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A latent moving average model for network
regression

Rui Pan
∗
, Rong Guan

†,§
, Xuening Zhu,

and Hansheng Wang
‡

Different from traditional statistical analysis that con-
cerns about individuals, network analysis focuses more on
the dichotomous relationships between those individuals. It
is then of interest to investigate the relationship against
a set of predictive variables. The widely used generalized
linear model is no longer applicable, since it implicitly as-
sumes that different subjects are completely independent.
To solve this problem, we propose a latent moving average
model (LMAM), which allows for nontrivial dependence for
overlapped relationships. It is only assumed that the non-
overlapped relationships are independent. Under such an as-
sumption, the asymptotic theory, including the rate of con-
vergence and asymptotic normality, can be established. A
number of numerical studies are conducted to demonstrate
the finite sample performance of our proposed method. At
last, a real dataset is analyzed for illustration purpose.
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tent moving average model, Network regression, Social net-
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1. INTRODUCTION

In the past decade, the whole world has witnessed the
tremendously rapid growth of various social network plat-
forms. As a good example, Facebook (www.facebook.com)
has attracted more than one billion active users across all
over the world. As its Chinese counter part, Sina Weibo
(www.weibo.com), the most popular microblog service in
China, also gained more than one hundred million active
users in the domestic market. As a result, network data are
becoming increasingly available, which possess huge com-
mercial values.
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Inspired by their tremendous achievements, it is of great
interest to develop novel statistical methods, which are use-
ful for network analysis. Consider a social network with n
players. Mathematically, one can use an index i (1 ≤ i ≤ n)
to denote the ith network player and then define a binary
variable Yij to represent the social relationship between
player i and j. Typically, we define Yij = 1 if i is related to
j, otherwise Yij = 0 [10, 20]. For instance, if the ith player
adds the jth as its friend on Facebook, then Yij = 1. For
convenience, we always set Yii = 0. Note that the relation-
ship between i and j can be both symmetric (i.e., Yij = Yji)
and asymmetric (i.e., Yij may not equal to Yji).

Network data analysis is a classical and important re-
search problem. Many researchers have made profound con-
tributions to this field. For example, an exponential ran-
dom graph model (typically referred to as p1 model) was
developed by [8], which assumes that different dyads, i.e.,
(Yij , Yji)s, are independent. In order to allow for dyad de-
pendence, a Markov graph model was considered by [4].
Later, stochastic block models were studied by [13] and
[19]. As a computationally effective way, the method of
pseudo-likelihood estimation was investigated by [18]. Sub-
sequently, in a seminal work of [6], the concept of latent
space was proposed, which incorporates predictive variables
into a Bayesian modelling framework. It is extensively stud-
ied and popularly used recently [5, 11, 15]; however, to our
best knowledge, none of the existing theory has been rig-
orously established for network regression under an asymp-
totic framework. That motivates us to accomplish this work.

In order to run a social network site successfully, one
needs to have a good understanding about the statistical be-
havior of Yij . This amounts to building a regression relation-
ship between Yij andXij , whereXij = (Xij,1, · · · , Xij,p)

� ∈
R

p is a p-dimensional predictive variable. Useful information
for predicting Yij could be included in Xij . For example,
(1) whether player i has some distinguished features (e.g.,
a political leader), (2) whether i and j share some com-
mon characteristics (e.g., graduate from the same univer-
sity), and (3) certain quantitative measures for the social
tightness between i and j (e.g., the amount of phone calls
made between i and j); see [1] and [9] for more examples
about the predictive variables. Consequently, developing re-
gression methods for network data is becoming a problem
of interest.
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To model the relationship between Yij andXij , the classi-
cal method of generalized linear model [12] could be used in
practice. The method implicitly assumes that given X, dif-
ferent Yijs are mutually independent, where X = (Xij) is the
information set. For simplicity, we refer to this as a complete
independence (CI) assumption. Obviously, CI assumption is
very restrictive, since players in the network are usually re-
lated to each other through various relationships. In a recent
work of [14], the authors proposed various test statistics for
the CI assumption. When CI assumption is invalid, it is then
of great interest to re-investigate the theoretical properties
of the resulting maximum likelihood estimator (MLE). More
specifically, we concern about the consistency of the MLE,
the rate of convergence, and the asymptotic normality. All
those important theoretical problems have not been thor-
oughly investigated in the past literature, according to our
best knowledge.

