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Sampling strategies for conditional inference on
multigraphs

Robert D. Eisinger and Yuguo Chen
∗,†

We propose two new methods for sampling undirected,
loopless multigraphs with fixed degree. The first is a se-
quential importance sampling method, with the proposal
based on an asymptotic approximation to the total num-
ber of multigraphs with fixed degree. The multigraphs and
their associated importance weights can be used to approxi-
mate the null distribution of test statistics and additionally
estimate the total number of multigraphs. The second is
a Markov chain Monte Carlo method that samples multi-
graphs based on similar moves used to sample contingency
tables with fixed margins. We apply both methods to a num-
ber of examples and demonstrate excellent performance.

Keywords and phrases: Counting problem, Exact test,
Monte Carlo method, Multigraph, Sequential importance
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1. INTRODUCTION

Network data is extremely common and there is currently
a huge interest in statistical methods for analyzing networks.
Fields as diverse as ecology, sociology, and economics deal
with networks on a regular basis and require statistical ap-
proaches and analysis strategies. Substantial literature is
available on methods for graphs with only a single edge be-
tween nodes (simple graphs); however, relatively less time
has been spent on the case where the network may have
multiple links between edges. A network of this type is com-
monly called a multigraph. Performing statistical inference
on multigraphs is of interest to researchers. For example,
they may be interested in the number of emails sent be-
tween pairs of people in a social group, or the number of
interactions observed between pairs of animals. As a small,
toy example, consider Figure 1, which shows an undirected,
loopless multigraph and the equivalent adjacency matrix.
Note that multigraphs may be expressed as graphs with
integer-weighted edges, and Figure 1(b) may also be called
a weighted adjacency matrix.

Researchers are often interested in investigating whether
or not a pattern or property of interest on a graph is sur-
prising. For example, one may wish to determine if the num-
ber of triplets, the average path length, or some measure of
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Figure 1. An undirected multigraph and its associated
adjacency matrix.

connectedness is unusual. If some pattern or property de-
viates from random, it may suggest that further study on
that property is needed to understand the unusual behavior,
and in some cases, these unusual patterns can help us build
networks with the desired properties [32]. To detect devia-
tions from randomness in network properties, a test must be
performed comparing the observed graph to other possible
graphs. The pattern or property of the observed graph is as-
certained and compared to the same pattern or property for
the comparison graphs. To perform this task, we condition
on the degree sequence and consider the observed graph to
be a uniform draw from the set of all possible graphs with
the same degree sequence. This is an application of exact
inference, which requires no potentially inaccurate asymp-
totic approximations [1, 8, 17]. Conditioning on the degree
sequence also creates a probabilistic basis for a test in sit-
uations where the subjects were not obtained by sampling
but are the only ones available [17].

Several Markov chain Monte Carlo (MCMC) algorithms
for sampling simple graphs from the uniform distribution
have been proposed [26, 22, 19, 12], and importance sam-
pling methods were considered in [27], [6], [4] and [31]. Ref-
erence number [23] developed an effective and widely used
method for sampling simple graphs with given degree se-
quence. Graphs with weighted adjacency matrices have been
explored in [30], [29], and [13]. Relatively less attention has
been paid to the problem of sampling multigraphs.

To sample multigraphs, we may equivalently sample ad-
jacency matrices. Substantial work has been done on the
task of sampling two-way contingency tables with fixed mar-
gins. Reference number [7] considered an importance sam-
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pling method, reference number [14] developed a rejection
method, and a random walk based MCMC method was dis-
cussed in [10]; see [10] for a review. In the case of sampling
undirected, loopless multigraphs, the matrices are square,
symmetric, and have a zero diagonal.

Here, we are concerned with sampling multigraphs with
no self-loops uniformly from the set of all such multigraphs
with fixed degree sequence. Based on these sampled graphs,
the distribution of a test statistic may be approximated. Ad-
ditionally, we are interested in estimating the total number
of multigraphs with the same fixed degree sequence.

