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A sequential majorization method for
approximating weighted time series of finite rank*

Hou-Duo Qif, JIAN SHEN, AND NAIHUA XIU

The low-rank Hankel matrix optimization has become
one of the main approaches to the signal extraction from
noisy time series of finite rank. The approach is particularly
effective if different weights are enforced to the data points
to reflect their relative importance. Two guiding principles
for developing such an approach are (i) the Hankel ma-
trix optimization should be computationally tractable, and
(ii) the objective in the optimization should be a close ap-
proximation to the original weighted least-squares. In this
paper, we introduce a sequential approximation that sat-
isfies (i) and (ii) based on the technique of majorization.
A new approximation is constructed as soon as a new it-
erate is computed from the previous approximation and it
makes use of the latest gradient information of the objec-
tive, leading to more accurate an approximation to the ob-
jective. The resulting subproblem bears a similar structure
to an existing scheme and hence can be efficiently solved.
Convergence of the sequential majorization method (SMM)
is guaranteed provided that the solution of the subproblem
satisfies a sandwich inequality. We also compare SMM with
two leading methods in literature on real-life problems. Sig-
nificant improvement is observed in some cases.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62M10,
62M15; secondary 62P99.

KEYWORDS AND PHRASES: Singular spectrum analysis,
Time series of finite rank, Hankel matrix, Majorization
method, Alternating projection.

1. INTRODUCTION

Singular spectrum analysis (SSA) has become one of the
leading methods in approximating structured time series
and has been widely used in many disciplines. We refer to
the two comprehensive books [13, 15] for a systematic treat-
ment of SSA; however, one drawback that SSA has often
been criticized of is that it assigns Hankel-type weights for
the time series concerned. In particular, the weights assigned
to data at the both ends of the data series are smaller than
those at the middle. This drawback could be serious when
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the newest data should bear higher weights than the old
ones. At extreme, it is more reasonable that there should be
no weights (e.g., zero weights) assigned to the missing data
points. Therefore, developing an efficient scheme of handling
weights is extremely important yet challenging and it has be-
come a focal point of the two recent papers [11, 28], where
tractable approximation schemes have been developed. In
this paper, we introduce a new approach of sequential ap-
proximation via majorization. We will demonstrate that the
new approach is very promising in handling arbitrarily given
weights.

Let xT = (x1,22,...,2x5) € X" be a time series of length
N. Suppose L > 0 is a given integer known as window
length. We define the L-lagged vector

XzT = @i, Tig1,. - Tiyr—1]

and the L-lagged data matrix X

(1)

where K := N — L+ 1,7 : XV = H maps x to the Hankel
matrix X defined in (1) and “:=" means “define”. Let r > 0
be another given integer. We let X~ denote all the time
series of length N whose Hankel matrices do not have rank
greater than r:

X = T(X) = [X13X27' "7XK]7

XY= {xeX" | rank(T(x)) <r}.

Such a low-rank Hankel representation of time series has
many important applications such as true signal separation
from its noisy corruptions. In particular, it has a close link to
time series that are governed by a linear recurrence relation.
We refer the interested reader to [13, 15, 11, 28]. We say that
a time series in X has a finite rank.

Now suppose we have a noise corrupted series y € X%,
Our purpose is to find the nearest approximation to y from
X¥ in the following weighted norm:

N

(2) min [lx =yl => wilzi—y:)? st xeX,
=1

where w? := (w1, ...,wy) with w; > 0,43 =1,..., N being

given weights. As pointed out in [11], the choice of w;’s can
reflect the importance of known data. Practical scenarios
include data missing and the newest data weighting more
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than the old data (e.g., monotone weights wy < wy < --+ <
wy). Therefore, (2) provides more a convenient model in
approximating observed time series; however, the price for
such convenience is that the problem is difficult to solve. It
is noted that the problem (2) is the same as that defined by
Eq. (1) in [11] with the distance function p(-,-) defined by
Eq. (8) there.

The method of SSA is a leading method for (2) with
a special choice of the weight vector w. It tries to solve
the following optimization problem in terms of the rank-
deficient Hankel matrix:

3)

where Y := T(y) and M is the set of matrices of size L X
K and M, C M consists of those in M whose ranks are
not greater than r. A widely used method for (3) is the
Cadzow method [4] and the SSA is just one iteration of
Cadzow’s method. Both methods are to be described in the
next section (see (7) and (8) below). Translating to the form
of (2), the problem (3) corresponds to the following choice
of w (assuming L < K without loss of any generality, see
28, Ba.(4))):

min || X —Y?, st. XeHnM,,

1 fori=1,...,L—1
fori=1L,.... K
N—i+1 fore=K+1,...,N.
It is obvious that the weights at the both ends of the series
are smaller than that in the middle part and this weighting
is against the common usage that the newest data should
have weights not smaller than those for the old data.
Gillard and Zhigljavsky [11] proposed a scheme that ap-
proximates (2) by solving the computationally tractable
(Q, R)-norm problem:

@ ™0 X =Yg = Tr(Q(X ~Y)R(X — Y)T)
s.t. XeHNM,

where ) and R are positive diagonal matrices of size L x L
and K x K respectively, and Tr(A) is the trace of A. The
choice of (@, R) matrices was accomplished in [11] through
a convolution operator, which itself is a nonlinear opti-
mization problem. In another development, Zvonarev and
Golyandina [28] propose to solve

5 mn X -YE= Tr((X ~Y)CO(X — Y)T)

s.t. XeHnNM,,

where C' is a K x K positive semidefinite symmetric ma-
trix. A computationally tractable choice is when C' is pos-
itive diagonal, leading to a class of choices represented as
Cadzow(w) with a > 0 and a particular C' choice in [28].
Many interesting results can be found in the two papers
about those two approximation schemes. In particular, the
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equivalence between (2) and (4) or (5) has been established
in [11, 28] for some special choices of the weight vector w.

