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Case-cohort design for accelerated hazards model
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Case-cohort design is widely used in biomedical studies
of rare diseases as an efficient way to reduce cost. Relevant
covariate histories, which are costly or difficult to obtain,
are observed only on cases and a random subcohort in such
studies. It is often that a lag period exists before the treat-
ment or other covariates is fully effective. This phenomenon
may be described well by an accelerated hazards model. Ex-
isting methods for the accelerated hazards model do not
handle case-cohort data. This paper proposes a semipara-
metric inference method for the accelerated hazards model
with data from a case-cohort design. The proposed estima-
tors are shown to be consistent and asymptotically normally
distributed. The finite sample properties of proposed case-
cohort estimator and its relative efficiency to full cohort es-
timator are assessed via simulation studies. An application
to a burn study demonstrates the utility of the proposed
method in practice.
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1. INTRODUCTION

Epidemiologic cohort studies often involve following of a
large number of subjects for a long period of time. Obtain-
ing expensive covariate information on all members in such
studies might not be feasible due to a limited budget. Case-
cohort design (Prentice, 1986) provides an efficient solution
to reduce cost for large cohort studies involving rare diseases
(cases). Under the case-cohort design, the complete infor-
mation of covariates is only assembled for a random sample
of the entire cohort (subcohort) and all the subjects who
experience the event of interest. In addition to being cost
efficient, the case-cohort design can be used when survival
times to different diseases are of interest (Self and Prentice,
1988).

Extensive inference methodologies for case-cohort designs
are based on the proportional hazards (PH) model (e.g.
Self and Prentice, 1988; Lin and Ying, 1993; Chen and Lo,
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1999; Borgan et al., 2000; Chen, 2001; Cai and Zeng, 2004;
Kulich and Lin, 2004; Qi et al., 2005; Breslow and Wellner,
2007), the additive hazards (AdH) model (e.g. Kang and
Cai, 2013), the accelerated failure time (AFT) model (e.g.
Kong and Cai, 2009; Kang et al., 2016 etc) and the semipara-
metric transformation models (Chen, 2001; Kong, Cai and
Sen, 2004). All the aforementioned semiparametric models
assume an immediate treatment effect at the start time of
clinical trials. However, in many randomized clinical trials
with the goal to compare a treatment with a placebo, it is
reasonable to assume that the risks of failure for both the
treatment and placebo groups are the same at the start time
and change as the trial proceeds. To accommodate this phe-
nomenon, Chen and Wang (2000) proposed a so-called ac-
celerated hazards (AcH) model. In practical studies, a cross-
ing in survivor curves may occur when one group receives
oral medication, while the other receives a riskier treatment
which involves surgery. The AcH model can also characterize
exhibition of crossings in either or both of survivor and haz-
ard functions for the treatment and control groups, a feature
that the PH, AdH and AFT models cannot accommodate.

For the AcH model, the statistical inference has been de-
veloped when data are complete (Chen and Wang, 2000).
In this paper, we consider a more generalized AcH model
than that of Chen and Wang (2000) by including other con-
founding covariates effects into the model. We refer to the
proposed model still as the AcH model in the following. In
Section 2, we propose an estimating procedure for the re-
gression parameters. We study the asymptotic properties
of the proposed estimators and develop an easy resampling
approach to estimate the asymptotic covariance in Section
3. In Section 4, simulation studies are conducted to inves-
tigate the performance of the case-cohort estimator under
practical sample sizes, as well as its efficiency relative to the
full-cohort estimator. A real data from a burn study is used
to illustrate the proposed method in Section 5. A discussion
concludes in Section 6. The outline of the proofs is provided
in Appendix A.

2. ESTIMATION PROCEDURES

2.1 Model and procedures

Let T be the failure time and C be the censoring time.
The observed time is U = min(T, C) and Δ = I(T ≤ C)
denotes the right-censoring indicator, where I(·) is the in-
dicator function. Let Z = (Z1, Z2) be a (p+1)-dimensional
covariate vector where Z1 is a binary treatment effect with
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values 0 and 1 and Z2 is a p-vector of potential confounding
variables or risk factors. Assume that T and C are condi-
tionally independent given Z. Suppose that the underlying
cohort consists of N independent subjects and (Ui,Δi,Zi),
i = 1, · · · , N , are N independent copies of (U,Δ,Z). The
realization of (Ui,Δi,Zi) is denoted by (ui, δi, zi).

The most widely used model for survival data is the
Cox proportional hazard model (Cox, 1972) with the hazard
function

(1) λ(t|Z) = λ0(t) exp(β
′Z),

where β is the relative risk parameter to be estimated, and
λ0(t) is an unspecified baseline hazard function. This model
assumes that the hazard curves are proportional for individ-
uals with different covariates and the unknown parameters
can be estimated by solving the following partial likelihood
score equation:

N∑
i=1

δi

⎡⎢⎢⎢⎣zi −
N∑
j=1

I(uj ≥ ui) exp(β
′zi)zi

N∑
j=1

I(uj ≥ ui) exp(β′zj)

⎤⎥⎥⎥⎦ = 0.

In practical studies, it is often happens that the hazards of
treatment group and non-treatment group are identical at
the starting time (t = 0). To accommodate this nonpropor-
tionality phenomenon, Chen and Wang (2000) proposed the
so-called accelerated hazards (AcH) model as follows:

(2) λ(t|Z1, Z2) = λ0(β
Z1
1 t) exp(β′

2Z2),

where λ0(·) is the unspecified baseline hazard function and
β = (β1, β

′
2)

′ ∈ B1 × B2 ⊂ R+ × Rp is the unknown pa-
rameter. It can be seen that the above AcH model assumes
that the binary treatment Z1 accelerates or decelerates the
baseline hazard progression while the other covariates Z2

influence the baseline hazard function proportionally.
Note that the only difference between λ(t|Z1 = 0, Z2)

and λ(t|Z1 = 1, Z2) is a time scale change. Therefore, the
following proposition can be directly obtained as a simple
generalization of Property 1 in Chen and Wang (2000).

Proposition 2.1. If βa is an arbitrary scale in B1 ⊂ R+

and the failure time T has the hazard function λ(t|Z) in
(2), then the hazard function for the transformed time Ta =
βZ1
a T is

(3) λ0({β1/βa}Z1 t) exp {Z ′
2β2 − Z1 log βa} .

Obviously, when βa = β1, (3) equals

λ0(t) exp {Z ′
2β2 − Z1 log β1} .

Proposition 2.1 means that Ta recovers the propor-
tionality between the hazard functions with a ratio of
exp {Z ′

2β2 − Z1 log β1} when β1 is used to transform (T,Z)

to (Ta,Z). Inspired by this fact, for the full-cohort design,
we extend the approach by Chen and Wang (2000) to esti-
mate the parameter β = (β1, β

′
2)

′ by solving the following
equations jointly:

(4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N∑
i=1

δi

⎡⎣zi −
N∑

j=1

I(β
z1j
a uj≥β

z1i
a ui)e

z′2jβ2−z1j log β1zj

N∑
j=1

I(β
z1j
a uj≥β

z1i
a ui)e

z′
2j

β2−z1j log β1

⎤⎦= 0,

β1 = βa.