Sampling from the uniform distribution over multigraphs
with fixed degree is difficult. Here, we propose a new sequen-
tial importance sampling (SIS) method that uses the asymp-
totic approximation of [5] to guide the sampling. A multi-
graph is generated and its associated importance weight is
used to correct for the bias incurred by sampling. Using
these graphs and weights, the distribution of any test statis-
tic may be estimated, and we may additionally obtain an
approximation to the number of multigraphs. We also pro-
pose an MCMC method for sampling multigraphs with fixed
degree.

This paper is organized in the following way: Section 2
introduces the basics of SIS. Section 3 describes how the
approximation is incorporated into the proposal to perform
SIS. Section 4 proposes an MCMC method for sampling
multigraphs. Section 5 provides applications, including an
analysis of the clustering of a primate social network and
the resilience of an airline network, as well as counting the
number of graphs. Section 6 provides concluding remarks.

2. SEQUENTIAL IMPORTANCE SAMPLING

Multigraphs can be expressed equivalently as a symmet-
ric integer-valued adjacency matrix with a zero diagonal,
so to sample multigraphs we may equivalently sample adja-
cency matrices. Let Σd denote the set of all n×n symmetric
matrices with row margins d = (d1, . . . , dn), non-negative
integer entries, and a zero diagonal, M =

∑n
i=1 di, and |Σd|

the total number of matrices in the set. Denote by T a ma-
trix in Σd, and by p(T ) = 1/|Σd| the uniform distribution
over Σd.

If we are interested in estimating μ = Ep[f(T )], and a ma-
trix T ∈ Σd can be simulated from a proposal distribution
q(·) that can be easily sampled from and includes the sup-
port of Σd, then we may estimate μ using the weighted av-
erage of T1, . . . , TN , independent and identically distributed
(iid) samples drawn from q(T ),

μ̂ =

∑N
i=1 f(Ti)

p(Ti)
q(Ti)∑N

i=1
p(Ti)
q(Ti)

=

∑N
i=1 f(Ti)

1{Ti∈Σd}/|Σd|
q(Ti)∑N

i=1

1{Ti∈Σd}/|Σd|
q(Ti)

=

∑N
i=1 f(Ti)

1{Ti∈Σd}
q(Ti)∑N

i=1

1{Ti∈Σd}
q(Ti)

.

(1)

Additionally, the total number of graphs can be written
as

(2) |Σd| =
∑

T∈Σd

1

q(T )
q(T ) = Eq

[
1{T∈Σd}
q(T )

]
,

so if we are interested in estimating |Σd|, we may use the
estimator

(3) |̂Σd| =
1

N

N∑
i=1

1{Ti∈Σd}
q(Ti)

.

The efficiency of the above estimators may be quantified
in several ways. The standard error of μ̂ can be estimated
by either repeatedly running the procedure or using an ap-
proximation based on the Δ-method [7]:

(4) se(μ̂) ≈

√√√√varq

(
f(T )p(T )

q(T ) − μp(T )
q(T )

)
N

.

The effective sample size, ESS = N/(1 + cv2), is another
way to assess method efficiency [16]. Here, the coefficient of
variation (cv) is given by

(5) cv2 =
varq(p(T )/q(T ))

E2
q (p(T )/q(T ))

.

The cv2 is the χ2 distance between the proposal and the
target, so a small value indicates that the proposal is sam-
pling from a distribution that is close to the desired target.
The ESS approximates how many iid samples are equiva-
lent to the N weighted samples obtained through SIS. The
theoretical value of cv2 is unknown, so the sample version
is used.

The choice of the proposal q(·) determines the efficiency
of the importance sampling procedure. This is a high-
dimensional problem, so the strategy that will be employed
here is to decompose the proposal into lower dimensional
components. The first component of the matrix is sampled,
and then the second component of the matrix is sampled
conditional on the realization of the first component. The
remainder of the matrix is sampled sequentially in a similar
way conditional on the realization of all previous compo-
nents.

3. SAMPLING MULTIGRAPHS

We are proposing a new SIS technique which samples the
matrix column by column and uses an asymptotic approxi-
mation of [5] to guide the sampling.