To fulfill this theoretical gap, we propose a latent moving
average model (LMAM). In contrast to the CI assumption,
LMAM only requires non-overlapped relationships to be
conditionally independent. This means that given X, we as-
sume Yij and Ykl are mutually independent if {i, j}∩{k, l} =
∅. We refer to this assumption as non-overlapped indepen-
dence (NI) assumption throughout this work. As a result,
nontrivial dependence is allowed, for instance, between Yij

and Yik in a flexible manner. Under such an assumption, we
find that the MLE is still consistent and asymptotically nor-
mal; however, the convergence rate under these two assump-
tions are different, which is to be demonstrated later. This
immediately arises an important research problem. That is
under the NI assumption, how to make asymptotically sta-
tistical inference.

The rest of the article is organized as follows: Section
2 illustrates the methodology, including the MLE and its
asymptotic normality under the NI assumption. Section 3
presents a set of simulation studies and a real social network
example. Concluding remarks are made in Section 4. All the
technical proofs are left in the Appendix.

2. METHODOLOGY

2.1 The maximum likelihood estimator

Recall that Yij is the relationship indicator from i to j,
and Xij is the associated p-dimensional predictor. For con-
venience, we use Y = (Yij) ∈ R

n×n to denote the n×n adja-
cency matrix. In practice, the following model has been pop-
ularly used, that is P (Yij |X) = g(X�

ijβ), where g(·) is a pre-

specified link function and β = (β1, · · · , βp)
� ∈ R

p is the un-
known regression coefficient vector. For simplicity, we define
pij = E(Yij |X) = g(X�

ijβ). It is well known that two popular
link functions have been extensively employed practically.
They are, respectively, the logit model with g(t) = et/(1+et)
and the probit model with g(t) = Φ(t), where Φ(·) is the cu-
mulative distribution function of the standard normal dis-
tribution.

As we mentioned before, a full specification about the
likelihood of Y given X is extremely difficult because the
dependence structure between different Yijs could be rather
complicated. Nevertheless, to facilitate an easy estimation,
one can näıvely assume that given X, different Yijs are mu-
tually independent (i.e., CI assumption). Then the corre-
sponding likelihood function can be constructed as the fol-
lows,

(1) L(β) =
∏
i �=j

{
g(X�

ijβ)
}Yij

{
1− g(X�

ijβ)
}1−Yij

.

By maximizing the above objective function, an MLE can
be obtained, which is denoted as β̂ = argmaxβL(β). How-
ever, the corresponding asymptotic properties under the NI
assumption are still unknown and need to be investigated.

2.2 A latent moving average model

In order to obtain the asymptotic properties (i.e., con-

sistency and asymptotic normality) of β̂, certain type of
independence assumption has to be made. The simplest as-
sumption, as implicitly used by practitioners, would be the
CI assumption. Under such an assumption, the optimal so-
lution of (1) becomes the exact MLE. However, according
to our limited empirical experiences, such an assumption is
not appropriate for network data analysis.

As another interesting solution, we propose here a la-
tent moving average model (i.e., LMAM). More specifically,
LMAM assumes that there exists an unobserved and inde-
pendent latent nodal information Vi for i = 1, · · · , n, such
that the network relationship is determined as

(2) Yij = G(Xij , Vi, Vj , εij),

where εij is the random noise and is assumed to be inde-
pendent of Xij , Vi and Vj . Furthermore, G is an unspecified
function such that E(Yij |X) = E{G(Xij , Vi, Vj , εij)|X} =
g(X�

ijβ). Similar model was also used by [7], which is called
the bilinear mixed-effects model. The author proposed an
MCMC algorithm for model estimation. However, no theo-
retical results are further investigated.

From (2), on one hand, LMAM allows non-overlapped
relationships to be independent. That is Yij and Ykl with
{i, j} ∩ {k, l} = ∅ are mutually independent given X. On
the other hand, overlapped relationships, that is Yij and Ykl

with {i, j} ∩ {k, l} �= ∅, are assumed to be mutually depen-
dent given X, because they share the same latent nodal in-
formation. This contains four important special cases, which
are respectively, the reciprocated dependence (i.e., Yij and
Yji), the 2-out-star dependence (i.e., Yij and Yik), the 2-in-
star dependence (i.e., Yji and Yki), and the transitive de-
pendence (i.e., Yij and Yjk).