It is easy to see that the solution to (4) can be equivalently
obtained by solving the following equation:

N∑
i=1

δi

⎡⎢⎢⎢⎣zi −
N∑
j=1

I(β
z1j
1 uj ≥ βz1i

1 ui)e
z′
2jβ2−z1j log β1zj

N∑
j=1

I(β
z1j
1 uj ≥ βz1i

1 ui)e
z′
2jβ2−z1j log β1

⎤⎥⎥⎥⎦ = 0.

(5)

Chen and Wang (2000) proposed a grid search algorithm to
realize the calculation.

In case-cohort studies, covariate observation is not com-
pletely available for each subject. Suppose a subcohort of
size ñ is randomly selected without replacement from the
full cohort. The subjects from the subcohort and the ad-
ditional failures outside the subcohort constitute the case-
cohort sample, which is supposed to have the size of n. Let C̃
and C be the index set of the subcohort and the case-cohort
sample, respectively. Since covariate measurements are col-
lected only for the case-cohort sample, equation (5) cannot
be calculated directly. Following the idea of Prentice (1986),
we proposed the following case-cohort estimating equation:

U(β) =
∑
i∈C

δi

⎡⎢⎢⎣zi −

∑
j∈R(ui)

I(β
z1j
1 uj ≥βz1i

1 ui)e
z′2jβ2−z1j log β1zj∑

j∈R(ui)

I(β
z1j
1 uj ≥βz1i

1 ui)e
z′2jβ2−z1j log β1

⎤⎥⎥⎦
(6)

= 0,

where R(t) = C̃ ∪ D(t) and D(t) = {i = 1, · · · , N |Ni(t) �=
Ni(t

−)}, which is empty unless a failure occurs at time t.
Note that the proposed estimating equation is a modifica-
tion of equation (5) that weights the contributions of the
failures and subcohort differently.

Denote Ni(t) = ΔiI(Ui ≤ t) and Yi(t) = I(Ui ≥ t) to be
the counting process and the at-risk process, respectively.
Equation (6) can be rewritten as:

U(β) =
∑
i∈C

∫ τ

0

⎡⎢⎢⎣zi −
∑

j∈R(t)

Yj (t/β1
z1j ) ez

′
2jβ2−z1j log β1zj∑

j∈R(t)

Yj (t/β1
z1j ) ez

′
2jβ2−z1j log β1

⎤⎥⎥⎦
× dNi (t/β1

z1i)

=0,
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where τ denotes the end time of the study. The proposed
estimator of β is the solution to the above estimating equa-
tion, denoted by β̂ = (β̂1, β̂′

2)
′.

Furthermore, the cumulative hazard function Λ0(t) =∫ t
0
λ0(s)ds can be estimated by a Breslow-Aalen type es-

timator as:

(7) Λ̂0(t) =
ñ

n

∫ t

0

∑
i∈C

dNi(s/β̂
z1i
1 )∑

j∈C̃
Yj(s/β̂

z1j
1 ) ez

′
2j β̂2−z1j log β̂1

.

The asymptotic properties of β̂ and Λ̂0(t) are presented in
Section 3.

2.2 Implementation

The computation of the proposed estimator β̂ in practice
is quite complicated because equation (6) is not smooth with
respect to β1. We establish a greed search algorithm for the
implementation of β̂ by modifying the approach developed
by Chen and Wang (2000).

Algorithm.

Step 1: Choose an arbitrary positive real number βa

and transform all observed time ui’s to βz1i
a ui, i ∈ C.

Step 2: Consider the working model as follows:

(8) λ(t|Z) = λ0(t) exp {Z ′
2β2 − Z1 log β1} ,

and solve the estimating equation for the fixed βa,

U(β;βa)(9)

=
∑
i∈C

δi

[
zi

−

∑
j∈R(ui)

I(β
z1j
a uj ≥ βz1i

a ui)e
z′
2jβ2−z1j log β1zj∑

j∈R(ui)

I(β
z1j
a uj ≥ βz1i

a ui)e
z′
2jβ2−z1j log β1

]

= 0,

to obtain the solution as β̂(βa) = (β̂1(βa), β̂2(βa)
′)′.

Step 3: Repeat Step 1 and Step 2 until β̂n is found to
satisfy

β̂(β̂n) = β̂n or
[
β̂(β̂n+)− β̂n

] [
β̂(β̂n−)− β̂n

]
< 0.

To realize the above algorithm, we adopt a direct grid
search technique initially proposed by Chen and Wang
(2000) for independent and identically distributed observa-
tions. Specifically, we set βa from a starting point a to an
ending point b with a constant increment η, and calculate

the solution, β̂(β
(k)
a ) = (β̂1(β

(k)
a ), β̂2(β

(k)
a )′)′, to equation (9)

for each β
(k)
a = a+ kη. Locate the solution by searching the

crossing of y = β̂1(βa) and y = βa. As far as the choice of
a and b is concerned, we first estimate the regression pa-
rameter based on the subcohort subjects under the working
model (8) which takes a proportional hazards form as

λ(t|W ) = λ0(t) exp (W
′γ) ,

where W = (Z ′
2, Z1)

′ and γ = (β2
′, − log β1)

′. The result-
ing estimator of γ is denoted by γ̂ = (γ̂′

1, γ̂2)
′. We then

set a = exp {−γ̂2} (1− 3σ̂γ2) and b = exp {−γ̂2} (1 + 3σ̂γ2),
where σ̂γ2 is the estimated standard error of γ̂2.

3. ASYMPTOTIC PROPERTIES

3.1 Asymptotic properties for β̃ and Λ̃0(t)

Let β0 denote the true value of β. We first introduce some
notations. For d = 0, 1, 2, define

S(d)(β, t) =
1

n

∑
i∈C

Yi (t/β1
z1i) ez

′
2iβ2−z1i log β1zi

⊗d,

S̃(d)(β, t) =
1

ñ

∑
i∈C̃

Yi (t/β1
z1i) ez

′
2iβ2−z1i log β1zi

⊗d,

Q(d)(β, t, w) =
1

n

∑
i∈C

Yi (t/β1
z1i)Yi (w/β1

z1i)

× e2{z
′
2iβ2−z1i log β1}zi⊗d,

Q̃(d)(β, t, w) =
1

ñ

∑
i∈C̃

Yi (t/β1
z1i)Yi (w/β1

z1i)

× e2{z
′
2iβ2−z1i log β1}zi⊗d,

where ν⊗0 = 1, ν⊗1 = ν and ν⊗2 = νν′ for a vector ν.
Define

Z̄(β, t) =
S(1)(β, t)

S(0)(β, t)
, Z̃(β, t) =

S̃(1)(β, t)

S̃(0)(β, t)
.