If we denote the columns of T by t1, . . . , tn, then the
probability of sampling a matrix T using a proposal q(·)
can be written as

q(T = (t1, . . . , tn)) =

q(t1)× q(t2|t1) . . . q(tn|tn−1, . . . , t1).
(6)
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We begin by sampling the first column of the matrix, t1,
conditional on d. After t1 has been sampled, the degree
sequence is updated, the first column is removed, and we
sample the first column of the remaining (n − 1) × (n − 1)
submatrix. Denote the configuration of the first column by
t1 = (0, α21, . . . , αn1), and denote by d(2) the updated mar-
gins of the (n−1)× (n−1) submatrix after the first column
has been sampled, i.e.,

d(2) = (d2 − α21, d3 − α31, . . . , dn − αn1).(7)

This procedure is repeated until all of the columns have been
sampled and a completed matrix is obtained.

We start by writing the true marginal distribution of t1
under the uniform distribution over Σd. For a given config-
uration of the first column, t1 = (0, α21, . . . , αn1), the true
marginal distribution of t1 is

(8) p(t1 = (0, α21, . . . , αn1)) =
|Σd(2) |
|Σd|

.

This expression cannot be calculated directly, but an asymp-
totic formula for |Σd| was given by [5].

The asymptotic approximation that will be employed was
obtained by specializing Theorem 1 of [5] to our setting.

Approximation 1: Given d = (d1, . . . , dn) and M =∑n
i=1 di,

(9) |Σd| ∼ Δd ≡ f(M)∏n
i=1 di!

exp{a(d)},

where f(M) = M !/[(M/2)!2M/2] and a(d) =
(
∑

i

(
di

2

)
/M)2 −

∑
i

(
di

2

)
/M .

The justification is given in the Appendix. This approxi-
mation assumes that all marginal sums are bounded above
by a constant d∗ and that M → ∞.

The proposal used to sample the first column t1 is
based on Approximation 1 and is shown below. Denote this
method SIS-BC.

Proposal 1: The proposal for the first column based on the
[5] approximation is

q(t1 = (0, α21, . . . , αn1)) ∝ Δd(2) ∝ Δ
′

d(2) ≡
1∏n

i=2(di − αi1)!
exp{a(d(2))},

(10)

where a(·) is defined as in Approximation 1.

The justification is provided in the Appendix. Although
q(t1) in the above proposal may be sampled directly using
enumeration, this is not feasible for larger matrices. In these
cases, enumeration takes a long time and it is more conve-
nient to sample q(t1) using the following rejection method.
This is the strategy that will be employed in this paper.

1. Generate a configuration of the first column a =
(a1, . . . , an) from g(a), where g(a) is the uniform distri-
bution over all possible configurations of the first col-
umn. This can be done using the procedure described
by [14], which generates length n columns that sum to
d1 until a column is obtained that satisfies the row con-
straints.

2. Generate a u ∼ Unif[0,1].

3. Calculate the ratio q(a)/(cg(a)), where q(a) is the pro-
posal of SIS and c is a constant chosen so that q(a) ≤
cg(a) for any a.

4. Accept a if u ≤ q(a)/(cg(a)). Otherwise, reject a.

Note that Δd(2) will be obtained for every possible con-
figuration of the first column when the normalizing con-
stant for q(t1) is calculated, so both the number of con-
figurations of the first column and the maximum value of
Δd(2) over these configurations are relatively easy to calcu-
late. These quantities may be used to obtain a value c such
that q(a) ≤ cg(a) for all a.

3.1 Refined sampling

While the above procedure will yield reasonable esti-
mates, there will be a certain percentage of matrices gen-
erated that are invalid. This may occur after some of the
columns have been sampled because there is no multigraph
that corresponds to the updated degree sequence of the sub-
matrix. Consider the following small example. If the margins
are {2, 2, 2} and the first column sampled is t1 = {0, 2, 0},
then the updated margins for the 2×2 submatrix are {0, 2},
and the sampling cannot proceed because this degree se-
quence does not correspond to a valid multigraph. A se-
quential importance sampling procedure that guarantees the
existence of every matrix takes into account an existence
condition of [11], cited in [21], to guarantee that every gen-
erated matrix is valid. This is the procedure that will be
used in Section 5.

