37 11.38 0.866 0.898 3.82 9.96

E3
i 1.87 3.99 1.87 4.02 0.952 0.949 7.30 14.79 [5.58, 9.48] [8.44, 23.52] 0.903 0.921 6.12 12.41 0.854 0.892 5.36 10.87

Scenario B (true relationship is nonlinear), mi
iid∼ Unif(20, 31)

E1
i 1.16 3.55 1.18 3.76 0.964 0.928 4.52 12.60 [3.71, 7.16] [3.32, 23.46] 0.929 0.903 3.79 10.57 0.891 0.880 3.32 9.25

100 E2
i 1.46 3.66 1.47 3.87 0.959 0.932 5.75 13.17 [5.09, 8.04] [4.69, 23.72] 0.918 0.904 4.82 11.06 0.875 0.877 4.22 9.68

E3
i 1.94 3.89 2.06 4.10 0.949 0.942 7.69 14.51 [5.82, 11.09] [8.13, 24.67] 0.900 0.911 6.46 12.17 0.852 0.879 5.65 10.65

E1
i 1.15 3.65 1.00 3.68 0.973 0.935 4.42 12.90 [3.67, 6.90] [3.23, 23.25] 0.941 0.912 3.71 10.83 0.904 0.889 3.25 9.48

300 E2
i 1.46 3.76 1.33 3.79 0.966 0.941 5.66 13.50 [5.06, 7.79] [4.70, 23.50] 0.927 0.915 4.75 11.33 0.885 0.889 4.16 9.91

E3
i 1.96 3.99 1.91 4.03 0.958 0.948 7.64 14.80 [5.87, 10.64] [8.28, 24.56] 0.913 0.919 6.41 12.42 0.866 0.890 5.61 10.87

Scenario A (true relationship is linear), m = 81

E1
i 0.90 0.90 0.90 0.90 0.951 0.952 3.53 3.53 [3.52, 3.59] [3.52, 3.59] 0.902 0.902 2.97 2.97 0.853 0.853 2.60 2.60

100 E2
i 1.27 1.27 1.27 1.27 0.951 0.951 4.98 4.93 [4.93, 5.14] [4.93, 5.15] 0.901 0.902 4.18 4.18 0.852 0.852 3.66 3.66

E3
i 1.80 1.83 1.93 1.85 0.943 0.947 7.16 7.13 [5.41, 9.10] [5.40, 8.81] 0.891 0.896 6.01 5.98 0.839 0.846 5.26 5.24

E1
i 0.90 0.90 0.89 0.89 0.952 0.952 3.53 3.53 [3.52, 3.58] [3.52, 3.58] 0.902 0.902 2.97 2.97 0.853 0.853 2.59 2.60

300 E2
i 1.27 1.27 1.27 1.27 0.951 0.951 4.98 4.98 [4.93, 5.15] [4.93, 5.15] 0.902 0.902 4.18 4.18 0.852 0.852 3.66 3.66

E3
i 1.83 1.84 1.86 1.84 0.948 0.949 7.13 7.13 [5.44, 8.77] [5.44, 8.72] 0.897 0.899 5.98 5.98 0.846 0.849 5.24 5.24

Scenario A (true relationship is linear), mi
iid∼ Unif(20, 31)

E1
i 0.92 0.92 0.90 0.90 0.955 0.955 3.61 3.61 [3.55, 3.77] [3.55, 3.77] 0.907 0.908 3.03 3.03 0.859 0.859 2.65 2.65

100 E2
i 1.28 1.28 1.27 1.27 0.952 0.952 5.04 5.04 [4.96, 5.26] [4.96, 5.26] 0.904 0.904 4.23 4.23 0.854 0.855 3.70 3.70

E3
i 1.81 1.84 1.89 1.86 0.943 0.947 7.14 7.17 [5.38, 9.56] [5.37, 9.54] 0.891 0.896 6.00 6.01 0.840 0.846 5.25 5.26

E1
i 0.92 0.92 0.90 0.90 0.955 0.955 3.60 3.60 [3.55, 3.72] [3.55, 3.73] 0.908 0.908 3.02 3.02 0.859 0.859 2.64 2.64