The risk set of the entire cohort involved in the proposed
equation (6) can be approximated by their subcohort coun-
terparts, and the efficiency loss of the resulting estimators
relative to the estimator obtained from (6) is ignorable es-
pecially for large cohorts with infrequent failure occurrence
(Self and Prentice, 1988). In this spirit, we approximate

U(β) by using the index set C̃ instead of R(t), and con-
struct the estimating function:

H̃n(β) =

n∑
i=1

∫ τ

0

⎡⎢⎢⎣zi −
∑
j∈C̃

Yj (t/β1
z1j ) ez

′
2jβ2−z1j log β1zj∑

j∈C̃
Yj (t/β1

z1j ) ez
′
2jβ2−z1j log β1

⎤⎥⎥⎦
(10)

× dNi (t/β1
z1i) .

Suppose that β̃ is the solution to H̃n(β) = 0, and Λ̃0(t) is

the corresponding estimator of Λ0(t) by replacing β̂ in (7)
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with β̃. It can be proved that β̂ and Λ̂0(t) have the same

asymptotic properties as β̃ and Λ̃0(t) by similar arguments
of Self and Prentice (1988). Therefore, it is sufficient to prove

the asymptotic properties of β̃ and Λ̃0(t).
We present the main results and outline the conditions

and proofs in Appendix A.

Theorem 3.1. Under Conditions A) to G) in Appendix A,

β̃ is a consistent estimator of β0, and

√
n(β̃ − β0)

d−−→ N(0, Σ−1 {Ω+ ΩG} (Σ′)−1),

where

Ω =

∫ τ

0

[
s(2)(β0, t)−

s(1)(β0, t)
⊗2

s(0)(β0, t)

]
λ0(t)dt,

ΩG =

∫ τ

0

∫ τ

0

G(β0, t, w)s
(0)(β0, t)s

(0)(β0, w)λ0(t)λ0(w)dtdw,

and

G(β0, t, w) =(1− ρ)ρ−1
{
s(0)(β0, t)s

(0)(β0, w)
}−1

×
{
q(2)(β0, t, w)− q(1)(β0, w, t)

[
s(1)(β0, w)

s(0)(β0, w)

]′
−
[
s(1)(β0, t)

s(0)(β0, t)

]
q(1)(β0, t, w)

′

+ q(0)(β0, t, w)

[
s(1)(β0, t)

s(0)(β0, t)

] [
s(1)(β0, w)

s(0)(β0, w)

]′}
,

where the definition of s(d)(β, t) and q(d)(β, t, w) (d =
0, 1, 2) are given in Appendix A.

Let s(1)(β, t) = (s
(1)
1 (β, t), s

(1)
2 (β, t)) be the decompo-

sition of the vector s(1)(β, t) according to the dimensions
of β1 and β2. The following theorem gives the asymptotic
property of Λ̃0(t).

Theorem 3.2. Under Conditions A) to G) in Appendix A,

Λ̃0(t) converges uniformly in t ∈ [0, τ/δ] to zero in proba-

bility, and
√
n
{
Λ̃0(t)− Λ0(t)

}
converges weakly to a zero-

mean Gaussian process with the covariance function at (t, w)
equals to

Ψ(t)Σ−1 {Ω+ ΩG} (Σ′)−1Ψ(w)′ +

∫ min(t, w)

0

λ0(u)

s(0)(β0, u)
du,

where

Ψ(t)=

(∫ t

0

s
(1)
1 (β0, u)

s(0)(β0, u)
d {λ0(u)u)},

∫ t

0

s
(1)
2 (β0, u)

s(0)(β0, u)
λ0(u)du

)
.

Remark. When the data is complete, i.e. ρ = 1,
the asymptotic variances are Σ−1Ω(Σ′)−1 for

√
n(β̃ −

β0) and Ψ(t)Σ−1Ω(Σ′)−1Ψ(w)′ +
∫min(t, w)

0
λ0(u)

s(0)(β0,u)
du for

√
n
{
Λ̃0(t)− Λ0(t)

}
at (t, w), which are coincident with the

results of Chen and Wang (2000).

3.2 Estimation of the asymptotic covariance
of β̃

Matrice Ω and ΩG can be estimated straightforwardly
by replacing the population quantities with their corre-
sponding sample quantities. To obtain the estimator of Σ,
we need to estimate the unknown baseline hazard function
λ0(t) and its derivative. There are some possible approaches,
such as nonparametric kernel density estimation (Tsiatis,
1990), computer-intensive resampling algorithm (Parzen et
al., 1994), and recursive bisection method (Chen and Jew-
ell, 2001), etc. Here we adopt a least square (LS) approach
proposed by Zeng and Lin (2008), which was originally de-
signed for nonsmooth estimating functions. One advantage
of LS approach is that it is easy to implement.

Define N̄(t)=
∑

i∈C Ni(t). Write S(1)(β, t) = (S
(1)
1 (β, t),

S
(1)
2 (β, t)), and S(2)(β, t) = (S

(2)
1 (β, t), S

(2)
2 (β, t)), Σn(β)

= (Σ1n(β), Σ2n(β)), according to the dimensions of β1 and
β2 in the following, where

Σ1n(β) =

∫ τ

0

[
S
(2)
1 (β, t)− S(1)(β, t)

S
(1)
1 (β, t)

S(0)(β, t)

]
d {λ0(t)t} ,

Σ2n(β) =

∫ τ

0

[
S
(2)
2 (β, t)

S(0)(β, t)
− S(1)(β, t)

S
(1)
2 (β, t)

S(0)(β, t)2

]

× d

{
N̄(te−z1i log β1)

n

}
.

By the proof of Theorem 3.1 given in Appendix A, we
obtain that, in the neighborhood of β0,

n−1/2H̃n(β) =n−1/2H̃n(β0)− Σ̃n(β0)
√
n(β − β0)(11)

+ oP(1 +
√
n ‖β − β0‖),

where Σ̃n(β) is defined by replacing S(d) in Σn(β) with S̃(d)

for d = 0, 1, 2. Following the approach of Zeng and Lin
(2008), we first generate β̃w by β̃w = β̃ + n−1/2W , where
W is a zero-mean random vector independent of the data.
It follows from (11) and Theorem 3.1 that

n−1/2H̃n(β̃w)−n−1/2H̃n(β̃) = −Σ̃n(β0)
√
n(β̃w−β̃)+op(1).

Since H̃n(β̃) = 0 and β̃w − β̃ = n−1/2W , we have

−n−1/2H̃n(β̃w) = Σ̃n(β0)W + op(1).

Here Σ̃n(β0) could be viewed as parameter of a linear re-
gression model and be estimated via LS approach. We sum-
marize the algorithm for the calculation of the covariance
estimator as follows.
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Step 1: Calculate the estimators of Ω and ΩG, denoted
by Ω̂ and Ω̂G.
Step 2: Generate B realizations of W , denoted by
W1, · · · ,WB . For b = 1, · · · , B calculate −n−1/2H̃n(β̃+
n−1/2Wb).
Step 3: For b = 1, · · · , B, calculate the jth LS estimator
based on −n−1/2hj(β̃+n−1/2Wb), where hj denotes the

jth component of H̃n. Let Σ̂ be the matrix whose jth
row is the jth LS estimator.
Step 4: Estimate the covariance matrix of

√
n(β̃ − β0)

by Σ̂−1
{
Ω̂ + Ω̂G

}
(Σ̂′)−1.