2.3 Asymptotic distribution

We consider first the asymptotic distribution of β̂ un-
der the CI assumption. Under this situation, different Yijs
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are assumed to be conditionally independent so that the
classical theory of MLE can be applied directly [16]. As
a result, the sample size is N = n(n − 1). This gives√
N(β̂ − β) →d N(0, H−1) as n → ∞, where

(3) H = E

[
ġ2(X�

ijβ)

g(X�
ijβ){1− g(X�

ijβ)}
XijX

�
ij

]
,

and ġ(·) is the first order derivative of g(·). As one can see,

under the CI assumption, the convergence rate of β̂ is very
fast, which is

√
N ≈ n. However, the convergence rate and

asymptotic distribution of β̂ under the NI assumption are
not clear. The answer is given by the following theorem.

Theorem 1. Assume g(t) is a continuous function in t,
where the first- and second-order derivative exist. Further
assume log(g(t)) is concave in t. Under the LMAM (2), de-
fine mi = E{sij(β)|Vi,X}, hi = E{sji(β)|Vi,X} and

(4) sij(β) = ġ(X�
ijβ)Xij

[
Yij − g(X�

ijβ)

g(X�
ijβ){1− g(X�

ijβ)}

]
.

Assume that n−1
∑n

i=1 E{(mi + hi)(mi + hi)
�|X} →p C0

for some positive definite matrix C0. Then,
√
n(β̂ − β) →d

N(0, H−1C0H
−1), as n → ∞.

The proof of Theorem 1 is given in Appendix A. By The-
orem 1, we know that the asymptotic behavior of β̂ might
be totally different, according to whether the assumption
of CI or NI holds. If CI assumption is correct, the conver-
gence rate of β̂ is

√
N ≈ n. In contrast, the convergence

rate of β̂ reduces to the level
√
n under the NI assump-

tion. In addition to that, the analytical formulas for the
asymptotic variances are totally different. Accordingly, the
resulting inference procedures under different independence
assumptions should be distinguished. The details are given
in the next subsection.

Remark 1. We would like to make a remark discussing the
likelihood function under different dependence assumptions.
First of all, under the CI assumption, the likelihood function
can be easily spelled out, which is exactly (1). Second, under
the NI assumption, the likelihood function is complicated,
because the dependence between overlapped relationships
is not specified. As a result, we still refer to the likelihood
function in (1) as the one under the NI assumption. How-
ever, it is actually a pseudo likelihood function under the NI
assumption.

Remark 2. It is not intuitive that the consistency result
of β̂ only depends on the margin g(·) but not G(·). This
is mainly because the first-order derivative S =

∑
i �=j sij

can be well approximated by a U -statistic. As shown in
the proof of Theorem 1, the U -statistic has the form S̃ =∑

i �=j(mi + hj), where mi and hj are conditional expecta-
tions only determined by g(·). As a result, only g(·) matters
for the consistency of the MLE.

Remark 3. In practice, we may know Vi and Vj . As a
result, it is of great interest to model function G(·). Here,
we give one particular scenario, where G(·) is the indicator
function such that Yij = I(X�

ijβ + δ1Vi + δ2Vj + εij > 0).
If we further assume that Vis and εijs are independently
distributed as normal, then the margin g(·) function is just
the probit link. In this case, the asymptotic properties of
β̂ can also be derived under the NI assumption. Since this
is out of the scope of this article, we leave this as a future
topic here.

2.4 Estimation for standard error

First of all, under the situation of CI assumption, the
asymptotic variance of

√
N(β̂ − β) is given by H−1, which

can then be estimated by Ĥ−1, where

(5) Ĥ =
1

N

∑
i �=j

[
ġ2(X�

ij β̂)

g(X�
ij β̂){1− g(X�

ij β̂)}
XijX

�
ij

]
.

To test the statistical significance of one particular regres-
sion coefficient, i.e.,

(6) H0 : βj = 0 vs. H1 : βj �= 0,

a Z-type statistic can be constructed as ZC = β̂j/ŜEC(β̂j),

where ŜE
2

C(β̂j) is the jth diagonal element of Ĥ−1/N .
Given a significant level α, we reject the null hypothesis
if |ZC | > z1−α/2, where zα is the α-th lower quantile of a
standard normal distribution.

