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Modelling time series of counts with deflation or
inflation of zeros

Marcelo Bourguignon

In this paper, we introduce a first order non-negative in-
teger valued autoregressive process with zero-modified ge-
ometric innovations based on the binomial thinning opera-
tor. This new model will enable one to tackle the problem
of deflation or inflation of zeros inherent in the analysis of
integer-valued time series data, and contains the INARG(1)
model [6] as a particular case. The main properties of the
model are derived, such as mean, variance, autocorrelation
function, transition probabilities and zero probability. The
methods of conditional maximum likelihood, Yule-Walker
and conditional least squares are used for estimating the
model parameters. A Monte Carlo experiment is conducted
to evaluate the performances of these estimators in finite
samples. The proposed model is fitted to time series of
emergency counts department of a children’s hospital and
of drugs reselling criminal acts counts illustrating its capa-
bilities in challenging cases of deflated and inflated count
data.
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1. INTRODUCTION

McKenzie [12] proposed the first order non-negative in-
teger valued autoregressive [INAR(1)] process based on the
binomial thinning operator, i.e., a sequence {Xt}t∈Z is said
to be an INAR(1) process if it admits the representation

(1) Xt = α ◦Xt−1 + εt,

where 0 ≤ α < 1, {εt}t∈Z is a sequence of independent
and identically distributed integer-valued random variables,
called innovations, with εt independent ofXt−k for all k ≥ 1,
E(εt) = με and Var(εt) = σ2

ε , and “ ◦ ” is binomial thinning
operator [18], defined by

α ◦Xt−1 =

{ ∑Xt−1

j=1 Yj , Xt−1 > 0;

0, Xt−1 = 0,

where the so-called counting series {Yj}j≥1 is a sequence of
independent and identically distributed Bernoulli random
variables with Pr(Yj = 1) = 1− Pr(Yj = 0) = α.

A simple approach based on the binomial thinning is
to only change the innovations’s distribution. The idea of
considering a distribution for the innovations such that the
marginal distribution of the observations will satisfy a given
property has been discussed in [19]. In this context, [13]
considered moment based estimators for the negative bino-
mial INAR(1) process (with negative binomial innovations)
based on the ergodicity of the process. [15] proved that if
process has a negative binomial distribution, then the inno-
vations have a negative binomial geometric distribution. [6]
introduced the INAR(1) process with geometric innovations.
[3] used the signed binomial thinning operator to define a
first-order process with Skellam-distributed innovations. [5]
studied a new stationary INAR(1) process with power series
innovations. In a very recent paper, [8] proposed an INAR(1)
process with Katz family innovations based on the binomial
thinning.

While processes for integer-valued time series are now
abundant, there is a shortage of similar processes when the
time series refer to data with deflation or inflation of zeros,
i.e., processes for modeling count time series with excess (or
deficit) of zeros based on thinning operators were discussed
by few authors. [7] introduce a new stationary INAR(1)
process with zero inflated Poisson innovations. [10] studied
the first-order mixed integer-valued autoregressive processes
with zero-inflated generalized power series innovations. [11]
introduced a zero-inflated Poisson INAR(1) process. Re-
cently, [4] proposed a first-order integer-valued autoregres-
sive process for dealing with count time series with deflation
or inflation of zeros [ZMGINAR(1)]. The proposed process
has zero-modified geometric marginals; however, the innova-
tion structure form is very complicated. Consequently, the
conditional probabilities of this model don’t have a simple
form. Furthermore, the parameter restrictions aren’t liberal.

This paper aims to give a contribution in this direction.
The objective of this paper is to propose a new INAR(1) pro-
cess (1) with zero-modified geometric (ZMG) innovations,
denoted by INARZMG(1), based on binomial thinning for
modeling nonnegative integer-valued time series with defla-
tion or inflation of zeros (it’s possible to extend for the case
of zero-modified negative binomial innovations). Advantage
of the proposed process is that the ZMG distribution is very
flexible. The proposed process is also able to capture equidis-
persion, underdispersion and overdispersion. Furthermore,
the new process has, as a particular case, the INARG(1)
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process [6]. Additionally, we will provide a comprehensive
account of the mathematical properties of the proposed new
process. Also, the new process is based on the binomial thin-
ning operator in which some elementary properties are very
easy to obtain [16]. Thus, the new process has mathematical
simplicity, i.e., in contrast to the ZMGINAR(1) process [4],
the proposed process has a very simple innovation structure
form and the parameter restrictions are more liberal.