In this paper, we propose a new approximation scheme
via majorization, a technique that has been widely used in
dealing with hard optimization problems such as multidi-
mensional scaling [6], the low-rank correlation matrix prob-
lem [8], convex semidefinite programming [19, 22|, and the
Euclidean distance matrix problem with low-embedding di-
mensions [24]. Rather than approximating the hard problem
(2) once as in [11, 28], the new scheme yields a sequential
approximations, which are hoped to provide more and more
an accurate approximation each step. Each approximation
subproblem of our scheme enjoys the form of (4) or (5) and
hence it is relatively easy to solve. We will demonstrate the
advantage of the proposed scheme over the existing methods
in [11, 28] on two popular test problems in literature.

The paper is organized as follows. In the next section, we
describe some necessary material needed for later develop-
ment. In particular, we will describe the weighted projec-
tions onto H and M, respectively. Section 3 develops the
sequential approximation scheme based on the majorization
technique and its resulting method, named as SMM for Se-
quential Majorization Method. We will show that the sub-
problem of SMM can be reformulated as (Q, R)-norm approxi-
mation problem, see Prop. 3.1. Under a sandwich inequality
condition, SMM is shown to be convergent in terms of the
objective function value (Thm. 3.3). We will use linear pro-
gramming to improve our approximation in Sect. 4, where
we list 4 choices in constructing fast and practical approxi-
mations. In Sect. 5, we compare our method with the (Q, R)-
norm method [11] and the Cadzow(a) method [28] using two
popular test problems. Significant improvement is observed
in some cases. We conclude our paper in Sect. 6.

2. PRELIMINARIES

This part describes most notation used in the paper with
some results on the classical SSA and Cadzow’s method [4].
Continuing with the notation already used in the introduc-
tion such as M, M,. and H, we emphasize that we use bold-
faced lower case letters for column vectors. For example, x
is a column vector in RV and its elements are denoted as
xz;, ¢ = 1,...,N. In particular, 1, is the vector of all ones
in RY. We use x > 0 to say that x is nonnegative and /x
to be the componentwise square root vector of x > 0 (i.e.,
the ith element of \/x is \/z;). The upper case letter such
as A is often for a matrix, whose elements are denoted as
ai;. The inner product in M is standard:

(A, B) :=Tr(ATB), V A,Be M.
Throughout the paper, the induced Frobenius norm is used
and is denoted as || - || and Y is reserved for the Hankel
matrix 7 (y) that defines (3). For two vectors p and q in
RY, (p o q) denotes the vector of their Hadamard product



defined by

N
poq:= (ZH%‘) oo
=1

The Hadamard product of two matrices of same size is de-
fined Similarly: (A o B)ij = aijbij.

Suppose 2 is a closed set in M. For a given A € M, we
use IIg(A) to denote its projection on €. That is, IIg(A) is
an optimal solution of the following problem:

(6)

When Q = H, then I3 (A) has a closed-form solution, which
is obtained by anti-diagonal averaging of A (see for example
[13, 14]). When Q = M, I o4,.(A) also has a closed form so-
lution, which can be obtained through the singular value de-
composition (SVD) of A (see for example [26, 12, 4, 13, 14]).
The two projections are the basic elements in the method of
SSA and Cadzow’s method [4], both of which aim to solve
the problem (3). The SSA computes

min | X — Al|, st. X eQ.

~

(7) X =Ty (T, (V)

and the Cadzow method iteratively computes a sequence
{X"*} by starting with X° =Y

(8) X1 :HH(HM,(X’“)), k=0,1,....

Cadzow’s method outputs X as the final iterate in (8) when
convergence is observed. In fact, one can view (7) as just
one iteration of (8). The rest of the SSA method and the
Cadzow method is same and is to extract structural signals
from the spectral information of X. An excellent empirical
comparison of the two methods can be found in Gillard [9].

We note that the problem (3) corresponds to a special
choice of the weight vector w; however, our purpose is to
develop methods for arbitrary given weights. We will need
the following generalized projections. For two positive vec-
tors p € R and q € R¥, define

P := diag(\/p)

Note that the square root was used to define the diagonal
matrices P and @ (this will simplify our future computa-
tion). We let Hg_f’q)(A) denote the optimal solution of the
following problem

and

Q = diag(va)

min ||P(X — A4)Q|, st. X e®H.

Due to the special structure of Hankel matrices, Hgf D(4)
has a closed-form solution, which is given by (see [28,
Prop. 2])

P9 (A)

9) =T(a),

where a € RY is given by

o Ze+k:i+1(p€%)aij
' Z£+k:i+1 (m%)

It is easy to see that when p = 1 € RF and q = 1 € RX,

Hgf ) (A) reduces to Iy (A) obtained via anti-diagonally av-

eraging A. We further let HS&’ )

lution of the problem

(A) denote an optimal so-

r

min ||P(X — A)Q|, s.t. X e M,.

It follows from [11, Theorem 2] that Hgf,’[’:l) (A) can also be
obtained through SVD of (PAQ) and is given by

(10) 0¥ (4) = P~ (I, (PAQ) Q.

We finish this section with a brief description of the well-

known Cadzow(«) method [28]. Suppose h := N/L is an
integer. For a given a > 0, we define q := q(a) € R by

. 1 ifi=jL+1forj=0,---,h—1
a:(e) _{ a  otherwise.

For this special case, it is known ([10, Lemma 1]) that the
problem (2) with w; = 1 is equivalent to the problem (5)
with C = diag(q(0)). For a given a > 0, the Cadzow(«)
method [28, Alg. 5] is as follows. Start with X =Y, p =1
and q = q(«), compute

xR — Hg_rlnq) (Hg\r:{:l) (Xk)), k=0,1,....