300 E2
i 1.28 1.28 1.27 1.27 0.953 0.953 5.03 5.03 [4.97, 5.19] [4.97, 5.19] 0.904 0.904 4.22 4.22 0.855 0.855 3.69 3.69

E3
i 1.84 1.85 1.85 1.84 0.949 0.950 7.16 7.17 [5.45, 9.19] [5.45, 9.19] 0.899 0.900 6.01 6.02 0.848 0.850 5.26 5.27
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from the linear FCM in all cases, indicating that the pro-
posed ANFCM outperforms the linear FCM. The ICPs from
the ANFCM and the linear FCM are fairly close to the nom-
inal levels of 0.95, 0.90, and 0.85. However, on average, the
linear FCM produces larger intervals, indicated by larger
IW values and wider range of the estimated standard error
denoted by R(SE) compared to the ANFCM. Such patterns
confirm that the variability in prediction is not properly
captured by the linear FCM when the true model is nonlin-
ear. For less complicated error patterns such as E1

i (inde-
pendent error structure), both models produce smaller pre-
diction errors; nevertheless, ANFCM still produces smaller
errors compared to linear FCM. The results are valid for
different sample sizes as well as for dense/sparse sampling
designs. The bottom two panels of Table 2 show the results
when the underlying model is linear. In this case, the AN-

FCM continues to show very good prediction performance;
the results are almost identical to the ones yielded by the
linear FCM irrespective of the number of subjects, sparse-
ness of the sampling, and the error covariance structure.

To aid understanding these results, Figure 1 displays
prediction bands for three subject-level trajectories, when
the true model is nonlinear (top panel) and linear (bottom
panel), and the covariates are observed densely. In the top
panel, the prediction bands for the linear FCM (dashed line)
are much wider than the bands from the ANFCM (solid
line). This indicates that variance estimation from the lin-
ear FCM is less accurate. In the bottom panel, the prediction
bands of the ANFCM (grey solid line) and the linear FCM
(dashed line) are almost identical, indicating a similar per-
formance in terms of the variance estimation when the true
model is linear.

Figure 1. 95% prediction bands constructed for three subject-level trajectories in the test data. The results are from scenario
A and B (involving a single functional covariate) for the setting where sampling design is dense, n = 100, and Ei = E3

i . The
top (bottom) panel corresponds to the case where the true function F1(x1, t) is nonlinear (linear) in x1. “+” are the response
Ynew,i(·) in the test data, and dotted (“•”) lines are the true response without measurement errors. Solid and dashed lines are

the prediction bands obtained by fitting the ANFCM and the linear FCM, respectively.
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Result from Scenario C: Now consider the setting in-
volving two functional covariates. In this experiment, we in-
vestigate both in-sample and out-of-sample prediction per-
formance as well as computational complexity of our algo-
rithm with respect to the number of additional covariates.
It is worth noting that the computational complexity can
be affected by the number and the type of additional pre-
dictors as well as their assumed effect. Specifically, for fixed
values of the smoothing parameters, the solution is readily
available irrespective of the number of terms in the model.
Selecting the optimal values of the smoothing parameters
may be computationally demanding, and thus the compu-
tational time depends on the number of smoothing parame-
ters. There are two available implementation tools to obtain
predictions: gam and bam functions of mgcv ([37]) R pack-
age. Both functions provide almost identical model fits, but
computational advantage can be gained when using the bam
function with very large data sets. For completeness, we re-

port simulation results for Scenario B (the model involving
a single functional covariate) and C (the model with two
functional covariates).