Theorem 1. [11] A degree sequence dn ≥ dn−1 ≥ · · · ≥ d1
is multigraphical if and only if

∑n
i=1 di is even and dn ≤∑n−1

i=1 di.

This condition is incorporated through an additional re-
jection step. Only those columns that guarantee the exis-
tence of a multigraph are sampled so that the sampling
method generates 100% valid matrices. This approach takes
longer to run than sampling without generating valid matri-
ces; however, it provides an advantage in terms of cv2 and
standard error, as well as guaranteeing that every generated
matrix will be valid.

The SIS procedure for sampling n× n matrices N times
with degree sequence d and calculating their associated im-
portance weights is described below. We use

∑
d(i)→d(i+1)

to

denote the summation over all possible ways to move from

d(i) = (d
(i)
i , . . . , d

(i)
n ) to d(i+1) after filling in column ti. Note

that d(1) = d and the sampling of ti is done using the re-
jection method described in Section 3.
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Algorithm 1: SIS-BC for sampling matrices

1 for j in 1, . . . , N do
2 wj = 1
3 for i in 1, . . . , n do

4 Calculate S(d(i)) =
∑

d(i)→d(i+1)

Δ
′

d(i+1)

5 Sample ti with probability Δ
′

d(i+1)/S(d
(i)) from the set of all possible configurations for the ith column

6 wj = wj × S(d(i))/Δ
′

d(i+1)

7 d(i+1) = (d
(i)
i+1 − ti,i+1, . . . , d

(i)
n − ti,n)

8 Output sampled matrix Tj = (t1, . . . , tn) with weight wj

4. MCMC METHOD

Sampling and testing multigraphs may also be performed
using an MCMC procedure based on the [10] method for
sampling contingency matrices. At each step, two rows i1
and i2 are chosen from {1, . . . , n}, and two columns j1 and
j2 are chosen from {1, . . . , n}, where j1 �= i1, i2 and j2 �=
i1, i2. One of the following two moves is made with equal
probability on the four cells at the intersection of rows i1
and i2 and columns j1 and j2:

+1 −1
−1 +1

−1 +1
+1 −1

.

The same move is then made on the cells opposite the ones
sampled to maintain the symmetry constraint. More specif-
ically, the move is performed on both cells (i1, j1), (i2, j1),
(i2, j2), (i1, j2), and cells (j1, i1), (j1, i2), (j2, i2), (j2, i2). If
a negative entry is obtained, the new matrix is rejected and
the Markov chain stays at the current matrix. As the degree
sequence of the matrix is not altered by these moves, every
matrix generated will be valid.

Theorem 2. Choosing two rows i1 and i2 from {1, . . . , n},
and two columns j1 and j2 from {1, . . . , n}, where j1 �= i1, i2
and j2 �= i1, i2, and performing −1 +1

+1 −1 or +1 −1
−1 +1 with equal

probability and the corresponding move on the cells opposite
the diagonal constitutes an irreducible Markov Chain on Σd.

The proof is given in the Appendix and follows [10]. This
method has the advantage of being extremely easy to im-
plement. It also allows for the sampling of larger and denser
matrices compared to SIS-BC. Although the chain is sticky,
in cases where other methods fail it provides a relatively
easy way to sample multigraphs.

5. APPLICATIONS AND SIMULATIONS

We illustrate the efficacy of the methods by describing
a number of applications and simulations. For SIS-BC, the
refined sampling procedure is used in all cases. Computation
was performed on a MacBook Pro with a 2.2 GHz Intel
Core i7 processor. Coding was done in C with calculation of
statistics performed in R.