Let {εt}t∈Z be a sequence of discrete i.i.d. random vari-
ables following a zero-modified geometric (ZMG) distribu-
tion with parameters μ > 0 and π ∈ (−1/μ, 1). More specif-
ically, we here assume that {εt}t∈Z has a probability mass
function given by

Pr(εt = y) =

⎧⎨⎩
1 + πμ

1 + μ
, if y = 0,

(1− π) μy

(1+μ)y+1 , if y = 1, 2, . . . ,
(2)

or equivalently,

Pr(εt = y) = I{y=0} π + (1− π)
μy

(1 + μ)y+1
, y = 0, 1, 2, . . .

In short, we name this distribution as the ZMG(π, μ)
distribution. The probability generating function (pgf) of
{εt}t∈Z, denoted by ϕε(s) := E[sεt ], is given by

ϕε(s) =
1 + π μ(1− s)

1 + μ(1− s)
, |s| < 1.

Remark 1. Let Z ∼ ZMG(π, μ). Then, the moments E(Zr)
are obtained from those of the geometric parent distribution
geom

(
1/(1+μ)

)
, say μr, by computing E(Zr) = (1− π)μr.

The mean and variance of the {εt}t∈Z as defined in (2)
are

E(εt) ≡ με = μ(1− π)

and

Var(εt) ≡ σ2
ε = μ(1− π)[1 + μ(1 + π)].

Thus, the dispersion index, which is the variance-to-mean
ratio, will be given by

Iε :=
με

σ2
ε

= 1 + μ(1 + π);

it follows that this model presents equidispersion when π =
−1; underdispersion when μ ∈ (0, 1) and π ∈ [−1/μ,−1);
and overdispersion when π ∈ (−1, 1).

Remark 2. Different values of π lead to different modifica-
tions of the zero-modified geometric distribution:

1. If π = −1/μ, then the distribution (2) becomes the zero-
truncated geometric distribution, where the parameter π
cancels out and no longer appears as a model parameter,
i.e., there is no chance at all of getting a zero observa-
tion into the sample;

2. For π ∈ (−1/μ, 0), this yields a zero-deflated geomet-
ric distribution. That is, less zeros occur, than expected
under the geometric process. Such models are denoted
as zero-deflated geometric distribution;

3. If π = 0, than the corresponding distribution is the ge-
ometric distribution;

4. For π ∈ (0, 1), this yields a zero-inflated geometric dis-
tribution, which is a geometric process with a proportion
of additional zeros;

5. If π = 1, than the corresponding zero-modified distribu-
tion is the degenerated at zero one.

The rest of the paper unfolds as follows. In Section 2,
several properties of process are discussed. In Section 3, es-
timation methods for the model parameters are proposed.
Section 4 discusses some simulation results for the estima-
tion methods. In Section 5, we provide applications to two
real data sets.

2. PROPERTIES OF THE PROCESS

In this section, we will consider some properties of the
new process, such as the mean, variance, conditional mo-
ments, the autocorrelation structure and one-step condi-
tional probabilities.

Theorem 2.1. The process {Xt}t∈Z is an irreducible, ape-
riodic and positive recurrent (and thus ergodic) Markov
chain. Hence, there exists a strictly stationary process sat-
isfying Equation (1) with {εt}t∈Z ∼ ZMG(π, μ).

Following the steps of the proof of the Proposition 2 from
[5], the proof of our Theorem 1 can be obtained and therefore
it is omitted. From Theorem 1, the process {Xt}t∈Z satisfy-
ing Equation (1), with {εt}t∈Z ∼ ZMG(π, μ), is Markovian,
stationary, and ergodic. Then, the Markov process admits
a unique stationary distribution. From the results of [1], we
have that α ∈ [0, 1) and α = 1 are the conditions of station-
arity and non-stationarity of the process {Xt}t∈Z, respec-
tively. Also, α = 0 and α > 0 respectively imply the inde-
pendence and dependence of the observations of {Xt}t∈Z.
Here, we restrict our study to the stationary case.