4. NUMERICAL STUDIES

Simulation studies were conducted to access the finite-
sample performance of the proposed method. We compared
the proposed estimator β̂P with two estimators, β̂F which is
the estimator based on the full cohort, and β̂N which is the
estimator based on a simple random sample of the same size
as the case-cohort sample. The goal of this comparison is to
address the following related issues: First, what is the effi-
ciency loss of β̂P relative to β̂F ? Second, how much can the
efficiency be increased by using a case-cohort design instead
of a random sampling design?

We considered the following accelerated hazards model:

λ(t|Z1, Z2) = λ0(te
β1Z1) exp {β2Z2} .(12)

The covariate Z1 was generated from a Bernoulli distribu-
tion with success probability of 0.5, and Z2 was generated
from a standard normal distribution. We set β1 = 0.693, 0,
or −0.693 and β2 = 0.5, 0, or −0.5. The baseline hazard
function λ0(t) was set to follow the log-normal distribution
LN(0, 1) or the log-logistic distribution with the shape pa-
rameter 2 and the scale parameter 1. The censoring time
C was generated from a uniform distribution U [0, c] with
c being chosen to obtain an approximately 90% censoring
rate.

The subcohort of size ñ = 440 was randomly selected
from the full cohort of size 4000 without replacement. The
subcohort and additional failures outside the subcohort con-
stitute the case-cohort sample of size around 800. We cal-
culated the proposed estimator β̂P based on the algorithm
in Section 2.2 with η = 0.005, and applied the approach in
Section 3.2 to estimate the asymptotic variance based on 50
bootstrap samples. The results based on 1000 replications
are summarized in Tables 1 and 2.

The three estimators are all practically unbiased for all
the cases considered here. The means of the estimated stan-
dard errors (ŜEs) are close to the sample standard errors
of the estimates (SEs). The empirical 95% confidence in-
tervals have reasonable coverage probabilities (CP s). The

proposed estimator β̂P is more efficient than β̂N . The esti-
mated efficiencies relative to β̂F (REs) show that the pro-
posed estimator of β1 reaches about 40% of the efficiency

of the full-cohort estimator when only about 20% subjects
of the entire cohort are included in the case-cohort design.
Meanwhile, the proposed estimator of β2 reaches over 30%
of the efficiency in most of the considered cases by using
20% of the subjects.

Additionally, we considered the following model:

λ(t|Z1, Z2, Z3) = λ0(te
β1Z1) exp {β2Z2 + β3Z3} ,(13)

which assumes two exposure variables in addition to the
treatment factor. Z1 was generated from a Bernoulli distri-
bution with success probability of 0.5. (Z2, Z3)

′ was gener-
ated from a two-dimensional normal distribution with mean
0 and variance matrix Σ = (σij)2×2 where σij = 0.5|i−j|. We
set β1 = 0.693, β2 = 0.5 and β3 = 0.5. The baseline hazard
function λ0(t) was set to follow the log-normal distribution
LN(0, 1). The censoring time C was generated from a uni-
form distribution U [0, c] with c being chosen to obtain the
desired censoring rate ρ = 80%, 85% or 90%.

For the case-cohort design, we set the ratio between the
sample sizes of case and control cohorts to be r = 1 or 2
to assess the impact of sample sizes on the performance of
the proposed method. For example, in the case that the size
of the full cohort was 2000 and the censoring rate ρ was
80%, we randomly selected a subcohort of size ñ = 500 to
obtain a case-cohort sample of size 800 which consisted of
400 cases and 400 controls, i.e., r = 1. The results based on
1000 replications are summarized in Table 3.

The three estimators are all practically unbiased, ŜEs
are close to SEs and CP s are around 95%. The proposed
estimator β̂P is more efficient than β̂N for all the settings
considered here. REs relative to β̂F show that β̂P reaches
around 2 times of the efficiency of β̂N under the same sample
size. Both β̂P and β̂N are more efficient in the cases that
r = 2 because the sizes of case-cohort sample are larger.
Taking the sample size reduction into consideration, β̂P is
more efficient when the censoring rate is higher.

5. REAL EXAMPLE

We illustrated the proposed method with a data set from
a burn study (Ichida et al, 1993; Klein and Moeschberger,
2003). Infection of a burn wound is a common complica-
tion resulting in extended hospital stays and in the death
of severely burned patients. Control of infection remains a
prominent component of burn management. Medical records
of 154 patients treated during the 18-month study period
were reviewed, and information on their burn wound in-
fections and other medical information were provided. The
time to excision was recorded in days along with an indica-
tor variable on whether or not the patient’s wound had been
excised. Wound was excised in 64.3% of the individuals.

The purpose of this study is to compare two treatment
methods. One treatment is a routine bathing care method
(Z1 = 0) using initial surface decontamination with 10%
povidone-iodine followed with regular bathing with Dial
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Table 1. Results based on model λ(t|Z1, Z2) = λ0(te
β1Z1) exp{β2Z2}, with the baseline hazard following the log-normal

distribution LN(0, 1)