5.1 Estimating the number of multigraphs

Calculating the total number of multigraphs with a pre-
scribed, fixed degree sequence is difficult. Although only of
minor interest as a combinatorial problem, estimating the
number of multigraphs provides a good way to test the ef-
ficacy of the method. If the SIS procedure estimates the
number of multigraphs well in situations where the truth is
known, that will provide support for more practical settings
where the truth is not known. An exhaustive search is feasi-
ble for very small matrices, but will take a prohibitively long
time for matrices that are even moderately large. A method
to calculate the true number of multigraphs with fixed de-
gree sequence is provided in the free software LattE [3]. The
exact number for the three 8 × 8 matrices provided in Ta-
ble 1 were calculated using this method in approximately
330 seconds for each multigraph. This method provides the
exact answer for small multigraphs, but for larger cases the
computation time becomes prohibitive. Using an SIS strat-
egy, we may estimate |Σd| using (3), based on iid samples
from our asymptotically-guided proposal distribution.

We estimate the number of matrices in a few examples.
We consider three 8× 8 matrices with increasing margins, a
9 × 9 matrix with all margins equal to 4, a 14 × 14 ma-
trix with all margins equal to 2, a 26 × 26 matrix with
all margins equal to 5, a 30 × 30 matrix with all mar-
gins equal to 3, and a real 15 × 15 matrix of chimpanzee
grooming behavior [28]. To further test the method we also
consider a 20 × 20 matrix with moderately rough margins
equal to {15, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, . . . , 1}, a large and sparse
100 × 100 matrix with all margins equal to 2, and an ex-
tremely large and sparse 200×200 matrix with margins equal
to {3, 1, . . . , 1}. The simulation results, along with the ex-
act number of multigraphs calculated by [20] when they are
available or using LattE, are given in Table 1. Estimates are
based on 1,000 samples and the number following the ± sign
denotes the standard error calculated using the Δ-method
(4). Simulation results indicate that SIS-BC is performing
well in the task of estimating the total number of multi-
graphs, producing accurate estimates in a relatively short
amount of time. We may also conclude that the method
is working well even for matrices that are both large and
sparse.
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Table 1. Performance of SIS-BC for estimating the number of matrices

Matrix Truth Estimated # matrices cv2 Time (sec)

8× 8 with margins = 2 6, 202 (6.1819± 0.0457)× 103 0.0546 0.03

8× 8 with margins = 5 45, 163, 496 (4.5277± 0.0537)× 107 0.1404 0.1

8× 8 with margins = 8 20, 547, 642, 185 (2.0751± 0.0356)× 1010 0.2942 0.55

9× 9 with margins = 4 170, 816, 680 (1.7468± 0.0199)× 108 0.1297 0.2

14× 14 with margins = 2 10, 157, 945, 044 (1.0205± 0.0058)× 1010 0.0247 0.2

15× 15 chimpanzee data - (1.0089± 0.0543)× 1025 2.8990 3.3

20× 20 with rough margins - (1.0813± 0.0079)× 1020 0.0538 56.5

26× 26 with margins = 5 1.2836× 1056 (1.2839± 0.0108)× 1056 0.0703 386.7

30× 30 with margins = 3 1.5998× 1045 (1.5890± 0.0080)× 1045 0.0253 26.1

50× 50 with margins = 3 - (7.4774± 0.0355)× 1091 0.0225 350.1

100× 100 with margins = 2 - (4.1248± 0.0571)× 1056 0.0191 ≈1hr

200× 200 with margins = {3, 1, . . . , 1} - (2.1984± 0.0059)× 10188 0.0007 ≈1hr

Sampling using SIS-BC without guaranteeing validity for
the 9×9 matrix with all margins equal to 4 yields an estimate
of (1.7173 ± 0.0378) × 108 with cv2 = 0.4853 and 73.2%
valid samples in 0.2 seconds. For the 30×30 matrix with all
margins equal to 3, an estimate of (1.5994± 0.0197)× 1045

is obtained with cv2 = 0.1521 and 89.5% valid samples in
23.9 seconds.