This method with o« = 0.2 will be tested for the data of
fortified wine sales (N = 168, L = 84) in Sect. 5.3.

3. SEQUENTIAL APPROXIMATIONS VIA
MAJORIZATION

In this section, we will describe our new approxima-
tion scheme and draw connections whenever possible to
that studied in [11, 28], which also handle arbitrarily given
weights in (2).

3.1 Reformulation as Hankel matrix
optimization

Our first step is to reformulate (2) as an optimization
of Hankel matrix. For a given weight vector w € RV with
w; > 0, we let /W denote the componentwise square-root
vector, whose elements are \/w;, ¢ = 1,..., N. We also define
the vector v € RY by (assuming L < K)

1/i
1/L
1/(N —i+1)

fori=1,...,L—1
fori=1L,.... K
fori=K+1,...,N.

V; =
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Let
(11) M = T(Vvoyw).

It is straightforward to verify that the weighted problem (2)
is equivalent to

(12) min F(X) 1= J[Mo(X-V)|>, st X € HOM,.
Tt is noted that the equivalence between (2) and (12) is also
a direct consequence of [28, Propostion 4] and that there
are other choices for v which serve the same purpose of es-
tablishing the equivalence between (2) and (12). We further
note that the problem (12) is extremely difficult to solve
unless the weight vector w has certain special properties.
Unfortunately, even the most common choice of w =1 (the
vector of ones) would render the problem computationally
intractable to get its optimal solution. Hence, approxima-
tions appear to be an effective approach for (12).

Zvonarev and Golyandina [28] proposed to approximate
f(X) in (12) by

min fze(X) = %Tr((X ~Y)O(X —Y)T)

1X - Y2, st. X e HNM,,
where C' is a K x K positive definite matrix. We refer to
the norm || X||¢ as the C-norm of X. A particular case is
when C is diagonal where C := diag(¢) with ¢ € RX being
defined as the column average of the matrix (M o M):

(13) ¢j = i3 Zm?jv

With this particular choice of ¢, the corresponding weighted
Cadzow method of (8) is called the Cadzow-C' method in [28].
Another choice is C := diag(c(a)) with o > 0 and c(«) €
RX being defined in a special manner, see 28, Eq. 20]. This
choice results in the Cadzow(«) method in [28].

Gillard and Zhigljavsky [11] aim to provide a closer ap-
proximation to (12) by the (@, R)-norm problem (4), where
the diagonal matrices @ := diag(q) and R := diag(r) are
selected through the following optimization:

(14)  min ||w—qx*r|?, st qeRE reRE,
where q * r is their convolution, see [11, Theorem 1]. The
optimization problem (14) is usually hard to solve due to
the nonlinearity of the convolution operator. We refer to (4)
as the (@, R)-norm method.

3.2 Approximation via majorization

The purpose of this part is to develop a new approxi-
mation which is easier to solve by existing methods such
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as Cadzow’s method. Suppose we have a pair of positive
vectors p € RY and q € R¥ satisfying the property:

1Mo X|| < I(vPya ) o X||

where the matrix M is defined by (11). There are many such
pairs (p,q). We will address the issue of choosing p and q
in the next section. Both sides of (15) can be thought as
weighted norms of X. The difference is that the weighted
norm on the right-hand side is defined by a rank-one matrix
(pa’) and the optimization problem with respect to this
weighted norm is easier to solve than that given by the ma-
trix M on the left-hand side. Moreover, the weighted norm
on the right is always above that on the left. This will yield
the important majorization problem below. Define the new
function for all X, Z € M

(X, Z) =

(15) for all X € M,

[2)+(V[f(2), X - Z)
+3l(vPyva) o (X - 2)|>

We have the following properties

(16)

Proposition 3.1. Consider the problem (12). It holds that

and
(18) FX) < f(X,2) VX, ZeM.

Moreover, we have for any given Z € M

1
1 in fn(X,2)= in —||P(X —A 2
(19) arg min fm (X, Z) = arg min 5| P( 2)Q

where P := diag(,/p) and Q := diag(\/q), and the matriz
Ay € M is given by
(20) Ay:=Z—-P32MoMo(Z-Y))Q 2

Proof. The equality (17) is obvious. As for the inequality
(18), we have

fm(X,2) = f(Z2) +(Vf(2), X - Z) + %HMO (X -2))*

+5lIBYa) o (X = 2|2 = 5IIM o (X — 2)|?

>0 because of (15)
> f(2)+ (V(2), X = 2)+ 5|M o (X - Z)|?
= F(X)

The last equality holds because f(-) is quadratic and its
second order Taylor expansion is exact.
We now prove (19). We note that

I(vVpva )oX| =|PXQ|, VXeM,



Using this observation, we have

argmin f,(X,”2) = arg)r(réi/r\l/l (Vf(Z2), X - Z)

5l o (X - 2)?

= arg)r{r.leijr\%MoMo(Z—Y), X -2

1
+5I1P(X ~ 2)Q|?
1
= arg min S|P(X - 2)Q
+P T (MoMo(Z~-Y)QH|?
1
= in —[|P(X — A 2
arg min - || P( 2)QI,
where
Ay:=Z—-P3*MoMo(Z-Y))Q 2
This proved the claim in (19). O

Because of the properties in Proposition 3.1, f,,,(Z, X)
is known as a majorization of f(X) at a given point. The
computational implication is that we may minimize this new
function instead of the original function provided that the
new function is easier to minimize. This approximation pro-
cedure shall be repeated until convergence is observed. We
formally describe this computational procedure below.