Theorem 2.2. The pgf of {Xt}t∈Z can be expressed as

ϕX(s) =

∞∏
i=0

ϕε(1− αi + αis) =

∞∏
i=0

[
1 + αi π μ(1− s)

1 + αi μ(1− s)

]

=
∞∏
i=0

ϕ(i)
ε (s),(3)

where ϕ
(i)
ε (s) = 1+αi π μ(1−s)

1+αi μ(1−s) is the pgf of ε
(i)
t ∼

ZMG(π, αi μ).

Following the steps of the proof of the Theorem 2 from [7],
the proof of our Theorem 1 can be obtained and therefore
it is omitted.
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Corollary 1. The marginal distribution of {Xt}t∈Z can be
expressed as an infinite sum of independent random vari-
ables with ZMG(π, αi μ) distributions.

Proposition 1. If π = α ∈ [0, 1), then {Xt}t∈Z has geo-
metric marginal distribution with mean μ, i.e., the process
{Xt}t∈Z is reduced to the geometric INAR(1) process intro-
duced by [2].

Proof. From (3), we have (see [2])

ϕX(s) =

∞∏
i=0

[
1 + αi π μ(1− s)

1 + αi μ(1− s)

]
=

∞∏
i=0

[
1 + αi αμ(1− s)

1 + αi μ(1− s)

]
=

1

1 + μ(1− s)
, |s| < 1.

#

Proposition 2. The proportion of zeros in the
INARZMG(1) process is given by

p0 := Pr(Xt = 0) = ϕX(0) =
∞∏
i=0

[
1 + αi π μ

1 + αi μ

]

= Pr(εt = 0)

∞∏
i=1

[
1 + αi π μ

1 + αi μ

]
.(4)

For M sufficiently large, the zero probability (4) can be
approximated by

(5) p0 ≈ Pr(εt = 0)

M∏
i=1

[
1 + αi π μ

1 + αi μ

]
.

To analyze the performance of the approximation above,
a small simulation study was carried out. For α = 0.4, μ =
1.0 and some values of π and M , the values for p0 were
calculated using (5). From Table 1, note that these values

for the p0 are close to f0 =
∑100

t=1 I{Xt=0}/100.
The mean and variance of {Xt}t∈Z are given, respectively,

by

μX := E(X) =
μ(1− π)

1− α

and

σ2
X := Var(X) =

μ(1− π)[1 + μ(1 + π) + α]

1− α2
.

Table 1. Simulated values of p0 for some values of M ,
α = 0.4 and μ = 1.0

π f0 M = 10 M = 100 M = 1000

−0.4 0.1251 0.12535 0.12534 0.12534
−0.2 0.1928 0.19345 0.19343 0.19343
0.2 0.3797 0.37898 0.37895 0.37895
0.4 0.5003 0.50002 0.5 0.5

Thus, the dispersion index, which is the variance-to-mean
ratio, will be given by

IX :=
σ2
X

μX
= 1 +

μ(1 + π)

1 + α
,

it follows that this model presents equidispersion when π =
−1; underdispersion when μ ∈ (0, 1) and π ∈ [−1/μ,−1);
and overdispersion when π ∈ (−1, 1).

The conditional distribution of α ◦ Xt−1 given Xt−1 is
binomial with parameters α andXt−1. Then, the conditional
pgf of Xt given Xt−1 becomes

ϕXt|Xt−1
(s) =

(1− α+ α s)Xt−1 [1 + π μ(1− s)]

1 + μ(1− s)
, |s| < 1.

The 1-step ahead conditional expectation and the condi-
tional variance are given by

E(Xt+1|Xt) = αXt + μ(1− π)

and

Var(Xt+1|Xt) = α(1− α)Xt + μ(1− π)[1 + μ(1 + π)].