5.2 Primate social network data

We will consider chimpanzee grooming data collected by
[28] in the Budongo Forest in Uganda. This data, pictured
in Figure 2, represents a symmetrized version of grooming
interactions among fifteen chimpanzees. Each node repre-
sents a chimpanzee and the node labels correspond to names.
Each link represents a grooming interaction between a pair
of chimpanzees, so the counts are the total number of groom-
ing interactions between a given chimpanzee pair. Although
the original data was directed, we summed across the di-
agonal to obtain a symmetric matrix of sociopositive body
interactions between pairs of chimpanzees [15]. The diago-
nal is zero since here chimpanzees are not able to groom
themselves.

We are interested in the property of group cohesiveness
and specifically would like to investigate whether or not this
graph is surprising when considered to be a random draw
from the set of all possible networks with fixed degree se-
quence. This property was considered in the context of pri-
mate data in [18]. This will be quantified using the average
of the weighted clustering coefficients for each node as de-
fined by [2],

(11) Cw =
1

N

∑
i

cwi ,

Figure 2. The fifteen node multigraph of chimpanzee
grooming relations [28].

where the weighted clustering coefficient for node i is

(12) cwi =
1

si(ki − 1)

∑
j,h

(wij + wih)

2
aijaihajh.

Here aij = 1 if there is an edge between nodes i and j and
zero otherwise, wij is the number of edges between nodes i

and j, si =
∑N

j=1 aijwij and ki =
∑

j aij .
High values of Cw indicate a large degree of overall clus-

tering in the network. The null hypothesis is that Cw is not
unusual when the observed network is considered to be a uni-
form draw from the set of networks with the same degree. We
obtain a p-value of 0.5737± 0.02797 with cv2 = 2.8990 in a
few seconds, indicating no statistical significance. Using the
alternative MCMC method for these data with 1,000,000
iterations and 100,000 burn-in, with standard error calcu-
lated using the batch means method results in a p-value of
0.5562 ± 0.00108. Although this standard error is smaller
than the one obtained using SIS-BC, it appears to be an
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Figure 3. The PSA Airlines network. Nodes represent airports
and each edge represents a flight.

underestimate. Running the MCMC procedure 100 times
with a different SIS-BC generated starting position each
time yields a standard error of 0.03820. It appears that the
chain is sticky and takes a long time to explore the space,
resulting in an underestimate of the standard error.

5.3 Airline network resilience

The airline network is an important aspect of the na-
tional transportation system, responsible for moving mil-
lions of passengers every year according to the [24]. His-
tory has shown that the airline network is vulnerable to
disruption by both targeted attacks and random events. For
example, the terrorist attacks in 2001, the eruption of Ey-
jafjallajökull in 2010, and the United technical glitches in
July 2015 all resulted in delays and grounded flights. These
consequences impose huge costs on both passengers and the
airline industry.

We are interested in investigating the resilience of an air-
line network to a targeted attack. Here, resilience refers to
the ability of the network to maintain short-weighted paths
(defined later) between nodes in response to the removal of
an important hub airport. For simplicity, we examine only
the flights of PSA airlines, a regional airline headquartered
in Ohio. Nodes in this network represent airports, and the
number of edges between nodes represents the number of
flights between the two airports for the month of December
2010 [9]. There are 68 total airports and 135 edges.

To measure the resilience of the network we use the aver-
age of the closeness centrality values for all of the nodes [25].
The closeness centrality for a node i is the sum of the inverse
of the shortest weighted paths between all other nodes and
node i, i.e.,

(13) C(i) =
∑
j:j �=i

1

d(i, j)
,

where d(i, j) represents the shortest weighted path between
nodes i and j. Because two airports may be considered to be
‘close’ if they have a large number of flights between them,

we define the distance as

(14) d(i, j) =
1

wii2

+
1

wi2i3

+ · · ·+ 1

wikj
,

where {i, i2, i3, . . . , ik, j} are the nodes on the shortest
weighted path between nodes i and j, and wik−1ik is the
number of edges between nodes ik−1 and ik.