Let X* be the current iterate. We try to find the next
iterate by
(21) X! cargmin f,, (X, X"), st. X e HNM,.
We note that the problem may have multiple solutions. Sup-
pose X* € H N M,. We immediately have

(22) FXFTY) < f (X XF) < fo(XF XF) = F(XP),

where the first inequality follows from (18); the second
inequality is because of (21); and the last equality follows
from (17). This means that the majorization procedure
generates a sequence { X"} with decreasing objective func-
tion values in the original function f(X). The inequality
in (22) is known as the sandwich inequality [7]. We also
note that f,,(X,X%) makes use of the latest gradient
information V f(X*) and hence provides a rather accurate
(local) approximation of f(X) at X*. We make further
comments below.

(R1) The first comment is that our subproblem (21) is
the type of (@, R)-norm problem (4) studied in [11]. It fol-
lows from (19) that the optimization problem (21) is equiv-
alent to
(23)

1
min || P(X — ARQI?,  st. X eHNM,,

where AF is obtained from (20) by replacing Z with X*:
AP =Xk P 2(MoMo(XF-Y))Q 2

‘We further note that

IPOE—aMQ? = Tr(P(X - AMQQ(X* - AMTP)

- Tr(PQ(X ~AMQA(X — Ak)T)
= HX*AkH%PaQZ),

which is exactly the type of the (Q, R)-norm defined in
[11, Eq. (9)] (see also (4)). Therefore, our subproblem
is the type of the approximation problem considered in
[11]. Consequently, the method of alternating projection
proposed in [11]) (e.g., Cadzow’s method) can be used to
solve (23). The essential difference from [11] is how we have
derived the sequential approximations by defining AF.

(R2) The second comment is that our approximation also
includes the problems (3) and (4) as special cases. This fol-
lows from choosing M = E (the matrix of all ones) and
p=1¢c Rl q =1 € RE. This immediately suggests
that we may use the diagonally weighted version of the SSA
method or Cadzow’s method to solve the subproblem (23),
with the projections IIy(:) and IIx,.(+) in (7) and (8) be-
ing respectively replaced by H,(f[ ’q)(~) in (9) and Hg\r/’[’rq) (+) in
(10). We will address the implementation issue in the nu-
merical part. Moreover, if we choose M = pq”, then the
subproblem (23) reduces to

1
min §||P(X -Y)Q|? st. X eHNM,,
which is exactly the approximation problem of (4) consid-
ered in [11].

In summary, we developed a computational scheme for
the weighted problem (2). The scheme amounts to solving a
sequence of approximation problems of (23). It includes both
(3) and (4) as special cases and it is essentially different from
that of [11, 28] in the way how AF is being defined. We put
the scheme in the following algorithmic framework. We call
it Sequential Majorization Method (SMM).

Algorithm 3.2. (Algorithm SMM)

(S.1) Initialization: Given time series x € R™ and the
weight vector w € RY . Choose the window length L.
Compute Y := T (x) and matriz M by (11). Start with
X% =Y and set k := 0.

(S.2) Compute the vectors (p,q) to satisfy the inequality
(15).

(S.3) Compute the next iterate X*T1 which approzimately
solves (21):
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XkJrl

Q

aurgmin{fm(X,Xk)7 st. X € Hﬂ./\/lr}
— angmin { 51P(X - AQ
st. X e HNM,}
with AF being defined by

AF = XF —P72(MOMO (X* —Y))Q’Q,

where P := diag(y/p) and Q := diag(,/q).
(S.4) Repeat (S.3) until certain stopping criterion is met.

We state a convergence result for Alg. 3.2.

Theorem 3.3. (Convergence in terms of the objective
function) Suppose Alg. 3.2 generates a sequence of {X*},
k=1,2,.... We also assume that the approximate solution
XFk+1in (S.8) satisfies

(24) P (XPFELXP) < fn (X, XF),
Then the objective function sequence { f(X*)} is nonincreas-
ing and converges.

Proof. The proof is simple. If the condition (24) is satisfied
by X* and X**! then the sandwich inequality (22) auto-
matically holds because of the reasons given below (22). This
shows that the whole sequence of { f(X*)} is nonincreasing.
Since the function f(X) is bounded below by 0 and the se-
quence {f(X*)} is nonincreasing, it must converge. |

We emphasize that in order for the sequence {f(X*)} to
be nonincreasing, we do not have to require X**! be the
optimal solution of (21), which would be too demanding be-
cause the problem is nonconvex. Fortunately, it is enough
to just compute a point X**1 satisfying (24). As long as
this condition holds, the sandwich inequality will hold and
the functional value sequence {f(X*)} will be nonincreas-
ing. Note that this is true even we do not require X* to
be in the set of H N M,.. This observation is important to
our practical computation and it provides a justification for
using the Cadzow method (8), which does not enforce the
constraint be strictly satisfied. We now address how to com-
pute (p,q) in (S.2) in the next section. We will leave (S.4)
to our numerical part.