β̂1 β̂2

(β1, β2) Method Mean SE ŜE CP RE Mean SE ŜE CP RE

(0.693, 0.5) β̂F 0.698 0.153 0.156 94.6 1.00 0.497 0.049 0.050 93.9 1.00

β̂N 0.692 0.352 0.360 92.1 0.19 0.504 0.114 0.116 93.9 0.18

β̂P 0.686 0.236 0.236 93.6 0.42 0.504 0.092 0.088 92.6 0.28

(0.693, 0) β̂F 0.696 0.161 0.165 94.5 1.00 −0.001 0.050 0.050 93.3 1.00

β̂N 0.685 0.365 0.378 91.9 0.19 −0.001 0.112 0.113 94.0 0.20

β̂P 0.684 0.235 0.236 92.7 0.47 0.001 0.082 0.080 93.9 0.37

(0.693, −0.5) β̂F 0.696 0.153 0.153 93.9 1.00 −0.499 0.052 0.050 92.7 1.00

β̂N 0.677 0.345 0.359 91.9 0.20 −0.502 0.113 0.115 93.4 0.21

β̂P 0.684 0.235 0.235 93.4 0.42 −0.504 0.093 0.089 91.9 0.31

(0, 0.5) β̂F 0.003 0.133 0.132 94.4 1.00 0.497 0.050 0.050 94.4 1.00

β̂N −0.001 0.295 0.299 93.1 0.20 0.505 0.117 0.114 94.4 0.18

β̂P −0.002 0.217 0.206 91.5 0.38 0.505 0.092 0.090 93.2 0.30

(0, 0) β̂F 0.001 0.144 0.139 93.4 1.00 −0.001 0.050 0.049 94.0 1.00

β̂N 0.001 0.305 0.312 93.0 0.22 −0.001 0.115 0.112 92.8 0.19

β̂P −0.002 0.217 0.205 91.3 0.44 0.001 0.083 0.079 93.0 0.36

(0, −0.5) β̂F 0.003 0.137 0.131 92.1 1.00 −0.498 0.053 0.050 92.2 1.00

β̂N 0.000 0.295 0.296 91.1 0.22 −0.503 0.115 0.115 93.1 0.21

β̂P −0.001 0.217 0.205 91.6 0.40 −0.504 0.095 0.089 92.0 0.31

(−0.693, 0.5) β̂F −0.694 0.121 0.118 93.1 1.00 0.496 0.050 0.050 94.3 1.00

β̂N −0.702 0.275 0.278 93.5 0.19 0.505 0.117 0.114 94.2 0.18

β̂P −0.691 0.187 0.177 92.5 0.42 0.503 0.095 0.092 93.1 0.28

(−0.693, 0) β̂F −0.694 0.127 0.122 92.5 1.00 −0.001 0.050 0.049 93.7 1.00

β̂N −0.702 0.273 0.291 93.6 0.22 0.001 0.111 0.112 94.0 0.20

β̂P −0.691 0.183 0.175 92.0 0.48 0.001 0.083 0.081 92.5 0.36

(−0.693, −0.5) β̂F −0.693 0.123 0.118 91.7 1.00 −0.499 0.051 0.050 92.1 1.00

β̂N −0.700 0.265 0.272 92.5 0.22 −0.504 0.111 0.113 94.5 0.21

β̂P −0.691 0.186 0.179 91.5 0.44 −0.505 0.096 0.091 92.6 0.28

Note: β̂F , the estimator based on the full cohort; β̂N , the estimator based on a simple random sample of the same size as the
case-cohort sample; β̂P , the proposed case-cohort estimator. Results are based on 1000 simulations.

soap. The other is a body cleansing method (Z1 = 1) us-
ing 4% chlorhexidine gluconate. Among the 154 patients, 84
patients received the new bathing solution and 70 patients
received the routine bathing care. We estimated the treat-
ment effects with the proposed AcH model while adjusting
for the additional 7 covariates such as sex and burn site.
Among the cohort subjects, 22.08% of patients are female
(Z2 = 1). 45.45% of patients are with burn site on head
(Z3 = 1), 22.73% on buttock (Z4 = 1), 84.42% on trunk
(Z5 = 1), 40.91% on upper leg (Z6 = 1), 30.52% on lower
leg (Z7 = 1), and 29.22% in respiratory tract (Z8 = 1).
Table 4 provides a summary of the covariates considered.

To motivate the possible use of the proposed AcH model,
we plotted the smoothed hazard functions with a bandwidth
of 4 or 7 days in Figure 1 for both treatment groups, and
chose two different study periods of the first 15 days and the

whole 30 days to draw these plots. Figure 1 suggests that the
assumption of constant proportionality may not be satisfied
because both treatment groups share a similar hazard at the
starting time of the trial but differ gradually as the time goes
by. In addition, the body cleansing treatment has a tendency
to increase the hazard risk between 2 and 20 days and after
around 28 days, while it decreases the hazard risk between
20 and 28 days. The apparent crossovers of the hazard curves
in Figure 1(c) and 1(d) may indicate further violation of
the constant proportionality. These features suggest that the
proposed AcH model may be more appropriate for this data
set.

Since all the 8 considered covariates were measured in
the data set, we started by fitting the AcH model (2) which
included the binary treatment as Z1 and other 7 covari-
ates as (Z2, · · · , Z8) to the full cohort. To evaluate the
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Table 2. Results based on model λ(t|Z1, Z2) = λ0(te
β1Z1) exp{β2Z2}, with baseline hazard following the log-logistic

distribution with shape parameter 2 and scale parameter 1

β̂1 β̂2

(β1, β2) Method Mean SE ŜE CP RE Mean SE ŜE CP RE

(0.693, 0.5) β̂F 0.702 0.137 0.140 94.2 1.00 0.497 0.048 0.050 94.7 1.00

β̂N 0.714 0.325 0.365 93.9 0.18 0.507 0.113 0.115 93.8 0.18

β̂P 0.696 0.206 0.211 94.2 0.44 0.503 0.092 0.091 93.1 0.27

(0.693, 0) β̂F 0.701 0.139 0.144 94.5 1.00 −0.001 0.050 0.049 93.5 1.00

β̂N 0.706 0.326 0.375 93.7 0.18 −0.002 0.113 0.111 94.8 0.20

β̂P 0.695 0.198 0.204 94.3 0.49 0.001 0.083 0.080 92.8 0.36

(0.693, −0.5) β̂F 0.699 0.139 0.141 93.6 1.00 −0.499 0.053 0.050 92.3 1.00

β̂N 0.701 0.317 0.359 93.8 0.19 −0.501 0.112 0.113 92.8 0.22

β̂P 0.693 0.206 0.208 94.2 0.46 −0.505 0.094 0.090 92.2 0.32

(0, 0.5) β̂F 0.003 0.119 0.120 94.7 1.00 0.498 0.050 0.050 94.0 1.00

β̂N −0.003 0.281 0.306 95.4 0.18 0.505 0.116 0.115 94.3 0.19

β̂P −0.001 0.199 0.195 93.9 0.36 0.505 0.093 0.090 93.0 0.29

(0, 0) β̂F 0.002 0.126 0.124 94.3 1.00 −0.001 0.050 0.050 93.1 1.00

β̂N 0.000 0.281 0.307 94.8 0.20 0.000 0.115 0.112 93.9 0.19

β̂P −0.001 0.193 0.186 92.6 0.43 0.001 0.082 0.079 92.9 0.37

(0, −0.5) β̂F 0.002 0.123 0.119 93.2 1.00 −0.498 0.052 0.050 92.3 1.00

β̂N −0.003 0.281 0.299 94.2 0.19 −0.503 0.114 0.115 93.5 0.21

β̂P −0.002 0.200 0.193 93.3 0.38 −0.504 0.095 0.090 93.0 0.30

(−0.693, 0.5) β̂F −0.699 0.135 0.132 93.7 1.00 0.496 0.049 0.050 93.2 1.00

β̂N −0.730 0.324 0.353 93.9 0.17 0.504 0.116 0.115 93.5 0.18

β̂P −0.698 0.202 0.195 92.9 0.45 0.503 0.094 0.091 93.4 0.27

(−0.693, 0) β̂F −0.697 0.139 0.135 93.3 1.00 −0.001 0.050 0.050 93.9 1.00

β̂N −0.733 0.321 0.356 93.5 0.19 0.001 0.113 0.113 95.1 0.20

β̂P −0.698 0.196 0.187 93.0 0.50 0.001 0.084 0.081 93.7 0.35

(−0.693, −0.5) β̂F −0.699 0.139 0.132 91.4 1.00 −0.499 0.051 0.050 93.5 1.00

β̂N −0.723 0.312 0.340 94.7 0.20 −0.505 0.112 0.115 94.7 0.21

β̂P −0.698 0.203 0.197 91.8 0.47 −0.505 0.095 0.091 92.6 0.29

Note: β̂F , the estimator based on the full cohort; β̂N , the estimator based on a simple random sample of the same size as the
case-cohort sample; β̂P , the proposed case-cohort estimator. Results are based on 1000 simulations.

case-cohort design, we randomly sampled 80 patients as the
subcohort, and implemented our proposed method under
the AcH model. To compare with the proposed method,
we additionally applied the method developed by Prentice
(1986) for the PH model λ(t|Z) = λ0(t) exp(β

′Z), where
β = (β1, β2, · · · , β8)

′ and Z = (Z1, Z2, · · · , Z8)
′. For the

case-cohort design, the models were fitted for the first 15-
day period and the whole 30-day period, respectively. Table
5 summaries the results, where columns under AcHM-FULL
are the results from the full-cohort analysis under the AcH
model. The columns under AcHM-CC and PHM-CC are the
results from the case-cohort analysis under the AcH and PH
models, respectively.