On the other hand, under the NI assumption, the asymp-
totic variance of

√
n(β̂ − β) is given by a sandwich form

formula H−1C0H
−1 as shown in Theorem 1. It can then be

estimated by Ĥ−1Ĉ0Ĥ
−1, where Ĥ is given in (5), and

Ĉ0 =
1

n

n∑
i=1

(m̂i + ĥi)(m̂i + ĥi)
�,

m̂i =
1

n− 1

∑
j �=i

sij(β̂),

ĥi =
1

n− 1

∑
j �=i

sji(β̂).

Similarly, to test the hypothesis (6), a Z-type statistic can

be constructed as ZN = β̂j/ŜEN (β̂j), where ŜE
2

N (β̂j) is

the jth diagonal element of Ĥ−1Ĉ0Ĥ
−1/n. As a result, for

a given significance level α, we reject the null hypothesis of
(6) if |ZN | > z1−α/2.

Remark 4. Note that for different assumptions (both CI

and NI), only one estimation β̂ is utilized. It is defined as the
MLE of (1), and numerically obtained by Newton-Raphson
iterative algorithm. For different assumptions, the main dif-
ference lies in the inference procedure, i.e., different standard
errors are used for the hypothesis test.

Latent moving average model 643



3. NUMERICAL STUDIES

3.1 Simulation studies

To demonstrate the finite sample performance of the pro-
posed methods, we present here a number of simulation
studies. The network size is set to n=100, 200, and 500,
and a total of 1,000 replications are conducted.

We first generate a set of nodal information for each
node, Zi = (Zi1, · · · , Zi6)

� ∈ R
6 with 1 ≤ i ≤ n. In

particular, Zi1 ∈ {0, 1} is a binary random variable with
P (Zi1 = 1) = 0.15. This variable can be treated as a rare
feature (i.e., movie star or political leader). We then let
Xij,1 = Zj1 so that the first predictor between nodes i and
j only depends on the characteristic of node j. Next, we
simulate Zi2 as a discrete random variable, taking the val-
ues of 0, 1, 2 with probabilities 0.1, 0.3 and 0.6 respectively.
Zi2 can be seen as education level, which takes a number
of discrete values. Accordingly, Xij,2 is designed to repre-
sent the effect of homophily, i.e., Xij,2 = I(Zi2 = Zj2),
where I(·) is the indicator function. Lastly, we simulate
(Zi3, · · · , Zi6)

� ∈ R
4 from a multivariate normal distribu-

tion with mean 0 and covariance Σ = (σj1j2) ∈ R
4×4, where

σj1j2 = 0.5|j1−j2|. In practice, (Zi3, · · · , Zi6)
� can be viewed

as the centralized quantitative measures for node i in social
network analysis, e.g., age, income, and many others. We
further let (Xij,3, Xij,4)

� = (Zi3 + Zj3, Zi4 + Zj4)
�/2, and

(Xij,5, Xij,6)
� = (|Zi5 − Zj5|, |Zi6 − Zj6|)�. They represent

the average value and the difference of quantitative mea-
sures between nodes i and j respectively. As a result, the
predictor dimension p is fixed to be 6.

After deriving the predictive variables Xij , we generate
the latent nodal information Vi independently from a stan-
dard normal distribution for 1 ≤ i ≤ n. As a result, net-
work dependence can be considered in our model by letting
Vij = Vi + Vj . Accordingly, different Yijs are independently
generated by

(7) Yij = I(X�
ijβ + δVij/

√
2 +

√
1− δ2εij > 0),

where εij is simulated independently from a standard nor-
mal distribution with 1 ≤ i, j ≤ n. The marginal model is
then given by P (Yij = 1|X) = g(X�

ijβ), where g(·) = Φ(·)
is chosen to be the probit link function. Note that δ is a
scalar between 0 and 1, which controls the effect of network
dependence. Furthermore, δ = 0 corresponds to the null hy-
pothesis of the CI assumption, while δ > 0 indicates the NI
assumption. We try three δ values in our simulation study,
i.e., δ = 0, 0.5, and 0.9. At last, the regression coefficient is
set to be β = (1.5, 1, 0, 0.5, 0,−1)� ∈ R

6.
As we mentioned in Section 2.4, different independence

assumptions (i.e., CI and NI) result in different asymptotic
variances, which in turn produce different convergence rates
and estimates for standard error. This leads to two types of
Z-test for the estimated regression coefficients. Specifically,
we report the resulting empirical rejection rates for β3 and