4. IMPROVING THE APPROXIMATION

The quality of our approximation is governed by the in-
equality (15), which relies on the two vectors p and q. A
measurement of quality of the approximation is that the
tighter the inequality is, the better the approximation would
be. In this section, we propose two schemes for generating a
pair of (p,q). The rationale behind the two schemes is that
the computation should be very fast. As a matter of fact,
both can be done by solving a linear programming problem.
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4.1 A simple choice of (P, q) and its
improvement

A particular choice of the pair (p, q) satisfying (15) is as
follows. We denote the pair by (p,q):

(25) { v
qr =
It is easy to check that the choice of (p,q) satisfies (15) by
referring to the M matrix (11).
Our purpose below is to reduce (P, q) as much as we can
under the constraint that it still satisfies (15). We note that

a necessary and sufficient condition for (p, q) to satisfy (15)
is

K}, t=1,...,L
LY, k=1,... K.

max{mg | k=1,...,

max{myg, | {=1,...,

>

(26) (peqr) > wi, i=1,...,N.
(=1 k=1: t+k=i+1

Suppose (p,q) takes the following form:

(27) p:==P-s, q:=q—-t 0<s<p, 0<t<q

From all such representations, we would like to find a best
pair that minimizes the following problem:

L K
Ze:l Zkzl Dedk

s.t.  Constraints in (26).

min

(28)

It follows from (27) that

Peqe = (Dp — 50)(Q — tr)
= DGy — (Detr + Gp.50) + st
> Do — (Petr + Gr50),

which implies

Z (Peqr) —w; > Z DG —

l+Ek=i+1 l+k=i+1

Z (et +qpse)—

l+k=i+1

Hence, the constraints in (28) are satisfied if

(29)
Z (Potr + Gpse) < Z Do — Wi, 1=1,...,N.
Ck=it1 Ok=it1
On the other hand, we have for the objective that
L K
ZZ pegr = 17(Pa" )1k
1 k=1
=15((P-s)@—t)" )1k
(30) = (178)(1kt) — [(ALs)(1%a@) + (11P) (1) t)]

+(17p)(1%q).



Define
a:=1%s, p:=1%t, X:=1Tp, ~:=1Fq

The objective becomes

D

Y4

L K
peqr = aff — (ay + BA) + Ay = (A —a)(y — B),
=1k

—

=1
and because of (27)

0<a< and 0<B<n.

It is easy to verify that

1
2/ Ay
We replace the objective function by the right-hand-side

quantity of (31) and replace the constraints in (28) by (29)
to derive a new optimization problem:

2
(31) @B —(ay+BA) + Ay < (m— (ava)) :

(32)

2
ming, 5 (V Ay — ﬁ(av + ﬁ/\))
s.t. Dt kmivr Dotk +Tx50) <D g1 Pely — Wi,
i=1,...,N,0<s<p, 0<t<q.

It follows from the inequality

1
Ay >
B Now

that the problem (32) is equivalent to

(ay + BA)

(33)
maxsy ay+ By = (1Ts)(1%q) + (17p)(1%¢)
s.t. D trmivt Peti +Tuse) < Xpypmin Peli — Wi

i=1,...,N,0<s<p, 0<t<q.

If the optimal solution s (or t) is too close to P (or q), then
the resulting p (or q) in (27) would be very close to 0, which
would cause numerical difficulties when we use the reciprocal
of it in our algorithm (see (S.3) in Alg. 3.2). Therefore, we
introduce a safeguarding parameter 0 < p < 1 such that
s < pp and t < pq. The final problem that we aim to solve
is as follows.

(34)
maxst v+ By = (17s)(1%q) + (11D)(1%t)
s.t. Ze+k=i+1(1_32tk + qksl) < Ze+k=¢+1 ﬁlqk — w;y,

i=1,...,N,0<s<pp, 0<t< pq.

The benefit of all those calculations is that the problem
(34) is a linear programming problem and it can be effi-
ciently solved by any standard linear programming solver.

A side note is that the above technique leading to (33) is
known as relaxation in optimization. We now formally state
our algorithm for improving the pair (P, q).

Algorithm 4.1. (LP(p,q))

(S.1) Input: a pair of positive vectors (p,q) satisfying (15);
0 < p < 1, weight vector w € RN and the window
length L and K = N — L + 1.

(S.2) Use any standard Linear Programming solver to the
problem (34) for the optimal (s,t).

(S5.8) Output: Let

and

Pp=p-—s q:=q-—t.

4.2 A choice of ¢ vector and its
improvement

Another particular choice of (p,q) that gives rise to the
C-norm proposed in [28] is when p := 17 and q := ¢ € R
that satisfies the inequality (15). For example, we can choose
C by
(35) Cp:=max{mjp, | (= 1,...,L},

k=1 K.

Obviously, we have

(36) [|M o X < || Xdiag(Ve)|* = Tr(XCXT) = | X3,

where C' := diag(¢). This is exactly the Cadzow C-norm
used in [28]. The difference here is on the choice of C for it
to satisfy (36) (note that € in [28] was chosen by (13)).

Following the idea in Subsection 4.1, we can improve €
so that the inequality (36) becomes tighter. Let

c:=¢C-—t, 0 <t <pc,

where p is the proportion (i.e., 0 < p < 1) that € can be
reduced. If p is close to 1, then some of the elements in the
resulting ¢ may be close to 0, causing numerical instability
due to the same reasons as for the problem (34). Throughout
our experiments in Sect. 5, we set p = 0.6.

Hence, we choose the best ¢ via the linear programming
problem:

K - K
1k, €) =341 Cr — Dper bk

L K .
s.t. Dol D kel kmigl Ck > Wi, =12, N
0<t<pc,

mingcrx

which is equivalent to
(37)
. K
MiNgerk — Zkzl 123
L K L K ~
S-be D0 Dok tstrhmit1 T S D201 Doketi ki1 Ck — Wi

i=1,2,...,N, 0<t<pe.
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This problem is a simpler type of the linear programming
problem (33). We also note that the problem (37) is derived
without having to rely on any relaxations such as (30), (31)
and (32). We formally call this improvement via (37) as
LP(c), which is stated as follows.

Algorithm 4.2. (LP(c))

(S.1) Input: the weight vector w € RN, the proportion pa-
rameter 0 < p <1, and the vector € by (13)

(S.2) Use any standard Linear Programming solver to the
problem (37) for the optimal t.

(S.3) Output: Let

c:=c¢c—t.