We obtained the ANFCM fits using 7 cubic B-splines for
x1, x2 and t to model the smooth functions F1(x1, t) and
F2(x2, t). For estimation of the residual covariance, we pre-
set PVE = 99%. Table 3 summarizes RMSPEin, RMSPEout,
ICP’s at the nominal levels of 0.95, 0.90, and 0.85, and aver-
age computation time (in seconds). The computation time
is measured on a 2.3GHz AMD Opteron Processor and av-
eraged over 1,000 Monte Carlo replications. The top and
bottom panels display the results corresponding to Scenario
B and C, respectively. We observe from the results that
both in-sample and out-of-sample predictive accuracy are
still maintained irrespective of the number of predictive vari-
ables. We also observe that the coverage (indicated by ICP)
is fairly close to the nominal levels in all cases. In terms of
computational cost, both gam and bam slightly increase the

Table 3. Summary of RMSPEin, RMSPEout, ICP and average computation time (in seconds) based on 1000 simulated data
sets. The models are fitted by the estimation procedure of ANFCM. The average computation times are obtained using gam

and bam functions in mgcv R package

n Ei RMSPEin RMSPEout ICP at ICP at ICP at Computation Time (seconds)
1− α = 0.95 1− α = 0.90 1− α = 0.85 gam bam

Scenario B (model with single functional covariate), m = 81

E1
i 0.97 0.96 0.959 0.916 0.871 4.05 2.02

100 E2
i 1.32 1.31 0.955 0.909 0.861 3.75 2.02

E3
i 1.84 1.98 0.946 0.895 0.844 3.55 3.02

E1
i 0.98 0.92 0.963 0.921 0.877 22.09 4.07

300 E2
i 1.33 1.28 0.958 0.912 0.866 15.60 3.90

E3
i 1.87 1.87 0.952 0.903 0.854 12.03 3.06

Scenario B (model with single functional covariate), mi
iid∼ Unif(20, 31)

E1
i 1.16 0.98 0.964 0.929 0.891 1.04 2.76

100 E2
i 1.46 1.47 0.959 0.918 0.875 0.98 2.88

E3
i 1.94 2.06 0.949 0.900 0.852 1.02 2.53

E1
i 1.15 1.00 0.973 0.941 0.904 3.76 2.64

300 E2
i 1.46 1.33 0.966 0.927 0.885 3.63 2.97

E3
i 1.96 1.91 0.958 0.913 0.866 3.33 2.53

Scenario C (model with two functional covariates), m = 81

E1
i 0.96 0.94 0.955 0.908 0.860 24.74 4.44

100 E2
i 1.31 1.28 0.957 0.912 0.863 24.37 4.17

E3
i 1.80 1.96 0.937 0.882 0.831 24.15 3.37

E1
i 0.97 0.92 0.958 0.912 0.866 57.74 4.61

300 E2
i 1.32 1.27 0.959 0.915 0.867 56.52 4.85

E3
i 1.85 1.90 0.946 0.892 0.842 60.43 3.16

Scenario C (model with two functional covariate), mi
iid∼ Unif(20, 31)

E1
i 1.13 1.07 0.961 0.921 0.880 4.20 3.20

100 E2
i 1.44 1.38 0.960 0.919 0.874 5.12 2.97

E3
i 1.91 2.01 0.942 0.891 0.840 4.86 3.13

E1
i 1.13 0.97 0.970 0.934 0.895 18.14 4.05

300 E2
i 1.44 1.30 0.967 0.928 0.885 14.15 4.33

E3
i 1.94 1.91 0.953 0.903 0.856 11.15 3.96
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average computation time with the increased sample size
and model complexity. Nevertheless, the additional compu-
tation expense is rather minimal compared to the computa-
tional time corresponding to single functional covariate. The
results also show that computations can be further sped up
if bam is used.

To summarize, the numerical investigation shows that
ANFCM may result in a significant gain in prediction ac-
curacy over the standard linear FCM, when the true model
is nonlinear; ANFCM has similar prediction performance
relative to the linear FCM, when the true model is linear.
Furthermore, in the presence of two functional covariates,
our method still preserves high predictive accuracy, and the
additional computation cost is not substantial compared to
the case of single functional covariate.