For the 15-day period study, the results from both the
PH and AcH models are similar and suggest that the treat-
ment effect is not significant, which means that there exists

a lag period before the treatment begins to be effective.
Based on the 30-day period, all the case-cohort estimators
are close to the full-cohort estimators. The treatment effect
is not significant in the PH model analysis, but it is sig-
nificant in the AcH model analysis. For example, the body
cleansing method would significantly accelerate the time of
hazard progression by e1.16 = 3.2 times (AcHM-FULL) or
e1.015 = 2.8 times (AcHM-CC). This means to reach the
same level of risk, the patients received the body cleansing
would only need around 0.31 times (AcHM-FULL) or 0.36
times (AcHM-CC) of the time needed by the patients in the
routine bathing care. The results reported in Table 5 also
suggest that female patients tend to have a higher risk.

The acceleration of the new bathing solution is statis-
tically significant in the analysis of the AcH model while
nonsignificant in the analysis of the PH model. This sug-
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Table 3. Results based on model λ(t|Z1, Z2, Z3) = λ0(te
β1Z1) exp{β2Z2 + β3Z3}), with the baseline hazard following the

log-normal distribution LN(0, 1)

β1 = 0.693 β2 = 0.5 β3 = 0.5

ρ r Method Mean SE ŜE CP RE Mean SE ŜE CP RE Mean SE ŜE CP RE

0.80 1 β̂F 0.680 0.210 0.207 93.5 1.00 0.497 0.059 0.059 93.7 1.00 0.500 0.056 0.059 93.3 1.00

β̂N 0.678 0.468 0.455 91.4 0.20 0.507 0.140 0.137 92.1 0.18 0.508 0.136 0.137 93.8 0.17

β̂P 0.678 0.316 0.309 92.5 0.44 0.504 0.099 0.097 93.2 0.36 0.509 0.103 0.097 92.1 0.30

2 β̂F 0.680 0.210 0.207 93.5 1.00 0.497 0.059 0.059 93.7 1.00 0.500 0.056 0.059 93.3 1.00

β̂N 0.700 0.296 0.314 94.0 0.50 0.504 0.089 0.087 93.2 0.44 0.498 0.090 0.089 92.8 0.38

β̂P 0.680 0.243 0.246 93.7 0.75 0.500 0.074 0.072 94.5 0.64 0.505 0.071 0.073 92.2 0.64

0.85 1 β̂F 0.693 0.205 0.202 93.8 1.00 0.501 0.068 0.066 92.6 1.00 0.501 0.066 0.068 93.8 1.00

β̂N 0.674 0.460 0.458 91.8 0.20 0.518 0.155 0.158 94.4 0.19 0.504 0.157 0.161 93.7 0.18

β̂P 0.678 0.304 0.311 92.5 0.46 0.516 0.129 0.121 92.9 0.28 0.509 0.124 0.121 92.7 0.29

2 β̂F 0.693 0.205 0.202 93.8 1.00 0.501 0.068 0.066 92.6 1.00 0.501 0.066 0.068 93.8 1.00

β̂N 0.688 0.394 0.385 92.7 0.27 0.509 0.133 0.133 94.6 0.26 0.506 0.134 0.134 94.1 0.25

β̂P 0.690 0.260 0.250 93.2 0.62 0.506 0.097 0.093 92.8 0.50 0.505 0.099 0.093 92.4 0.45

0.90 1 β̂F 0.694 0.193 0.194 92.1 1.00 0.496 0.084 0.083 92.2 1.00 0.504 0.084 0.083 93.6 1.00

β̂N 0.686 0.465 0.462 91.3 0.17 0.504 0.200 0.195 94.9 0.18 0.521 0.197 0.197 92.3 0.18

β̂P 0.690 0.336 0.336 93.5 0.33 0.509 0.168 0.164 93.2 0.25 0.523 0.174 0.164 92.4 0.23

2 β̂F 0.694 0.193 0.194 92.1 1.00 0.496 0.084 0.083 92.2 1.00 0.504 0.084 0.083 93.6 1.00

β̂N 0.681 0.383 0.376 93.4 0.25 0.503 0.160 0.153 92.4 0.27 0.503 0.160 0.156 92.4 0.27

β̂P 0.687 0.263 0.271 94.3 0.54 0.511 0.122 0.125 93.1 0.47 0.508 0.123 0.125 94.5 0.46

Note: r denotes the ratio between the sample sizes of case and control cohorts. β̂F , the estimator based on the full cohort; β̂N , the
estimator based on a simple random sample of the same size as the case-cohort sample; β̂P , the proposed case-cohort estimator.

Results are based on 1000 simulations.

Table 4. Demographics and Characteristics of the Burn Study
Data

Treatment (Z1) %
0 = Routine bathing 45.45 (70/154)
1 = Body cleansing 54.55 (84/154)

Gender (Z2)
0 = Male 77.92 (120/154)
1 = Female 22.08 (34/154)

Burn site indicator: Head (Z3)
0 = No 54.55 (84/154)
1 = Yes 45.45 (70/154)

Burn site indicator: Buttock (Z4)
0 = No 77.27 (119/154)
1 = Yes 22.73 (35/154)

Burn site indicator: Trunk (Z5)
0 = No 15.58 (24/154)
1 = Yes 84.42 (130/154)

Burn site indicator: Upper leg (Z6)
0 = No 59.09 (91/154)
1 = Yes 40.91 (63/154)

Burn site indicator: Lower leg (Z7)
0 = No 69.48 (107/154)
1 = Yes 30.52 (47/154)

Burn site indicator: Respiratory tract (Z8)
0 = No 70.78 (109/154)
1 = Yes 29.22 (45/154)

gests that the AcH model helps to detect some significant
effects which may be missed by the PH model analysis when
the hazard curves of different groups have crossovers. Note
that the proposed estimator, using a much smaller size of
sample, performs very closely to the full-cohort estimator.
Therefore, the case-cohort design can be a cost-effective al-
ternative to the simple random sampling design in cohort
studies.