The transition probabilities of this process are given by

Pr(Xt = k|Xt−1 = l)

=

min(k,l)∑
i=0

(
l

i

)
αi(1− α)l−i

×
[
π I{0}(k − i) + (1− π)

μk−i

(1 + μ)k−i+1

]
,(6)

k, l ≥ 0, where (·) is the standard combinatorial symbol.
Thus, using (6), we obtain that the transition probability

from zero to non-zero and zero to zero are

θ = Pr(Xt 	= 0|Xt−1 = 0) =
μ(1− π)

1 + μ

and

1− θ = Pr(Xt = 0|Xt−1 = 0) =
1 + π μ

1 + μ
,

respectively. The run length of zeros in the process, N , fol-
lows a geometric distribution with termination probability
θ, i.e., Pr(N = n) = θ(1 − θ)n−1, n ≥ 1. Thus, the average
run length of zeros in the process is given by

E(N) =
1 + μ

μ(1− π)
.

The expected run length of zeros for the INARG(1) pro-
cess (π = 0) [6] is E(N0) = (1 + μ)/μ. Note that E(N) =
(1 − π)−1E(N0). Thus, E(N) ≥ E(N0) for π ∈ [0, 1) and
E(N) < E(N0) for π ∈ (−1/μ, 0).
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The autocorrelation function (ACF) at lag h is given by

Corr(Xt, Xt−h) = ρX(h) = αh, h ≥ 0.

That is, the autocorrelation function decays exponentially
as h → ∞.

The spectral density function f(ω) of any order contains
important information about the properties of the process.
The spectral density of the INARZMG(1) process is

f(ω) =
μ(1− π)[1 + μ(1 + π) + α]

2π[1 + α2 − 2α cos(ω)]
, ω ∈ (−π, π].

Next section, we consider the problem of estimating the
parameters of the INARZMG(1) process.

3. ESTIMATION AND INFERENCE OF THE
UNKNOWN PARAMETERS

In practice, the true values of the model parameters α, μ
and π are not known but have to be estimated from given
time series data. This section is concerned with the esti-
mation of the three parameters of interest. Here, we con-
sider three estimation methods: Yule-Walker, conditional
least squares and conditional maximum likelihood.

3.1 Yule–Walker estimation

The Yule-Walker (YW) estimators of α, λ and μ are based
upon the sample autocorrelation function ρ̂(k), using that
ρX(1) = α, the first moment, and the dispersion index of
Xt, which are E(Xt) = μ(1−π)/(1−α), and IX = 1+μ(1+
π)/(1 + α), respectively. Let X1, X2, . . . , XT be a random
sample of size T from the INARZMG(1) process. Then, YW
estimators of α, μ and π are given by

α̂YW =

T−1∑
t=1

(Xt −X)(Xt+1 −X)∑T
t=1(Xt −X)2

,

μ̂YW =
1

2

[
(1 + α̂YW)(Î − 1) +X(1− α̂YW)

]
and

π̂YW = 1− X(1− α̂YW)

μ̂YW
,

where X = (1/T )
∑T

t=1 Xt, Î = γ̂(0)/X and γ̂(k) =

(1/T )
∑T−k

t=1 (Xt −X)(Xt−k −X).

3.2 Conditional least squares estimation

The conditional least squares (CLS) estimator η̂ =
(α̂, μ̂, π̂)T of η = (α, μ, π)T is given by

η̂ = argmin
η

(ST (η)),

where ST (η) =
∑T

t=2[Xt − g(η, Xt−1)]
2 and g(η, Xt−1) =

E(Xt|Xt−1) = αXt−1 + μ(1 − π). However, note that
αXt−1+μ(1−π) depends on μ and π only through μ(1−π).
Therefore, we cannot define estimators of μ and π (together)
with this technique in our case. Thus, here we use the CLS
method to find estimators for α and π and assume that μ is
known. Then, the CLS estimators of α and π can be written
in closed form as

α̂CLS =
(T − 1)

∑T
t=2 XtZt−1 −

∑T
t=2 Xt

∑T
t=2 Xt−1

(T − 1)
∑T

t=2 X
2
t−1 −

(∑T
t=2 Xt−1

)2(7)

and

π̂CLS = 1−
∑T

t=2 Xt − α̂
∑T

t=2 Xt−1

μ(1− α̂)
,(8)

where μ will be replaced by some consistent estimator μ̂. The
parameter μ can be estimated as in the previous subsection,
i.e., the estimator of the parameter μ is given by μ̂CLS =
μ̂YW.