β5, whose true values are 0, under the nominal level 5% in
Table 1. As one can see, if the CI assumption holds (i.e.,
δ = 0), the empirical rejection rates are very close to 5%;
see the 3rd and 5th columns in the top panel. In contrast,
the empirical rejection rates under the NI assumption are
substantially smaller than the nominal level 5%; see the 4th
and 6th columns in the top panel. This is because the for-
mula under the NI assumption seriously overestimates the
standard error. On the other hand, when the NI assumption
is valid (i.e., δ = 0.5 or 0.9), the associated empirical rejec-
tion rates are close to 5%; see columns 4 and 6 in the bot-
tom two panels. While the Z-test under CI assumption has
larger rejection rates than 5%; see the 3rd and 5th columns
in the bottom two panels. The 7th column of Table 1 reports
the mean absolute error (MAE) of the regression coefficient
estimates, which is averaged across 1,000 simulation replica-
tions. It decreases as the network size gets larger under all
the values of δ (i.e., δ = 0, 0.5, and 0.9), which demonstrates
the consistency of the estimator. At last, the average value
of network density (i.e., ND=

∑
i �=j Yij/{n(n − 1)}) is also

reported in percentage; see the last column of Table 1.

3.2 Renren dataset

To further demonstrate our method, we present here
a real example about Renren website (www.renren.com),
which can be treated as a Facebook-type social network me-
dia in Chinese, whose majority users are university students.
Similar to Facebook, Renren allows users to create their
profiles, including basic information (e.g., gender, birthday,
hometown), university information (e.g., university, admis-
sion year, department), and personal information (e.g., in-
terests, favorites). In addition to that, users can write blogs,
upload photos and videos. A user is also allowed to add an-
other as a friend as long as his/her invitation is accepted.
Consequently, a friend-type relationship can be established.

Our dataset is collected from a small sub-network of Ren-
ren, containing a total of 104 nodes. The users are partic-
ularly selected so that they are from one common univer-
sity but two different departments. Those 104 users con-
stitute a small network with its adjacency matrix given
by Y ∈ R

104×104. The density of this network is given by∑
i �=j Yij/{n(n− 1)} = 2,909/10,712 = 27.16%. In addition,

the network structure is visualized in the left of Figure 1,
where each circle represents a user and a line denotes the
existence of friendship between two users. One can observe
two clusters in the network clearly, which correspond to two
departments. Besides, the histogram of nodal degrees (i.e.,
di =

∑
j Yij) is given in the right of Figure 1, which exhibits

a bimodal shape.
In order to explain such a friendship network Y, the fol-

lowing nodal information are collected. Specifically, the cat-
egorical information include gender, hometown, admission
year and department of each user, which can be seen as
their demographic information. The quantitative informa-
tion include the number of friends of each user, the number
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Table 1. Simulation Results with 1,000 replications for different δ values. Empirical rejection rates for β3 = 0 and β5 = 0 are
reported under two different assumptions (i.e., CI and NI). Mean absolute error for all the regression coefficient estimates is

calculated. At last, network density is reported in percentage

δ Network β3 β5 MAE Network

value Size CI NI CI NI Density(%)

100 0.046 0.002 0.050 0.010 0.022 39.019

δ = 0 200 0.034 0.005 0.057 0.007 0.011 38.925

500 0.049 0.003 0.036 0.006 0.004 39.067

100 0.554 0.057 0.443 0.054 0.059 39.029

δ = 0.5 200 0.655 0.065 0.579 0.046 0.040 38.959

500 0.816 0.059 0.712 0.050 0.025 39.041

100 0.731 0.065 0.666 0.067 0.110 39.048

δ = 0.9 200 0.787 0.073 0.765 0.056 0.076 38.993

500 0.904 0.057 0.850 0.050 0.048 39.026

Figure 1. The Renren dataset with 104 users. The left: network structure, circle represents user and line denotes the
relationship. The right: histogram of nodal degrees.

of blogs they upload, and the number of visitors to their
home pages, which represent their social activeness levels.

To conduct the regression analysis, the following predic-
tive variables are constructed. Following [9], we construct a
set of predictors related to the concept of homophily. That
is, if two nodes share the same level of a factor (e.g., gen-
der), then the corresponding homophily statistic takes the
value of 1, otherwise it equals to 0. The homophily predic-
tors we consider include, whether two nodes share the same
level of gender, hometown, admission year and department.
Secondly, following [6], we consider the concept of social dis-
tance in our regression. To this end, we standardize all the
quantitative variables. Then their inter-node absolute dif-
ference is included as the predictor.