In the Supplementary Material, we include additional
simulation results. Section D.1 reports simulation results
corresponding to another level of sparseness. Section D.2
compares the results corresponding to two competitive
approaches for covariance estimation: using local linear
smoothing ([44]) which is implemented in Matlab using
the functions of the PACE toolbox and using a fast covari-
ance smoothing method ([41]) which is implemented using
fpca.face function of the refund R package ([15]). Section
D.3 presents additional results for larger measurement error
variance (τ2 = 1 and 2) in functional covariates as well as
a smaller sample size n = 40 (as in the Gait data exam-
ple) in addition to n = 100 and 300. We also conducted an
additional simulation study to investigate the effect of dif-
ferent choices of the number of basis functions. The results
are displayed in Section D.4 of the Supplementary Mate-
rial. We found that the prediction errors and the coverage
at different nominal levels did not vary too much across dif-
ferent numbers of basis functions. Section D.5 investigates
the model performance with up to five functional covariates
through a numerical study.

5.2.2 Testing performance

Now we assess the performance of the proposed
testing procedure for the following two scenarios: (A)
E[Yd(t)|X1(t) = x1] = 1 + 2t + t2 + d(x1t/8); and (B)
E[Yd(t)|X1(t) = x1, X2(t) = x2] = 2t + t2 + x1 sin(πt)/4 +
d{2 cos(x2t)}, where d is a constant. We generate the data
corresponding to the above true models using the error co-
variance structure and sampling design defined in Section
5.1. In Scenario A, we are interested in testing the null hy-
pothesis in (5). Here, F1{X(t), t} = F0(t) + d{X(t)β1(t)},
where F0(t) = 1 + 2t + t2 and β1(t) = t/8. This scenario is
designed to capture the standard linear concurrent effect of
the functional covariate. When d = 0, the true model is a
univariate function of time point t, and X(·) has no associ-
ation with Y ; when d > 0, the true model depends on both
X(t) and t in a linear concurrent relationship. Thus the pa-
rameter d indexes the departure from the null hypothesis
given in (5) towards stronger linear concurrent relationship.

This setting is similar to the real data analysis (in Section
6), where the functional covariate is found to have signifi-
cant association with the response but performance of the
proposed nonlinear model is similar to that of a linear con-
current model.

In Scenario B, we are interested in testing the null hy-
pothesis given in (7). Here, F1{X1(t), t} = X1(t) sin(πt)/4
and F2{X2(t), t)} = d{2 cos(X2(t)t)}, where the parameter
d ≥ 0 controls the departure from the null hypothesis given
in (7). When d = 0, the response depends on X1 using a
linear concurrent relationship, but does not depend on X2.
However, when d > 0, Y has a linear concurrent relation-
ship with X1 and a nonlinear relationship with X2. Thus
Scenario B is designed to detect such a nonlinear relation-
ship in the case with two covariates.

For each of the scenarios, type I error of the test is inves-
tigated by setting d = 0, and the power of the test is studied
for positive values of d. We generated 2,000 samples to assess
the type I error rate, and 1,000 samples to assess the power.
The distribution of the test statistic in (6) is approximated
using B = 200 bootstrap samples for each simulation.
Result from Scenario A: We first examine the size and
power performance of the global test presented in Algorithm
1. The empirical type I error rates are evaluated at nominal
levels of α = 5% and 10% for sample sizes 100 and 300, and
the estimated rejection probabilities are presented in the
top panel of Table 4. We observe that estimated type I er-
ror rates are mostly within 2 standard errors of the nominal
values, and the larger sample size (n = 300) improves the
size performance. The results also indicate that the perfor-
mance is similar across different covariance structures and
sampling designs. The power performance of our proposed
test is evaluated for a fixed nominal level α = 5%. The
top panel in Figure 2 displays the rejection probabilities for
d = 0.1, 1, 2, . . . , 7 and for different error covariance struc-
ture; in the interest of space, we only present the case of
sparse design. As expected, the power of the testing proce-
dure increases with the sample size, while the results are af-
fected by the complexity of the error covariance: the power
corresponding to non-stationary error covariance is much
lower than the counterpart corresponding to AR(1) covari-
ance error structure. Power curves for the densely sampled
scenario are provided in the Supplementary material, Sec-
tion D.6. We found that the results for densely sampled data
are very similar to the one obtained for sparsely sampled
data.
Result from Scenario B: We now assess the size and
power properties of the significance testing presented in Al-
gorithm 2. The bottom panel of Table 4 shows the empirical
type I error rates corresponding to nominal levels α = 5%
and 10% for sample sizes 100 and 300. The results show
that the estimated sizes are mostly within 2 standard er-
rors of the nominal values for all significance levels, and the
results are less affected by different error covariance struc-
ture and sampling designs. The bottom panel in Figure 2
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Table 4. Type I error probabilities (×100) based on 2000 simulations. The values in the parenthesis are the estimated
standard errors (×100) of the rejection probabilities