Proposition 3. The estimators α̂CLS and π̂CLS given in
(7) and (8) are strongly consistent for estimating α and π,
respectively, and satisfy the asymptotic normality

√
T [(α̂CLS, π̂CLS)

� − (α, π)�]
d−→ N2((0, 0)

�,V−1WV−1),

where

V =

(
μX,2 −μμX

−μμX μ2

)
and

W=

⎛⎝ α(1− α)μX,3 + σ2
εμX,2 −μ[α(1− α)μX,2 + σ2

εμX ]

−μ[α(1− α)μX,2 + σ2
εμX ] μ2[α(1− α)μX + σ2

εμX ]

⎞⎠,

with μX,r = E(Xr
t ).

3.3 Conditional maximum likelihood
estimation

The conditional log-likelihood function for the
INARZMG(1) model is given by
(9)

�(α, θ) = log

[
T∏

t=2

Pr(Xt|Xt−1)

]
=

T∑
t=2

log[Pr(Xt|Xt−1)],

with Pr(Xt|Xt−1) as in (6). The conditional maximum like-
lihood (CML) estimators α̂, μ̂ and π̂ of α, μ and π are de-
fined as the values of α, μ and π that maximize the condi-
tional log-likelihood function in (9). There will be no closed
form for the CML estimates and their obtention will need,
in practice, numerical methods. As starting values for the
algorithm, we have used the estimates obtained by the YW
method. Since Fisher information matrix is not available,

634 M. Bourguignon



the standard errors are obtained as the square roots of the
elements in the diagonal of the inverse of the negative of the
Hessian of the conditional log-likelihood calculated at the
conditional maximum likelihood estimates.

In next section, a Monte Carlo simulation experiment will
be conducted to evaluate the performance of the estimators
discussed in this section.

4. MONTE CARLO SIMULATION STUDY

In this section, the properties of the estimators discussed
in the previous sections are now investigated for finite sam-
ple sizes T = 100, 200, 400 and 800 from INARZMG(1) se-
ries with α = 0.4, {εt}t∈Z being an i.i.d. ZMG sequence
with μ = 1 and π = −0.4,−0.2, 0.2 and 0.4. For each dif-
ferent situation, we have estimated the empirical mean and
the mean squared error (MSE). All simulations were carried

out using the R programming language [14]. The number of
Monte Carlo replications was 5000.

Table 2 presents the empirical mean and MSE’s (given in
parentheses) of the different estimators for INARZMG(1)
process. Note that as the sample size increases, the bias
tends to zero in all three cases, confirming that the estima-
tors are asymptotically unbiased.

Figure 1 shows the bias of the simulated estimates of α, μ
and π. From this figure, we observe that all estimators (for
π = 0.4) of the parameters are positively biased, i.e. the
estimators don’t exceed the true value of the parameters.
Figure 2 shows the MSE of the simulated estimates of α, μ
and π. From this figure, we observe that the CLS and YW
estimators have almost the same MSE. The empirical inves-
tigation presented here suggests that the performance of the
CML estimator is superior to those of the YW and CLS esti-
mators. Therefore, we recommend the use CML estimator as

Table 2. Empirical means and mean squared errors (in parentheses) of the estimates of the parameters for (α, μ) = (0.4, 1)
and some values of π and T

α μ π

T π α̂YW α̂CLS α̂CML μ̂YW μ̂CML π̂YW π̂CLS π̂CML

100 −0.4 0.3718 0.3759 0.3866 1.0121 1.0107 −0.4905 −0.4807 −0.4450

(0.0104) (0.0103) (0.0066) (0.0485) (0.0408) (0.1071) (0.1055) (0.0614)

−0.2 0.3718 0.3758 0.3843 1.0017 1.0023 −0.3025 −0.2940 −0.2584

(0.0102) (0.0101) (0.0068) (0.0577) (0.0457) (0.1105) (0.1092) (0.0651)