We next compute the MLE, where the link function is
chosen to be probit. The standard errors according to both
CI and NI assumptions are also reported. As shown in Table
2, the results are totally different. The CI based results sug-
gest that except for the distance of the number of visitors, all
the other estimated regression coefficients are significant un-

der the nominal level 5%. While under NI assumption, only
the intercept, the homophliy of gender, admission year and
department are significant under the nominal level 5%. To
test which assumption is more appropriate, we refer to the
test procedures of [14]. The resulting transitivity test statis-
tic is 3.11, which provides strong evidence to reject the null
hypothesis (i.e., CI assumption) at 5% significance level. As
a result, we decide to employ the regression results under
the NI assumption for interpretation. More specifically, it
suggests that students with the same gender, university ad-
mission year, and from the same department are more likely
to be friends on Renren.

4. CONCLUDING REMARKS

In this article, we propose a novel assumption describ-
ing the network dependence structure, that is the NI as-
sumption. It allows for nontrivial dependence for overlapped
dyads (e.g., {i, j} and {i, k}). Under the NI assumption, we
are able to investigate the asymptotic behavior of the MLE
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Table 2. Regression results of the Renren dataset based on CI and NI assumptions

Z-Test Based On

Variable Coeff. CI NI

S.E. p-value S.E. p-value

Intercept -2.393 0.056 <0.001 0.357 <0.001

Homophily

Gender 0.141 0.031 <0.001 0.067 0.036

Hometown 0.191 0.041 <0.001 0.110 0.083

Admission Year 0.834 0.040 <0.001 0.245 <0.001

Department 1.848 0.033 <0.001 0.210 <0.001

Distance

Friends 0.089 0.021 <0.001 0.129 0.490

Logs 0.051 0.014 <0.001 0.041 0.208

Visitors -0.026 0.016 0.111 0.066 0.700

β̂. To conclude the article, we discuss two topics for further
research. First of all, it is noteworthy that whether LMAM
is the best dependence assumption for network data is un-
known. Further studies on the network dependence structure
are of great interest. Secondly, in this article, we mainly dis-
cuss dichotomous relationship between nodes (i.e., Yij = 0
or 1). However, in real practice, the relationships may exist
in terms of varying strengths, which leads to valued rela-
tionships. Then how to model such type of response should
be further investigated.

APPENDIX

Appendix A. Proof of Theorem 1

In order to prove Theorem 1, we introduce a Lemma be-
forehand.

Lemma 1. Let �(β) be the log-likelihood function of (1).
Define u = (u1, · · · , up)

� ∈ R
p. For an arbitrary small ε >

0, there exits a sufficiently large constant C, such that

n−1 sup
‖u‖=C

{
�(β + n−1/2u)− �(β)

}
= n−3/2�̇�(β)u− 1

2
u�

{
− n−2�̈(β)

}
u+ op(1)

≤ n−3/2‖�̇(β)‖C − 1

2
λmin

{
− n−2�̈(β)

}
C2 + op(1),

(A.1)

where �̇(·) ∈ R
p and �̈(·) ∈ R

p×p are respectively the first-
and second-order derivatives of �(·). Furthermore, λmin(H)
refers to the minimum eigenvalue of H.

Proof of Lemma 1. First of all, the quality holds in (A.1)
because of Taylor expansion. Second, as we will prove in Step
2, n−3/2�̇(β) = Op(1), which implies that n−3/2‖�̇(β)‖ =

Op(1). Similarly, we can prove that {−n−2�̈(β)} →p H,
where H is defined in (3) and it is a positive definite ma-
trix. Then the second term in (A.1) is quadric in C. On the
other hand, the first term in (A.1) is linear in C. Therefore,

as long as the constant C is sufficient large, the second term
will always dominate the other terms with arbitrary large
probability. This completes the proof of Lemma 1.

The theorem conclusion can be proved in two steps. In
the first step, we show that β̂ is

√
n-consistent. In the second

step, we establish its asymptotic normality.

STEP 1. By definition, the log-likelihood function is given
by

�(β) =
∑
i �=j

[
Yij log

{
g(X�

ijβ)
}
+(1−Yij) log

{
1−g(X�

ijβ)
}]

.