α = 5% α = 10%
Scenario Sampling n E1

i E2
i E3

i E1
i E2

i E3
i

A m = 81 100 5.3(0.5) 5.4(0.5) 6.6(0.6) 11.1(0.7) 10.6(0.7) 10.3(0.7)
300 6.1(0.5) 5.0(0.5) 5.1(0.5) 10.6(0.7) 10.9(0.7) 9.4(0.7)

mi
iid∼ Unif(20, 31) 100 5.5(0.5) 5.0(0.5) 4.6(0.5) 10.0(0.7) 10.8(0.7) 9.8(0.7)

300 4.8(0.5) 4.2(0.4) 5.2(0.5) 9.5(0.7) 10.4(0.7) 10.7(0.7)

B m = 81 100 6.2(0.5) 4.5 (0.5) 5.1(0.5) 11.5(0.7) 9.7(0.7) 10.0(0.7)
300 6.4(0.5) 4.8 (0.5) 5.0(0.5) 12.9(0.7) 10.7(0.7) 11.7(0.7)

mi
iid∼ Unif(20, 31) 100 5.0(0.5) 4.4(0.5) 6.2(0.5) 11.2(0.7) 9.8(0.7) 10.8(0.7)

300 6.2(0.5) 5.3(0.5) 6.5(0.5) 12.8(0.7) 10.7(0.7) 11.7(0.7)

Figure 2. Powers (×100) of the tests at significance level α = 5%. The top (bottom) panel displays the results from scenario
A (scenario B) for the setting where sampling design is sparse. The error process in the left, middle and right panels is

assumed to be E1
i , E

2
i and E3

i , respectively.

displays the rejection probabilities at the α = 0.05 level for
d = 0.1, 1, 2, . . . , 7 and for different error covariance struc-
ture; again, we only present the case corresponding to sparse
design. For the moderate sample size (n = 100), the power of

the testing procedure increases with the value of d. For the
larger sample size (n = 300) the empirical rejection proba-
bilities converge to 1 at a fast rate as the value of d increases.
As expected, there is some loss of power for complicated
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error patterns such as E3
i (non-stationary error covariance

structure). However, the power performance for this case
improves with the larger sample size (n = 300). We also de-
tected that the power of the test is affected by how the data
is sampled, but with only a negligible difference; the power
curves corresponding to the dense design are provided in the
Supplementary Material, Section D.6.

Finally, it is worthwhile noting that, when calculat-
ing the size of proposed test Tn,obs or T ∗

b , the difference
RSS0−RSS1 occasionally comes out negative. We detected
such cases 2.6% of the time on an average, and this is true
irrespective whether the sampling design is dense or sparse.
In these cases, we set RSS0−RSS1 = 0. Typically df0−df1
is positive. However, for very few cases (less than 0.1% of
the time) this difference was returned negative; we excluded
such cases from our study.

6. APPLICATIONS

6.1 Gait data

We turn our attention to data applications. We first con-
sider the study of gait deficiency, where the objective is to
understand how the joints in hip and knee interact during a
gait cycle [35]. Typically, one represents the timing of events
occurring during a gait cycle as a percentage of this cycle,
where the initial contact of a foot is recorded as 0% and
the second contact of the same foot as 100%. The data con-
sist of longitudinal measurements of hip and knee angles
taken on 39 children as they walk through a single gait cy-
cle [24, 27]. The hip and knee angles are measured at 20
evaluation points {tj}20j=1 in [0,1], which are translated from
percent values of the cycle. In the Supplementary Material,
Figure 2 of Section E.1 displays the observed individual tra-
jectories of the hip and knee angles.