0.2 0.3737 0.3775 0.3895 0.9928 1.0056 0.0961 0.1014 0.1559

(0.0106) (0.0106) (0.0053) (0.0909) (0.0643) (0.0956) (0.0947) (0.0444)

0.4 0.3699 0.3741 0.3901 0.9665 0.9950 0.2847 0.2893 0.3585

(0.0114) (0.0114) (0.0054) (0.1193) (0.0812) (0.0865) (0.0853) (0.0330)

200 −0.4 0.3865 0.3886 0.3942 1.0048 1.0034 −0.4474 −0.4427 −0.4233

(0.0051) (0.0051) (0.0032) (0.0245) (0.0200) (0.0548) (0.0546) (0.0294)

−0.2 0.3858 0.3877 0.3925 1.0004 1.0015 −0.2520 −0.2480 −0.2267

(0.0052) (0.0052) (0.0032) (0.0289) (0.0226) (0.0547) (0.0544) (0.0296)

0.2 0.3876 0.3896 0.3958 0.9893 0.9957 0.1450 0.1478 0.1775

(0.0054) (0.0054) (0.0025) (0.0447) (0.0304) (0.0437) (0.0433) (0.0181)

0.4 0.3843 0.3862 0.3941 0.9850 0.9983 0.3438 0.3459 0.3806

(0.0058) (0.0058) (0.0025) (0.0596) (0.0393) (0.0360) (0.0357) (0.0132)

400 −0.4 0.3933 0.3943 0.3968 1.0057 1.0036 −0.4202 −0.4177 −0.4097

(0.0025) (0.0025) (0.0016) (0.0124) (0.0096) (0.0277) (0.0276) (0.0140)

−0.2 0.3925 0.3934 0.3961 0.9979 0.9984 −0.2288 −0.2269 −0.2158

(0.0026) (0.0026) (0.0016) (0.0142) (0.0111) (0.0265) (0.0263) (0.0141)

0.2 0.3929 0.3940 0.3976 0.9952 0.9992 0.1691 0.1706 0.1882

(0.0027) (0.0027) (0.0013) (0.0242) (0.0154) (0.0220) (0.0219) (0.0088)

0.4 0.3919 0.3929 0.3973 0.9912 0.9994 0.3708 0.3719 0.3915

(0.0030) (0.0029) (0.0012) (0.0319) (0.0200) (0.0169) (0.0168) (0.0061)

800 −0.4 0.3965 0.3970 0.3983 1.0012 1.0003 −0.4132 −0.4120 −0.4078

(0.0012) (0.0012) (0.0008) (0.0060) (0.0047) (0.0138) (0.0138) (0.0069)

−0.2 0.3969 0.3974 0.3981 1.0010 1.0008 −0.2125 −0.2115 −0.2069

(0.0013) (0.0013) (0.0007) (0.0076) (0.0056) (0.0137) (0.0137) (0.0065)

0.2 0.3966 0.3971 0.3990 0.9997 0.9985 0.1880 0.1886 0.1948

(0.0014) (0.0014) (0.0006) (0.0120) (0.0080) (0.0104) (0.0104) (0.0041)

0.4 0.3955 0.3960 0.3988 0.9930 0.9988 0.3828 0.3833 0.3946

(0.0015) (0.0015) (0.0006) (0.0157) (0.0099) (0.0080) (0.0080) (0.0029)
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Figure 1. Bias from 5000 simulated estimates of α, μ and π.

the estimators for the parameters of a INARZMG(1) model,
having a good performance in terms of bias and MSE.

5. REAL DATA EXAMPLES

In this section, we compare the proposed process by
means of two real data sets (with deflation and infla-
tion of zeros) for illustrative purposes. We compared the
INARZMG(1) process with the INARG(1) process (special
case) [7] and ZINAR(1) process [6]. In order to estimate the
parameters of these processes, we adopt the CML method
(as discussed in Section 3) and all the computations were
done using the R programming language [14].