The overall closeness of the network is the average of the
closeness values for all nodes (i.e.,

∑n
i=1 C(i)/n). We are in-

terested in determining if the airline network is less resilient
to targeted attacks than would be expected by chance. Elim-
inating the airport with the second largest degree causes
the closeness value to decrease by 2.93%, indicating that it
is harder to traverse the network following the removal of
the airport with the second largest degree. To test the sig-
nificance of this change, we generated 1,000 random graphs
with the same degree sequence using SIS-BC, eliminated the
node corresponding to the airport with the second largest
degree and calculated the percent change in closeness. Based
on these samples, the probability of seeing a 2.93% or more
decrease in average closeness is 0.04427 ± 0.01889, indicat-
ing that the airline network formed in such a way that it
is less resilient to attacks than we would expect by chance.
Computation was completed in under an hour and a cv2 of
9.4476 was obtained.

6. DISCUSSION

We have developed an SIS strategy for sampling multi-
graphs with fixed degree based on an asymptotic approxi-
mation of [5]. This method samples column by column and
performs best in cases where the graph is at least moderately
sparse. As the graph becomes denser, performance decreases
as judged by cv2. As the graph becomes larger, the compu-
tation time increases, which limits the application of SIS
in cases where the graph of interest has a large dimension.
Additionally, as the margins increase for a fixed dimension
graph, the performance, as judged by cv2, suffers moder-
ately. Columns may be sampled in any order, but the best
performance as judged by cv2 and standard error and based
on simulation is generally given by sampling columns in de-
creasing order. We have also proposed an MCMC method
based on the moves described by [10] for sampling contin-
gency tables. This method performs well even in cases where
the graph is extremely dense.

Both methods we have proposed are extremely flexible,
as the distribution of any test statistic of interest related to
multigraphs may be approximated and a p-value estimated.
The SIS method is most suitable for situations where the
graph is at least moderately sparse. As the matrix becomes
large or dense, the performance and computation time of
SIS-BC both suffer, and eventually the use of SIS-BC will
become infeasible due to computation time. In these situa-
tions, the MCMC method should be preferred, although the
standard error as calculated by batch means appears to be
an underestimate.
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The approximation of [5] may be used to approximate the
number of graphs where a set of entries in the adjacency ma-
trix are forced to be structural zeros. This additional feature
of the approximation may be leveraged to allow for cell by
cell sampling of the adjacency matrix of a multigraph with
fixed degree. A cell is first sampled and then forced to be a
structural zero. While this approach is appealing, in practice
it tends to perform poorly and column by column sampling
is preferred. A potential avenue for future work is sampling
matrices where any two nodes are connected by no more
than r edges.

APPENDIX A

A.1 Justification of Approximation 1

Denote by (mij)n×n an n×n symmetric 0-1 matrix, where
mij = 0 denotes a structural zero at position (i, j). Let Δd

be the number of n× n symmetric matrices over [0, t] such
that gij = 0 whenever mij = 0 and

∑
j gij = di. According

to Theorem 1 of [5],

Σd ∼ Δd ≡ T (M, δ)exp{εa− b}/
n∏

j=1

dj !,

where M =
n∑

j=1

dj , δ =
∑

mii=0
di, ε = 1 if t > 1 and ε = −1

if t = 1, a =

(
n∑

j=1

(
dj

2

)
/M

)2

,

b =

( ∑
i<j,mij=0

didj +
n∑

j=1

(
dj

2

))
/M , T (M, δ) =∑

j

(
M−δ

j

)
CM−j , and Cj = j!/((j/2)!2j/2) if j is even

and 0 if j is odd.
In the case of multigraphs with no self-loops, the diagonal

is zero and we have ε = 1,
a = (

∑n
j=1

(
dj

2

)
/M)2, b =

∑n
j=1

(
dj

2

)
/M , δ = M , and

also T (M, δ) = M !/((M/2)!2M/2). Plugging these values in
yields the expression in Approximation 1.