It can be easily shown that �(β) is a convex function in β.
Thus as long as we can prove there exists a

√
n-consistent

local optimizer, it must be the global optimizer β̂. By [3],
we know that this is implied by the following fact, that is
for an arbitrary small ε > 0, there exits a sufficiently large
constant C, such that

(A.2) lim
n→∞

P
[

sup
‖u‖=C

{
�(β+n−1/2u)− �(β)

}
< 0

]
≥ 1− ε,

where u = (u1, · · · , up)
� ∈ R

p. By Lemma 1, (A.2) can be
easily shown, and thus completes the first step of the proof.

STEP 2. Because β̂ is
√
n-consistent, we can apply the

standard Taylor expansion augment to establish its asymp-
totic normality. As a result, we obtain

√
n(β̂ − β) =

−{n−2�̈(β)}−1{n−3/2�̇(β)}+op(1). Then the conclusion fol-

lows if we can prove {−n−2�̈(β)} →p H and n−3/2�̇(β) →d

N(0, C0).

To this end, define S = �̇(β) =
∑

i �=j sij(β). Further
define mi = E(sij |Vi,X) and hj = E(sij |Vj ,X). Then,

let S̃ =
∑

i �=j(mi + hj). We next want to show that S

can be well approximated by S̃. To this end, we compare
var(S|X) and var(D|X), where D = S − S̃. We first con-
sider var(S) = E{var(S|X)}, since E(S|X) = 0. Next, we
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calculate var(S|X) as

var(S|X) = var

( ∑
i

∑
j �=i

sij |X
)

=
∑
i

∑
j �=i

var(sij |X) +
∑
i

∑
j �=i

cov(sij , sji|X)

+
∑
i

∑
j �=i

∑
k �=i,j

{
cov(sij , sik|X) + cov(sji, ski|X)

+ 2cov(sji, sik|X)
}

= Op(n
3).

We then compare this result against var(D|X), which is fur-
ther given by the following result.

var
( ∑

i �=j

(sij −mi − hj |X)
)

=
∑
i �=j

var
(
sij −mi − hj |X

)
+

∑
i �=j

cov
(
sij −mi − hj , sji −mj − hi|X

)
+

∑
i

∑
j �=i

∑
k �=i,j

{
cov

(
sij −mi − hj , sik −mi − hk|X

)
+ cov

(
sji −mj − hi, ski −mk − hi|X

)
+ 2cov

(
sji −mj − hi, sik −mi − hk|X

)}
.

(A.3)

Define the last three terms in (A.3) by I1, I2 and I3 re-
spectively. We then have I1 = cov

(
sij − mi − hj , sik −

mi − hk|X
)
= E(sijs

�
ik|X) − E(sijm

�
i |X) − E(sijh

�
k |X) −

E(mis
�
ik|X) + E(mim

�
i |X) + E(mih

�
k |X) − E(hjs

�
ik|X) +

E(hjm
�
i |X)+E(hjh

�
k |X). One can verify that E(sijs

�
ik|X) =

E{E(sijs
�
ik|X, Vi)|X} = E{E(sij |X, Vi)E(s�ik|X, Vi)|X} =

E(mim
�
i |X). Similarly, we can prove E(sijm

�
i |X) =

E(mim
�
i |X) and E(hjh

�
k |X) = 0. Consequently, we have

I1 = 0. The same technique can be used to derive that
I2 = 0 and I3 = 0. So that var(D|X) = Op(n

2), which is
a smaller order as compared with var(S|X). This suggests
that S and S̃ share the same asymptotic distribution.

On the other hand, S̃ can be also written as, S̃ =∑
i �=j(mi + hj) = (n− 1)

∑
i(mi + hi). It can be seen that,

given X, S̃ can be treated as the sum of independent vari-
ables. The conditional variance of n−3/2S̃ can be calculated
as the follows,

var(n−3/2S̃|X) = n−3(n− 1)2
∑
i

var(mi + hi|X)

= n−3(n− 1)2
∑
i

E
{
(mi + hi)(mi + hi)

�|X
}
→p C0,

where the last convergence result is due to the theorem as-
sumption.

As a result, by the central limit theorem, we obtain that
n−3/2S|X is distributed as N(0, C0), where C0 is a positive
definite matrix. This completes the whole proof.
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