5.1 Modelling deflation of zeros

In the first application, we consider a count data time
series about the utilization of the examination room of the

Figure 2. MSE from 5000 simulated estimates of α, μ and π.

emergency department of a children’s hospital. The data
were monitored on Thursday, 16 July 2009. Within time in-
tervals of 10-min length (between 08:00:00 and 23:59:59), the
number of patients between the call for examination and the
first treatment were determined. The proportion of zeros in
the series considered is 4.17%. Then, we have evidence that
there is deflation of zeros in the emergency counts. Thus,
the use of the INARZMG(1) model for fitting this data set
seems justified. Table 3 displays some descriptive statistics
of the emergency counts. The time series data and their sam-
ple autocorrelation and partial autocorrelation functions are
displayed in the Figure 3.

Analyzing Figure 3, we conclude that a first order au-
toregressive model may be appropriate for the given data
series, because of the clear cut-off after lag 1 in the partial
autocorrelations.
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Table 3. Descriptive statistics for the emergency counts

Minimum Median Mean Variance Maximum T

0 2.5 2.5625 1.8697 7 96

Figure 3. Plots of the time series, autocorrelation and partial
autocorrelation functions for the emergency counts.

Table 4. Estimates of the parameters (standard errors in
parentheses) and goodness-of-fit statistics for the emergency

counts

Model CML Estimates AIC BIC

α̂ 0.6344 (0.0659) 275.97 283.66
INARZMG(1) μ̂ 0.2344 (0.0867)

π̂ −3.0346 (1.3683)

α̂ 0.6321 (0.0684) 276.54 284.24

ZINAR(1) λ̂ 0.4566 (0.1544)
ρ̂ −1.0839 (0.6445)

INARG(1) α̂ 0.7559 (0.0379) 290.11 295.24
p̂ 0.3883 (0.0464)

Table 4 provides the estimates (with standard errors in
parentheses) of the model parameters and two goodness-
of-fit statistics: Akaike information criterion (AIC) and
Bayesian information criterion (BIC). In general, it is ex-
pected that the better model to fit the data presents the
smaller values for these quantities. From this table, we ob-
serve that the proposed model being better.

The mean, variance and dispersion index within the es-
timated model [INARZMG(1)] are given by, respectively,

μ̂X = 2.5867, σ̂2
X = 1.8319 and ÎX = 0.7082. Note that

these values for the fitted model are close to the corre-
sponding empirical values. The proportions of zeros based
on the estimated INARZMG(1) model is 0.0366 (using (5)
with M = 1000), the empirical one 0.0417. Furthermore,
analyzing Table 4, note that π̂ < 0, which implies that the
model presents deflation of zeros. We test the null hypoth-
esis H0 : INARG(1) against the alternative hypothesis H1 :
INARZMG(1), i.e., H0 : π = 0 against H1 : π 	= 0 (with
a significance level at 5%). The conditional likelihood ra-
tio (LR) statistic to test the hypothesis is 16.15 (p-value
< 0.01). Thus, we reject the null hypothesis in favor of
the INARZMG(1) model using any usual significance level.
Also, the residuals (from INARZMG(1) model) are not cor-
related.

5.2 Modelling inflation of zeros

The second data set is obtained from the crime data
section of the forecasting principles site (http://www.
forecastingprinciples.com). This data series represents the
drug reselling criminal acts which took place in the area of
Pittsburgh which is under the jurisdiction of the 56th police
car beat. The data consist of 144 observations, starting in
January 1990 and ending in December 2001. The series has
a large proportion of zero values. The proportion of zeros
in the Drugs-56 series is 47%. This basically means that in
these years there were no crimes or the offenders were not
arrested; however, there are not such long periods of lack of
crimes, i.e. there are no such long runs of zeros. Then, we
have evidence that there is inflation of zeros in the Drugs-56
series. Thus, the use of the INARZMG(1) model for fitting
this data set appears justified.

The series, autocorrelation and partial autocorrelation
functions are displayed in Figure 4. Examining the Figure
4 we conclude that a first-order autoregressive model may
be appropriate for the given data series, given the pattern
of the sample partial autocorrelation function and the clear
cut-off.

Table 5 displays some descriptive statistics for the Drugs-
56 counts data. We see that the sample variance is larger
than the sample mean. Table 6 gives the CML estimates
(with standard errors in parentheses), AIC and BIC for
the fitted models. Since the values of the AIC and BIC are
smaller for the INARZMG(1) process compared to those val-
ues of the ZINAR(1) and INARG(1) models, the new model
seems a competitive model for these data.