6. CONCLUDING REMARKS

It is usual that a lag period may exist in medical stud-
ies before the treatment is fully effective. The AcH model is
motivated by the need to accommodate this phenomenon.
Since the case-cohort design is widely used as a cost-effective
sampling method in large cohort studies, it is desirable to
develop corresponding methodologies for the AcH model.
We developed how to fit the AcH model to case-cohort
data and showed that the proposed estimators are consis-
tent and asymptotically normally distributed. Simulation
studies suggest that the case-cohort estimator has a nice
performance under the finite sample size. The numerical re-
sults indicate that the efficiency loss of the proposed estima-
tor relative to the full-cohort estimator remains acceptable,
compared to the sample size reduction. We proposed to use

664 J. Ding et al.



Table 5. Results for Analysis of the Burn Study Data

the first 15 days study the whole 30 days study
AcHM-FULL AcHM-CC PHM-CC AcHM-CC PHM-CC

Est SE p-value Est SE p-value Est SE p-value Est SE p-value Est SE p-value
Treatment 1.160 0.316 < 0.001∗ 0.261 0.407 0.522 0.317 0.379 0.403 1.015 0.427 0.017∗ 0.582 0.307 0.058
Gender 0.696 0.270 0.010∗ 0.125 0.446 0.779 0.084 0.377 0.824 0.772 0.382 0.043∗ 0.771 0.334 0.021∗

Head −0.296 0.266 0.267 −0.579 0.467 0.215 −0.519 0.393 0.186 −0.523 0.389 0.179 −0.493 0.336 0.143
Buttock −0.410 0.321 0.201 −0.401 0.496 0.418 −0.374 0.428 0.383 −0.150 0.439 0.733 −0.120 0.376 0.749
Trunk −0.262 0.361 0.468 −0.592 0.612 0.333 −0.659 0.542 0.223 −0.001 0.529 0.998 0.051 0.465 0.913
Upperleg 0.410 0.249 0.099 0.135 0.440 0.759 0.177 0.383 0.645 −0.009 0.391 0.982 0.024 0.326 0.940
Lowerleg −0.476 0.276 0.085 −0.469 0.524 0.371 −0.503 0.399 0.208 −0.510 0.367 0.165 −0.591 0.331 0.074
Tract 0.267 0.274 0.330 0.030 0.501 0.952 −0.057 0.397 0.886 0.042 0.382 0.912 0.051 0.325 0.876

NOTE: * indicates significant effect at 5% level.

Figure 1. Smoothed hazard functions for the two treatments
(—–, Body cleansing; - - -, Routine bathing) in the burn

study. (a) 4-day smoothing bandwidth for the first 15 days;
(b) 7-day smoothing bandwidth for the first 15 days; (c)
4-day smoothing bandwidth for the full cohort; (d) 7-day

smoothing bandwidth for the full cohort.

a least square approach, which is easy to implement in prac-
tice, to estimate the covariance for the proposed estimator.

Although we have presented an exploratory visual inspec-
tion of the adequacy of the proposed model, we have not
fully discussed statistical model checking of the AcH model.
The development of model-checking procedures for the AcH
model in case-cohort studies will be an interesting and also

challenging issue in the future. Several possible ideas could
be used for such an issue. For example, we can extend the
idea of Kolmogorov-Smirnov test by Lin et al. (1993) and
Chen (2001), and the idea of Gill-Schumacher test by Gill
and Schumacher (1987) and Chen (2001).

Here we assumed that the covariates Z2 are time-
independent. The proposed method can be easily extended
to the case that the covariates Z2 depend on time. Some
easily measured covariates are generally available for each
cohort member, the covariate information of controls out-
side the subcohort does not be incorporated in our estima-
tion procedure. The future study on an estimating function,
which takes all the information on these covariates into ac-
count, will be more efficient than the current one. The case-
cohort design has been proved to be a cost-effective sam-
pling method for rare event. When the censoring rate is
medium or low, a generalized case-cohort design (Cai and
Zeng, 2007) or a survival-data outcome-dependent sampling
design (ODS) (Ding et al, 2014; Yu et al, 2015) were pro-
posed to improve the efficiency. Future studies of how to
fit the AcH model to data from a generalized case-cohort
design or a survival-data ODS design are guaranteed.

APPENDIX A. PROOFS OF THEOREMS

We impose the following regularity conditions throughout
the paper. ‖·‖ denotes the Euclidean norm and the conver-
gence is referred to n → ∞.

A) The parameter space B and the covariate space Z are
compact.

B) ñ/n → ρ for some ρ ∈ (0, 1).
C) There exist some ε0 > 0 and δ > 0, such that

P (T > τ/δ) > ε0.
D) λ0(t) is uniformly bounded and has the second deriva-

tive in [0, τ/δ].
E) The sequence of the distributions of

√
n(Z̄(β0, t) −

Z̃(β0, t)) is tight on the product space of left-continuous
functions with right limits equipped with the product
Skorohod topology.
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F) For d = 0, 1, 2, there exist functions s(d)(β, t) and
q(d)(β, t, w), defined on B × [0, τ/δ] and B × [0, τ/δ]2,
respectively, such that

F1) s(d)(β, t) is continuous of β ∈ B uniformly in t ∈
[0, τ/δ], satisfying

sup
β ∈ B,

t ∈ [0, τ/δ]

‖S(d)(β, t)− s(d)(β, t)‖ P−−→ 0,

and s(0)(β, t) is bounded away from zero;

F2) q(d)(β, t, w) is continuous and bounded of β ∈ B
uniformly in (t, w) ∈ [0, τ/δ]2, satisfying

sup
β ∈ B,

(t, w) ∈ [0, τ/δ]2

‖Q(d)(β, t, w)− q(d)(β, t, w)‖ P−−→ 0;

F3) Suppose that

sup
β ∈ B,

t ∈ [0, τ/δ]

‖S̃(d)(β, t)− s(d)(β, t)‖ P−−→ 0,

sup
β ∈ B,

(t, w) ∈ [0, τ/δ]2

‖Q̃(d)(β, t, w)− q(d)(β, t, w)‖ P−−→ 0.

G) Decompose e(β, t) = s(2)(β, t) −
{
s(1)(β, t)

}⊗2
ac-

cording to the dimensions of β1 and β2 as e(β, t) =
(e1(β, t), e2(β, t)). The matrix

Σ =

(∫ τ

0

e1(β0, t)d {λ0(t)t} ,
∫ τ

0

e2(β0, t)λ0(t)dt

)
,

is finite positive definite.

Conditions A)–G) are regularity conditions similar to those
of Self and Prentice (1988), Tsiatis (1990), and Chen and
Wang (2000). We first define the estimating equation

Hn(β) =

n∑
i=1

∫ τ

0

⎡⎢⎢⎣zi −
n∑

j=1

Yj (t/β1
z1j ) ez

′
2jβ2−z1j log β1zj

n∑
j=1

Yj (t/β1
z1j ) ez

′
2jβ2−z1j log β1

⎤⎥⎥⎦
× dNi (t/β1

z1i)

=0.

We then construct a linear approximation of Hn(β) as

H∗
n(β) = Hn(β0)− nΣn(β0)(β − β0).

Therefore, the solution to H∗
n(β) = 0 takes the form as:

(14) β̂∗ = β0 + n−1Σ−1
n (β0)Hn(β0).

To prove the main results, we first prove the following three
lemmas.

Lemma A.1.

√
n(β̂∗ − β0)

d−−→ N(0, Σ−1Ω(Σ′)−1).

Proof of Lemma A.1. By equation (14), we have that

√
n(β̂∗ − β0) = Σ−1

n (β0)
{
n−1/2Hn(β0)

}
,

and based on the discussion in Andersen and Gill (1982),
we have

n−1/2Hn(β0)
d−−→ N(0, Ω).