We consider our proposed methodology to relate the hip
and knee angles, which is an example of densely observed
functional covariates and response. Let Yij = Yi(tj) be the
knee angle and Wij = Xi(tj) + δij be the hip angle corre-
sponding to the ith child and the percentage of gait cycle
tj , were δij are the measurement errors. The measurement
error variance in the Hip angle curves are estimated (via
FPCA) to be 1.714. We first employ our resampling based
test to investigate whether the hip angles are associated with
the knee angles. We select 7 cubic B-splines for x and t to
fit the ANFCM, E[Yi(t)|Xi(t)] = F{Xi(t), t}, and B = 250
bootstrap replications are used. The bootstrap p-value is
computed to be less than 0.004, thus we conclude that the
hip angle measured at a specific time point has a strong
effect on the knee angle at the same time point.

To assess how the hip and knee angles are related to each
other, we fit our proposed ANFCM as well as the linear
FCM. We assess the predictive accuracy by splitting the
data into training and test sets of size 30 and 9. Assuming
that the hip angles are observed with measurement errors,

we smooth the covariate by FPCA and then apply the cen-
ter/scaling transformation. We compare prediction errors
obtained by fitting both the ANFCM and the linear FCM.
Also, as a benchmark model we further fit a linear mixed
effect (LME) model Yij = (β0 + b0i) + (β1 + b1i)Xij + (β2 +
b2i)tij + εij , where (b0i, b1i, b2i)

T are the subject random co-
efficients from N(0, R) with some 3×3 unknown covariance
matrix R, εij are the errors from N(0, σ2

ε ), and (b0i, b1i, b2i)
T

and εij are assumed to be independent. For the ANFCM
and the linear FCM, we report the in-sample and the out-
of-sample RMSPE, the ICP, the IW, and the R(SE). For the
LME model, we report similar measures, but take the aver-
age over the repeated measurements instead of integrating
over the time domain.

The results are summarized in Table 5 (top panel). We
observe that the LME model provides a poor predictive per-
formance compared to the others, implying that models in
the framework of concurrent regression models are obviously
better. ANFCM yields similar predictive performance rel-
ative to the linear FCM. Specifically, the prediction errors
from the ANFCM are similar to the linear FCM. The R(SE)
obtained from the ANFCM are only slightly narrower com-
pared to FCM at all significance levels. Figure 3, top panel,
shows the prediction bands obtained for few subjects in the
test data set. The two competitive models, ANFCM (solid
line) and the linear FCM (dashed line), show similar results.
The bottom panel in Figure 3 displays a heat map plot of
the predicted surface using the ANFCM. The results cor-
roborate that the relationship between the hip angles and
the knee angles is linear. This finding is also confirmed by
additional simulation results using a generating model that
mimics the gait data, which are included in the Supplemen-
tary Material, Section E.2.

6.2 Dietary calcium absorption data

Next, we consider an application to dietary calcium ab-
sorption study [2]. In a group of 188 patients, dietary and
bone measurement tests are conducted approximately every
five years, and calcium intake and absorption are measured
for each subject. The patients are between 35 and 45 years
old at the beginning of the study, with the overall ages rang-
ing from 35 to 64 years old. The number of repeated mea-
surements per subject varies between 1 to 4 times. This is
an example of data where both the functional response and
covariate are observed on a sparse design. Our objective is
to examine the pattern of calcium absorption over the ages
based on calcium intake as well as body mass index (BMI)
of the patients averaged over their ages. To assess their re-
lationship, let Yij = Yi(tij) be the calcium absorption and
W1ij = X1,i(t1ij) + δij be the calcium intake correspond-
ing to ith subject and the jth time point, where δij are the
noise. Let X2,i denote the average BMI for the ith subject.
In the Supplementary Material, Figure 2 of Section E.1 dis-
plays the observed individual trajectories of calcium intake
and absorption along the patient’s age at the visit.
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Table 5. Results from data examples as described in Section 6. Displayed are the summaries of RMSPEin, RMSPEout, ICP,
IW, and R(SE). The models fitted by our method and the linear FCM are indicated by ANFCM and FCM, respectively