The mean, variance and dispersion index within the es-
timated model [INARZMG(1)] are given by, respectively,

μ̂X = 1.722, σ̂2
X = 5.7827 and ÎX = 3.3584. Note that

these values for the fitted model are close to the corre-
sponding empirical values. The proportion of zeros within
the fitted INARZMG(1) model equals 0.4219 (using (5)
with M = 1000), the empirical one 0.4653. Thus, the pro-
posed model works well for capturing the proportion of zeros
in this application. Furthermore, analyzing Table 6, note
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Figure 4. Plots of the time series, autocorrelation and partial
autocorrelation functions for the Drugs-56 counts data.

Table 5. Descriptive statistics for the Drugs-56 counts data

Minimum Median Mean Variance Maximum T

0 1 1.7153 6.4289 13 144

Table 6. Estimates of the parameters (standard errors in
parentheses) and goodness-of-fit statistics for the Drugs-56

counts data

Model CML Estimates AIC BIC

α̂ 0.1482 (0.0686) 502.64 511.55

INARZMG(1) μ̂ 2.0873 (0.3281)

π̂ 0.2973 (0.0808)

α̂ 0.2156 (0.0535) 527.20 536.11

ZINAR(1) λ̂ 2.9131 (0.2604)

ρ̂ 0.5351 (0.0502)

INARG(1) α̂ 0.1148 (0.0729) 512.49 518.43

p̂ 0.6035 (0.0316)

that π̂ > 0, which implies that the model presents infla-
tion of zeros. Testing the null hypothesis H0 : INARG(1)
against the alternative hypothesis H1 : INARZMG(1), we
find that the LR statistic has the value 11.85 (p-value
< 0.01). We conclude that the INARZMG(1) model is
significantly better than the INARG(1) model. Further-
more, the sample autocorrelations of the residuals obtained
from the INARZMG(1) model do not show any significant
value.

APPENDIX A. APPENDIX SECTION

A.1 Proof of Proposition 3

Let X1, . . . , XT be a sample of an INARZMG(1) process.
It can be verified that the regularity conditions given in
Theorem 3.2 of [9], p. 634, are satisfied by INARZMG(1)
process.

Consider the following quantities Et|t−1 ≡ E(Xt|Xt−1) =
αXt−1 + μ(1 − π) and dt|t−1 = Var(Xt|Xt−1) = α(1 −
α)Xt−1 + σ2

ε , and calculate

∂Et|t−1

∂α
= Xt−1,

∂Et|t−1

∂π
= −μ,

∂2Et|t−1

∂α2
= 0,

∂2Et|t−1

∂π2
= 0,

∂2Et|t−1

∂π∂α
= 0.

Define the 2× 2 matrix V according to Equation (3.2) in
[9] as

V = E

⎛⎜⎝
⎡⎢⎣

∂Et|t−1

∂α

∂Et|t−1

∂π

⎤⎥⎦[∂Et|t−1

∂α

∂Et|t−1

∂π

]⎞⎟⎠
=

⎛⎝ E(X2
t−1) −μE(Xt−1)

−μE(Xt−1) μ2

⎞⎠ =

(
μX,2 −μμX

−μμX μ2

)

and the 2 × 2 matrix W according to Equation (3.5) in [9]
as

W=E

([
∂Et|t−1

∂α
∂Et|t−1

∂π

]
dt|t−1

[
∂Et|t−1

∂α

∂Et|t−1

∂π

])

=

⎛⎝ α(1− α)μX,3 + σ2
εμX,2 −μ[α(1− α)μX,2 + σ2

εμX ]

−μ[α(1− α)μX,2 + σ2
εμX ] μ2[α(1− α)μX + σ2

εμX ]

⎞⎠.

Hence, the estimators α̂CLS and π̂CLS CLS of α and π
have the following asymptotic distribution:

√
T [(α̂CLS, π̂CLS)

� − (α, π)�]
d−→ N2((0, 0)

�,V−1WV−1).
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