A.2 Justification of Proposal 1

The approximation of [5] implies that the number of
multigraphs after sampling the first column is approximately

(15) |Σd(2) | ∼ Δd(2) ≡ f(M − 2d1)∏n
i=2(di − αi1)!

exp{a(d(2))},

and the approximation to the total number of multigraphs
|Σd| is given in Approximation 1. Combining the two ex-
pressions above yields the proposal SIS-BC:

q(t1 = (0, α21, . . . , αn2)) ∝ Δd(2) ∝
1∏n

i=2(di − αi1)!
exp{a(d(2))},

where a(·) is as in Approximation 1.

A.3 Proof of Theorem 2

We need to show that for every A,B ∈ Σd, there is a
sequence of moves of type

+1 −1
−1 +1

−1 +1
+1 −1

leading from A to B. We will use induction.

First define d(A,B) =
∑

i,j |aij − bij | and note that
d(A,B) is divisible by 4 and has minimum nonzero value
equal to 8.

Assume the induction hypothesis, that if 0 ≤ d(A,B) ≤
4k there is a path joining A and B.

This is true for d(A,B) = 8 because then there are only
8 elements (4 on either side of the diagonal) for which |aij −
bij | = 1. Call these cells (i1, j1), (i2, j1),(i1, j2),(i2, j2) and
(j1, i1), (j2, i1), (j1, i2), (j2, i2), where i1 < i2 and j1 < j2.
Then we can make an appropriate move to decrease d(A,B)
by 8 and obtain A = B.

Next, suppose d(A,B) = 4(k+1). We will show there is a
move from A → A′ where d(A′, B) ≤ 4k or a move B → B′

where d(A,B′) ≤ 4k.

Suppose A and B have different elements in the first col-
umn (otherwise we can remove the first column and first
row and check the second column). Suppose ai11 is the first
element at which A and B differ and that ai11 < bi11. Then
there exists an i2 such that ai21 > bi21 and a j2 such that
ai1j2 > bi1j2 , where i2 > i1 since ai11 is the first element at
which A and B differ and j2 �= i1 since ai1i1 is a structural
zero.

There are two cases. The first is that i2 �= j2 and the
second is that i2 = j2. In both of these cases we will show
that there is a move A → A′ where d(A′, B) ≤ 4k or a move
B → B′ where d(A,B′) ≤ 4k.

In the first case where i2 �= j2 make the move

a′i11 = ai11 + 1 a′i1j2 = ai1j2 − 1
a′i21 = ai21 − 1 a′i2j2 = ai2j2 + 1

and the corresponding symmetric move

a′1i1 = a1i1 + 1 a′j2i1 = aj2i1 − 1
a′1i2 = a1i2 − 1 a′j2i2 = aj2i2 + 1

.

We know ai21, a1i2 , ai1j2 , aj2,i1 > 0 since ai21 > bi21 and
ai1j2 > bi1j2 . Since i2 �= j2 there are no structural zeros.
Moving from A → A′ results in a decrease in the difference
of A′ with respect to B of 6 on (i1, 1), (i1, j2), (i2, 1), (1, i1),
(j2, i1), (1, i2). The difference on (i2, j2) and (j2, i2) may
increase by 2, but the net change is at least 4.

So d(A′, B) ≤ d(A,B)− 4 ≤ 4(k + 1)− 4 = 4k.

In the second case, i2 = j2. Here (i2, i2) is a structural
zero, so we cannot make any move with rows i1 and i2 and
columns 1 and i2.

However, there exists j′2 such that ai2j′2 < bi2j′2 where
j′2 �= 1 and j′2 �= i1 because ai21 > bi21 and ai2i1 > bi2i1 .
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Make the below move on B

b′i11 = bi11 − 1 b′i1j′2
= bi1j′2 + 1

b′i21 = bi21 + 1 b′i2j′2
= bi2j′2 − 1

and the corresponding symmetric move

b′1i1 = b1i1 − 1 b′j′2i1
= bj′2i1 + 1

b′1i2 = b1i2 + 1 b′j′2i2
= bj′2i2 − 1

.

Moving from B → B′ results in d(A,B′) ≤ d(A,B)−4 ≤
4k. The case where ai11 > bi11 is symmetric, simply reverse
roles of A and B.

Received 15 January 2017
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