Gait data

1− α = 0.95 1− α = 0.90 1− α = 0.85
RMSPEin RMSPEout ICP IW R(SE) ICP IW R(SE) ICP IW R(SE)

ANFCM 5.47 5.99 0.939 20.43 [14.86, 35.75] 0.867 17.15 [12.47, 30.00] 0.828 15.01 [10.91, 26.26]
FCM 5.59 5.69 0.943 20.60 [14.91, 36.12] 0.861 17.29 [12.51, 30.32] 0.822 15.13 [10.95, 26.53]
LME 18.93 19.05 0.972 76.55 [73.75, 82.26] 0.883 64.24 [61.90, 69.04] 0.844 56.22 [54.17, 60.42]

Calcium absorption data

1− α = 0.95 1− α = 0.90 1− α = 0.85
RMSPEin RMSPEout ICP IW R(SE) ICP IW R(SE) ICP IW R(SE)

ANFCM 0.079 0.112 0.950 0.35 [0.32, 0.56] 0.935 0.30 [0.27, 0.47] 0.919 0.26 [0.23, 0.41]
FCM 0.081 0.114 0.951 0.33 [0.31, 0.41] 0.935 0.28 [0.26, 0.34] 0.921 0.24 [0.23, 0.30]

Figure 3. Results from gait data analysis as described in Section 6. The top panel displays 95% prediction bands obtained by
fitting the ANFCM (grey solid lines) and the linear FCM (dashed lines) for three subject-level trajectories in the test data. “•”
represent the knee angles in the test data. The bottom panel shows the heat map of Ŷnew,i(t) obtained from the test data set

of the gait data example.
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Figure 4. Results from calcium data analysis as described in Section 6. The leftmost two panels display 95% prediction bands
obtained by fitting the ANFCM (grey solid lines) and the linear FCM (black dotted lines) for two subject-level trajectories in
the test data. “•” indicate the calcium absorption measured, and thin solid lines are the predicted calcium absorption from the

ANFCM estimation method. The rightmost panel displays the estimated slope function of BMI, γ̂(t), obtained from the
ANFCM (black solid line) and the linear FCM (black dotted line).

In the analysis, we fit a ANFCM with a linear BMI effect,
E[Yi(t)|X1,i(t), X2,i] = F{X1,i(t), t} + γ(t)X2,i, where γ(t)
denotes the unknown slope function of the average BMI.
As an alternative model, we also study the dependence
assuming a linear FCM, E[Yi(t)|X1,i(t), X2,i] = β0(t) +
β1(t)X1,i(t)+γ(t)X2,i. In the analysis, ages are transformed
into the values in [0,1], and the results are considered as eval-
uation points of the functions. As before, we begin by testing
the null hypothesis of no association between the calcium
intake and the absorbtion. Specifically, we test the null hy-
pothesis H0 : E[Y (t)|X1(t) = x1, X2 = x2] = β0(t) + x2γ(t)
versus the alternative H1 : E[Y (t)|X1(t) = x1, X2 = x2] =
F (x1, t) + x2γ(t) using Algorithm 2. We select 7 cubic B-
splines in directions x and t respectively to fit the ANFCM,
and use B = 250 bootstrap replications. The p-value of our
test is obtained to be less than 0.004, indicating a signif-
icant association between the current calcium intake mea-
sured and the current absorption.

We next analyze the predictive performance of the AN-
FCM by using a training set of 148 random patients and a
test set formed by the remaining 40 patients. Shown are also
the results obtained with the linear FCM. Several adjust-
ments are required to accommodate the sparse sampling de-
sign of the covariates, X1,i(t). The covariates in the training
set are smoothed using the standard FPCA toolkit for sparse
functional data [44]. The resulting estimated model (using
the training data) is later used to reconstruct the trajecto-
ries in the test set. The prediction results using the ANFCM
and the competitive linear FCM are presented in Table 5
(bottom panel). Both the ANFCM and the linear FCM show
similar in-sample and out-of-sample performance, RMSPEin

and RMSPEout; this indicates that a simple linear associ-
ation between the calcium intake and absorption is more
appropriate.