Due to Conditions A)–D), Lemma A.1 holds since

Σn(β0)
P−−→ Σ.

Lemma A.2.
√
n(β̂ − β̂∗)

P−−→ 0.

Proof of Lemma A.2. Since β̂ is the solution to Hn(β) = 0,
it is sufficient to prove the following Lemma A.3 to ensure
Lemma A.2 (Jurecokova, 1971; Tsiatis, 1990).

Lemma A.3. For any positive constant K,

sup
‖β−β0‖≤Kn−1/2

n−1/2 ‖Hn(β)−H∗
n(β)‖

P−−→ 0.

Proof of Lemma A.3. By the finite covering theorem (i.e.,
the Heine-Borel Theorem), it suffices to show that

(a) sup
‖β−β0‖=dn−1/2

n−1/2 ‖Hn(β)−H∗
n(β)‖

P−−→ 0,

and

(b) sup
||β̃ − β0|| = dn−1/2,

||β∗ − β̃|| ≤ Kn−1/2

n−1/2
∥∥∥Hn(β

∗)−H∗
n(β̃)
∥∥∥ P−−→ 0,

hold for any positive constants d and K.

By Conditions A)–D), we can obtain that Σ1n(β0)
P−−→

Σ1(β0), and Σ2n(β0)
P−−→ Σ2(β0). Due to

Hn(β)−H∗
n(β) =Hn(β)−Hn(β0)(15)

+ nΣ(β0)(β − β0)

=Hn(β1, β2)−Hn(β10, β2)

+ nΣ1n(β0)(β1 − β10)

+Hn(β10, β2)−Hn(β10, β20)

+ nΣ2n(β0)(β2 − β20),

≡J1 + J2,

we have, by Taylor expansion,

Λ0(te
{log β10−log β1}z1i)− Λ0(t)

= {log β10 − log β1} z1iλ0(t)t

+OP(1) |log β10 − log β1|2 λ0(t)t.

666 J. Ding et al.



Then, for the two terms on the right-hand side of equation
(15), we have

J1 =n {Σ1n(β0)− Σ1n(β)} {log β10 − log β1}
+
{√

n |log β10 − log β1|
}2

OP(1),

and

J2 =
{√

n ‖β20 − β2‖
}2

OP(1).

It follows that

n−1/2 {Hn(β)−H∗
n(β)} = {Σ1n(β0)− Σ1n(β)}

×
√
n {log β10 − log β1}

+
{√

n ‖β − β0‖2
}
OP(1).

Based on the above fact, we have

n−1/2 {Hn(β)−H∗
n(β)} = oP(1),

and this completes the proof of (a).

For (b), similarly, we have

Hn(β
∗)−Hn(β̃) =

{
Hn(β

∗
1 , β

∗
2)−Hn(β̃1, β

∗
2)
}

+
{
Hn(β̃1, β

∗
2)−Hn(β̃1, β̃2)

}
.

By the similar arguments of Chen and Jewell (2001), we
have

sup
||β̃1 − β∗

1 || ≤ Kn−1/2,

||β̃ − β0|| ≤ (K + d)n−1/2

n−1/2
∥∥∥Hn(β

∗
1 , β

∗
2)−Hn(β̃1, β

∗
2)
∥∥∥ P−−→ 0.

(16)

By Condition F) and Taylor expansion, we have

sup
||β∗

2 − β̃2|| ≤ δn−1/2,

||β̃ − β0|| = dn−1/2

n−1/2
∥∥∥Hn(β̃1, β

∗
2)−Hn(β̃1, β̃2)

∥∥∥ P−−→ 0.

(17)

Due to equations (16) and (17), and Cauchy-Schwarz in-
equality, we complete the proof of (b).

Proof of Theorem 3.1. We first construct a linear approxi-
mation of H̃n(β) as

H̃∗
n(β) = H̃n(β0)− nΣ̃n(β0)(β − β0),

where Σ̃n(β) is defined by replacing S(d) in Σn(β) with S̃(d),

d = 0, 1, 2. Then, the solution to H̃∗
n(β) = 0 takes the form

as:

β̃∗ = β0 + n−1Σ̃−1
n (β0)H̃n(β0).

Define

dMi(te
−z1i log β10) =dNi(te

−z1i log β10)

− Yi(te
−z1i log β10)dΛi(te

−z1i log β10),

and it can be proved that Mi(te
−z1i log β10) are martingale

processes with respect to the filtration defined by

F (n)(t,β0)=σ
{
I(β

Z1j

10 ≤ t), Δj , Z1j , Z2j ; j=1, · · · , n
}
.

It is obvious that

n−1/2H̃n(β0) =n−1/2Hn(β0)(18)

+ n−1/2

∫ τ

0

{
Z̄(β0, t)− Z̃(β0, t)

}
× dΛ(te−z1i log β10)

+ n−1/2

∫ τ

0

{
Z̄(β0, t)− Z̃(β0, t)

}
× dM(te−z1i log β10),

where Λ(t) =
∑

i∈C Λi(t) and M(t) =
∑

i∈C Mi(t). By
Lemma A.1, the first term on the right-hand side of equation
(18) converges in distribution toN(0, Ω). Similar arguments
as Self and Prentice (1988), we can prove that the second
term converges in distribution to N(0, ΩG) and is indepen-
dent of the first term. The third term is a martingale and

converges in probability to 0. Due to Σ̃−1
n (β0)

P−−→ Σ−1, we
complete Theorem 3.1 by Slutsky’s theorem.

Proof of Theorem 3.2. For the consistency of Λ̃0(t), we have

Λ̃0(t)− Λ0(t) =
{
Λ̃0(t)− Λ̂0(t)

}
+
{
Λ̂0(t)− Λ0(t)

}
.

Λ̃0(t) − Λ̂0(t) converges in probability to zero uniformly in

t ∈ [0, τ/δ]. Λ̂0(t) − Λ0(t) converges in probability to zero
uniformly in t ∈ [0, τ/δ] by the standard decomposition
techniques of Andersen and Gill (1982) and the results of
Self and Prentice (1988). Furthermore, we have

√
n
{
Λ̂0(t)− Λ0(t)

}
=

(∫ t

0

S
(1)
1 (β0, u)

S(0)(β0, u)
d {λ0(u)u} ,

∫ t

0

S
(1)
2 (β0, u)

S(0)(β0, u)2
d

{
N̄(ue−z1i log β10)

n

})
×
√
n(β̃ − β0)

+
√
n

∫ t

0

1

S(0)(β0, u)
dM̄(ue−z1i log β10)

+ oP(1).

Following the similar techniques of Self and Prentice (1988),

we can obtain that
√
n
{
Λ̃0(t)− Λ0(t)

}
converges weakly to
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a zero-mean Gaussian process with the covariance function
at (s, t) equals to

Ψ(s)Σ−1 {Ω+ ΩG} (Σ′)−1Ψ(t)′ +

∫ min(s, t)

0

λ0(u)

s(0)(β0, u)
du.
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