4.3 Quality of the approximation of the
weight vector
In this part, we demonstrate how good is the (p,q)-
approximation to a given weight vector w € RY. We con-

sider the following type of the weight vector, which was ex-
tensively used by [11]:

W = (w17w27‘"7wN7m7wN7m+17"'7wN)7

where m > 0 is a given integer and for a given > 1,
w; = [, i=1,...,N—m

and

WN—-m
m+1

Wi = WN—m— (i—(N—m)), for i = N—m+1,..., N.
Two particular choices of 8 that were used in [11] are 5 =1
and $ = 1.01. Following [11], we label the weight vector w
from 8 =1 by w; and ws for 8 = 1.01.

For a given pair (p,q), the corresponding weight vector
w € RY is given by

L K
{Ei = Z Z (pqu)7

{=1 k=1: {+k=i+1

i=1,...,N.

Because of the majorization inequality (15), we must have

(38) w; > wj, t=1,...,N.

We counsider the 4 pairs of (p, q) listed in Table 1. We also
consider the choice (1,€) with € given by (13) used in [28].
The corresponding weights with the original ones are plotted
in Fig. 1.

It is not surprising to see that all approximations from
our 4 cases are above the original weights. In other words,
the inequality (38) holds. However, for the choice (13) of [28]
and the (Q, R) weights (14) of [11], the weights on both ends
are below the original weights and the weights in the middle
part are close to the original weights. Hence, the choice (13)

or (14) does not give a majorized approximation. We would
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Table 1. Choices of (P, q)

Case 1:  (P,q) by (25)

Case 2:  (p,q) by LP(P,q)

Case 3:  (1,¢) with € given by (35)

Case 4: (1,c) with ¢ given by LP(¢) with p =1

Weights majorization on wy

4 by (1.€)

- by LP(€)
— & — by (p.q)
—-4-— by LP(p.q)

+ by Cadzow-C'
g by (Q.R)

——+— Original w

Weights

Weights Indices: (N =78, L =24, m=6)

(a) Six weight vector approximations to wi

Weights majorization on wa

Weights
N
o

cooodpeee by (1,8)
= by LP(€)
— @ — by (p.q)
—-4-— by LP(p.q)
05t + by Cadzow-C'
: v by (Q.R)
i ——— Original w

0 10 20 30 40 50 60 70 80
Weights Indices: (N=78,L =24, m=6)

(b) Six weight vector approximations to wa

Figure 1. Six approximations of the weight vector wy in
Fig. 1(a) and of wo in Fig. 1(b).

also like to point out that the approximation by LP(p,q)
closely follows the original weights. In theory, the closer
the approximation is, the better the numerical performance
should be provided that the subproblems can be solved glob-
ally. However, the subproblems are of a nonconvex nature.
This echoes the need of global techniques in low-rank ma-
trix approximation through optimization raised in a recent
paper [5]. Therefore, different choice of (p,q) may have its
own advantages depending on the actual applications. We
will see the dependence in our numerical experiments below.



Weights majorization on wy
003
4 by (L@
L by LP(¢)
— & —by(P.9
0.025 - —4-=by[P(p.a)_
* by Cadzow-(
e by (QR)
—+— Original w

0.02

0.015

Weights

0.01 [ 43

0.005

0 10 20 30 40 50 60 70 80
Weights Indices: (N=78,L =24, m=6)

(a) Six weight vector approximations to normalized w1

Weights majorization on ws
0.025
L]
.I
A
ps
0.02 2 Soyr "
) ’g 9;“-
# S »
5 - Y L}
- X 2 i
0.015
2
=
2
o ¢
= +
001 ¢
o png 4 by (L@ \ '_
Y = by LP(&) LY
5 v — o — by (p.q “,‘
0.005 k& ¥ —-4-— by LP(p.g) 4
b N + by Cadzow-C' -
& - by (Q.R) p
A —+— Original w '
0 10 20 30 40 50 60 70 80

Weights Indices: (N =78, L =24, m = 6)

(b) Six weight vector approximations to normalized wa

Figure 2. Six approximations of the normalized weight vector
for wy in Fig. 2(a) and for wo in Fig. 2(b).

As in [28], we also plot the normalized weights (i.e.,
w;/ > w;) for all the six choices and the normalized original
weights in Fig. 2. As can be seen from Fig. 2, the normal-
ized weights w;/ Y w; are not necessarily above the corre-
sponding normalized weights w;/ > w;. The closer the nor-
malized weights are to the original line, the less fluctuation
the weight sequences behave (compare Fig. 1 with Fig. 2).
In particular, the normalized (Q, R)-weights by (14) closely
follow the original weights. This is not surprising because it
is obtained by the overall least-square approximation with-
out having to force any constraints (e.g., majorization con-
straint). It is an interesting question whether we can im-
prove the majorized weights so that their normalized coun-
terparts follow closely the line of the normalized original
weights.

We finish this section by pointing out that there are other
ways to generate (p,q). For example, the inequality (15)
that (p,q) has to satisfy can be cast as a rank-one nonneg-
ative matrix factorization such that

M=~ pva

and (p, q) satisfies the inequalities in (26). Nonnegative ma-
trix factorization has many applications and hence has many
algorithms (see [20, 21] and the references therein).

5. NUMERICAL EXPERIMENTS

In this part, we report our preliminary numerical results
on two popular test problems of real life: the USA death data
[13] and the fortified wine sales data [18] with comparison to
the two major methods (@, R)-norm approximation [11] and
Cadzow(a) method in [28]. The main reason for choosing the
two test problems is that they each was well studied in [11]
and [28] respectively and hence they provide a good base for
our comprehensive comparison with the two main methods.
We first describe the implementation issues of our Alg. 3.2.