Furthermore, in Figure 4, the leftmost two panels present
the point-wise prediction intervals/bands for two selected
subjects from the test data. The differences between the AN-
FCM (grey solid lines) and the linear FCM (dashed lines) are
rather negligible, further confirming a linearity dependence
between the calcium intake and the absorption. The right-
most panel in Figure 4 displays the estimated slope function
γ̂(t) obtained by fitting the ANFCM and the linear FCM.
On average, both methods indicate a positive effect of the
average BMI on the absorption but with a slight difference
in the estimated effects. Additional analysis has shown that
the difference is due to the estimation errors.

In the Supplementary Material (Section E.3), we have
also investigated the effect of choosing different number
of basis functions, Kx and Kt, for the calcium absorption
data. The results for three different choices (Kx,Kt) =
(7, 7), (9, 9) and (11, 11) are similar. We also investigated
another ANFCM for the calcium absorption data set with
a bivariate effect of BMI and age, E[Yi(t)|X1,i(t), X2,i] =
F1{X1,i(t), t}+ F2(X2,i, t), and obtained similar results.

7. DISCUSSION

We propose a wide class of function-on-function regres-
sion models, the additive nonlinear functional concurrent
model, and discuss significance testing of no association. In
particular, our proposed hypothesis testing can formally as-
sess whether the effect of a functional covariate is significant
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under the assumption that the relationship between the re-
sponse and the predictor is general; the linear dependence is
a special case of the proposed general model, as described by
our proposed modeling. In contrast, the existing literature
assumes a linear dependence between the response and the
covariate/s. Thus, similar significance tests are only valid
when the linearity dependence assumption between the re-
sponse and the covariate is true. For the two applications
- the gait data and the dietary calcium absorption data -
our testing procedure found significant association between
the response and covariate under a more general dependence
assumption. Furthermore, using the proposed methods we
found evidence that the relationship between the response
and covariate is indeed linear; in contrast, the linear FCM
assumes a linear dependence is valid. Thus, our proposed
procedure allows one to approach the problem from a more
general point of view. We have implemented our proposed
estimation and testing methodology using R software, and
details about the implementation are provided in Section F
of the Supplementary Material.

Models similar to (1) are also considered by [30]; software
implementing their approach is available in the refund pack-
age in R. However, the main difference is that [30] assume
that the error process is white noise, that is, iid Gaussian
errors; although functional random effects are allowed. In
the specific context of nonlinear concurrent modeling, no
numerical investigation has been done by [30] regarding es-
timation or prediction. In contrast, we present methodology
and numerical results for prediction, estimation of prediction
uncertainty as well as algorithms for two types of hypothesis
testing.

We note that the model parameters are estimated by
minimizing a penalized least squares criterion (3), and the
smoothing parameters are chosen using REML or GCV.
While minimizing (3) is reasonable regardless whether the
errors are dependent or not, it can be viewed as a penal-
ized likelihood criterion only when errors are assumed to be
independent. As a result, we propose methods for variance
estimation that takes into account the error covariance. One
potential issue in this procedure is that the smoothing pa-
rameters are still chosen based on (3). While our numerical
results show that the proposed method still has good per-
formance in terms of prediction error and coverage, more
research is needed to address this issue. Also, the variance
estimation procedure does not take into account the variabil-
ity due to the estimation of the smoothing parameters. It
might be possible to develop methodology to overcome this
issue using recently published works such as that of [38] (see,
e.g., their Section 4). Finally, in our variance estimation pro-
cedure, we have essentially adopted a frequentist approach;
however, it might be possible to implement a Bayesian vari-
ance estimation procedure (see, e.g., Chapter 4.8 of [36])
in our framework. All these issues are highly interesting re-
search topics and are reserved for future research.

SUPPLEMENTAL MATERIAL

Online supplemental material is available in the sub-
mitted file http://intlpress.com/site/pub/pages/journals/
items/sii/content/vols/0011/0004/s003.
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