5.1 Solving the subproblem

The major computational part in Alg. 3.2 is on solving
its subproblem (23) in (S.3). We propose to use the Cadzow
method for the subproblem. For easy reference, we name
the resulting method as SMM-Cadzow method, which runs
as follows: Start with X°, k := 0, compute the next iterate
X*+1 as the final iterate of the following iterative procedure
(Cadzow’s method applied to the subproblem (23)):

(39) X+ =P (UFV (X)), X0= Ak j=0,1,
We terminate (39) if the following conditions are met

PR - £
max{1, f*(X7}

1X7H — X7

1 or =
X7l

< tol,

where tol is the tolerance level set by the user. In this part,
we used tol = 1073, We terminate Alg. 3.2 if

[fXEH — F(XF)]
max{1, f(X*)}

||Xk+1 _ XkH
[ X5

< tol or < tol.

The convergence of Alg. 3.2 relies on the sandwich inequality
(22), which essentially requires computing X**! € # that
satisfies (24). However, the subproblem (23) is non-convex
and Cadzow’s method is not of global method, the sufficient
condition (24) is not theoretically guaranteed. Surprisingly,
when Cadzow’s method is used to the subproblem (23), the
inequality (24) is often observed. We will demonstrate this
feature when we come to reporting the numerical results.

A sequential method for weighted time series 623



5.2 Example: USA death time series

This is a widely test data [13] and comprehensive results
based on the two weight vectors w; and wy in Subsect. 4.3
were reported in [11], which provides a basis for our compar-
ison. The data set can be easily obtained online and contains
the monthly accidental deaths in the USA between 1973 and
1978. The time series contains a total of N = 78 observa-
tions. Our task is to use the first 72 data points to forecast
the remaining 6 observations (hence m = 6 in defining wy
and wy in Subsect. 4.3). We will use the same parameters
as those given in [17, 11] and follow the suggestion in [11]
that there are several forecasting available to start with for
further improvement. Those forecasts (for the last 6 data
points) as well as their corresponding methods are included
in Table 2, which is copied from [11] and includes 5 forecast-
ing methods. In particular, Model I and Model II are exam-
ples of SARIMA models as described in [2]. HWS represents
the model as fitted by the Holt-Winter seasonal algorithm.
ARAR represents the model as fitted by transforming the
data prior to fitting an autoregressive model. The forecasted
values by SSA are taken from [17]. More details about those
5 methods can be found in [11, Sect. 7.3].

In our experiments below, we will use them as our initial
guess for the last 6 data points. In other words, we have a
data series y € RY with the first 72 data being the first 72
data in the USA death time series, which is denoted as x*
and the last 6 points in y being one of the forecast values
in Table 2. We use X to denote the obtained time series by
Alg. 3.2. The Root of Mean Squared Error (RMSE) is then
defined as

m

Y (@rasi — w301)?/m,

i=1

RMSE :=

which is often used to quantify how good the estimated val-
ues are to the original data. Obviously, the smaller the RMSE
is, the better the forecasting is.

(a) Demonstration of convergence. We implemented
Alg. 3.2 in Matlab and run it in Matlab 2015b. We would
like to take this opportunity to demonstrate the convergence
of Alg. 3.2 in terms of the objective values. For this exper-
iment, we set tol = 107° and the maximum number of
iterations allowed for the subproblem is 100. The choice of
this higher accuracy allows us to observe the trend of the ob-
jective values in many steps (lower accuracy would require
a less number of iterations).

The functional sequence generated by our method are
plotted in Fig. 3 from two starting points (ARAR and SSA
respectively). SMM-Cadzow solved the subproblem iteratively
by (39) and it can be observed in both figures in Fig. 3
that the functional sequence is decreasing and converges.
This is because that the sufficient condition (24) is more
often met than otherwise in SMM-Cadzow. This behaviour of
convergence appears consistence for other test cases. Hence,
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Table 2. Forecasts from five different models
Models 1 2 3 4 5 6
Original data 7798 7406 8363 8460 9217 9316
Model 1 8441 7704 8549 8885 9843 10279
Model 1T 8345 7619 8356 8742 9795 10179
HWS 8039 7077 7750 7941 8824 9329
ARAR 8168 7196 7982 8284 9144 9465
SSA 7782 7428 7804 8081 9302 9333

Performance of SMM-Cadzow with ARAR as Starting Point
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% —p— w; with (p.q)
S 2150 — b = w; with (1)
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(a) Convergence in the objective of SMM-Cadzow
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~—¥ H——— Ak H—%K
s D= D=0 D= b > > —F
1700
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Iterations

(b) Convergence in the objective of SMM-Cadzow

Figure 3. Similar convergence was observed in both Fig. 3(a)
and Fig. 3(b), in terms of functional values respectively
starting from ARAR and SSA point in Table 2.

we will not repeat this demonstration for the fortified wine
sales data.

(b) RMSE comparison. We report the RMSE obtained
by SMM-Cadzow with the 5 starting points from Table 2. The
approximation weights (p,q) used are from Table 1. We
will compare the obtained RMSE with those by the 5 start-



Table 3. RSME comparison between the method SMM-Cadzow and (Q, R)-norm approximation [11], Cadzow-C' method in [28]

B (p,q) 5 starting points
Model I Model II HWS ARAR SSA
Initial RMSE 582.63 500.5 401.26 253.20 278.20
(.49 507.11 411.98 230.52 256.18 305.78
LP(P,q) 473.29 390.22 387.43 262.53 305.41
B=1 (1,¢) 490.79 395.64 425.15 266.32 329.73
(w1) LP(¢) 488.37 389.35 410.13 281.85 324.14
(Q,R) 582.20 486.03 385.81 247.56 276.28
Cadzow-C 557.92 374.32 234.63 257.09 220.11
@9 198.59 433.49 251.30 261.37 218.13
LP(p,q) 504.57 405.41 374.67 253.89 290.88
£/ =1.01 (1,¢) 504.53 440.65 252.44 268.47 222.42
(w2) LP(¢) 511.31 416.99 381.63 266.64 308.74
(Q,R) 559.55 481.91 380.79 244.61 275.68
Cadzow-C 461.48 404.78 249.75 267.71 227.56

ing points, the (@), R)-norm approximation (its results are
copied from [11]) and the Cadzow-C method in [28] (based
on our own implementation).

The RMSE results are reported in Table 3 for the two
weight vectors wy (8 = 1) and wo (8 = 1.01). The first row
(Initial RMSE) of the table includes the RMSE from the 5
initial points in Table 2. We first note that for many cases,
there have been significant reductions in RMSE from each
of the starting point. The numbers in bold indicate they
are the best RMSE obtained from a given starting point by
those methods. It can be observed that for both weighting
schemes w; and wa, the Cadzow-C method of [28] worked
very well. In particular, the Cadzow-C achieved the 2 best
RMSE for w; and 3 best RMSE for wa. The SMM-Cadzow
with (P, q) closely followed the Cadzow-C and achieved the
overall best RMSE (218.13). This trend can be clearly seen
in the Fig. 4, where we only plotted SMM-Cadzow with (P, q)
and LP(P,q) for the case wy, and SMM-Cadzow with (1,¢)
and LP(1,¢) for the case ws for a better visualization. It can
also be seen that the (@, R)-norm approximation method of
[11] did well for the ARAR starting point. For both w; and
Wo, it achieved the best RMSE (247.56 and 244.61 respec-
tively). Therefore, our purpose in the next part is to im-
prove SMM-Cadzow in order to outperform both (Q, R)-norm
method and the Cadzow-C method.

The number of iterations for the above experiments are
reported in Table 4, where It is the number of subproblems
solved in SMM and iter is the total number of Cadzow itera-
tions. For example, the first pair 4(77) in Table 4 means that
for wy and (p,q), SMM-Cadzow solved 4 subproblems by a
total of 77 iterations of (39). In our experiments, we set the
maximum number of subproblems to be solved to 20. As we
can see, there are a few cases where the maximum number
(20) was reached and the numbers for Iter in some cases
are large. Below we propose a strategy that would improve
SMM-Cadzow both in quality of RMSE and in the number of
total iter.

RMSE Comparison for the Death Series ( w1)

—Qr = 5 starting rs
- (Q.R)-norm appraximation
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(a) RMSE: (p7 q) = (ﬁv a) or LP(ﬁ, ﬁ)

RMSE Comparison for the Death Series ( wz)
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Figure 4. RMSE comparison in Fig. 4(a) for wy and Fig. 4(b)
for wo. Data were obtained by SMM-Cadzow with the 5 initial
points given in Table 2.
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Table 4. Number of iterations used by SMM-Cadzouw starting with the 5 points from Table 2

B (p,q) 5 starting points
Model 1 Model 11 HWS ARAR SSA
It (iter) It (iter) It (iter) It (iter) It (iter)
(P.9) 4.(77) 5 (97) 5 (89) 5 (85) 4 (80)
LP(P,q) 6 (117) 20 (360) 4 (72) 5 (91) 4 (80)
B=1 (1,¢) 3 (59) 5 (97) 4 (79) 6 (98) 4 (80)
(w1) LP(&) 5 (95) 5 (95) 4 (80) 5 (92) 3 (60)
(p,Q) 4 (80) 5 (95) 5 (94) 5 (93) 5 (95)
LP(P,q) 20 (329) 20 (339) 5 (94) 20 (334) 4 (80)
B =101 (1,¢) 5 (76) 5 (76) 5 (88) 5 (80) 6 (101)
(W2) LP(&) 20 (320) 20 (330) 13 (252) 20 (310) 20 (330)

Table 5. RSME comparison between the method SMM-Cadzow with the warmstart and (Q, R)-norm method [11], Cadzow-C
method in [28]

B (p,q) 5 starting points

Model I Model 11 HWS ARAR SSA
Initial RMSE 582.63 500.5 401.26 253.20 278.20
.9 507.11 411.98 230.52 256.18 305.78

LP(p,q) 473.29 390.22 387.43 262.53 305.41
8=1 (1,¢) 490.79 395.64 425.15 266.32 329.73
(w1) LP (&) 488.37 389.35 410.13 281.85 324.14
(Q,R) 582.20 486.03 385.81 247.56 276.28
Cadzow-C 557.92 374.32 234.63 257.09 220.11
®,4) 498.59 433.49 251.30 261.37 218.13
LP(p,q) 504.57 405.41 374.67 253.89 290.88

£ =1.01 (1,¢) 504.53 440.65 252.44 268.47 222.42
(wa2) LP (&) 511.31 416.99 381.63 266.64 308.74
(Q,R 559.55 481.91 380.79 244.61 275.68
Cadzow-C 461.48 404.78 249.75 267.71 227.56

(c) Improving SMM-Cadzow via warmstart. It follows
from both Table 3 and Table 4 that the SMM-Cadozw method
has already shown its potential in finding the best RMSE
(218.13) among all the methods tested. In this part, we will
show that its quality and efficiency can be further improved
by incorporating a warm start strategy, which is often used
in a sequential optimization setting. For example, it has been
successfully used in the sequential matrix optimization for
computing a low-rank correlation matrix [8, 23]. We describe
this simple strategy below.

At the kth iteration with X* obtained, we compute

xF =T HXP)

and we replace the first 72 data points of X* by the original
ones in y to get X

xk =%k

. XFT2) =y(1:72).
Finally, we replace X* by Xk
Xk .= T(xh).
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This warm start strategy uses the original 72 data (known)
and the latest prediction for the last 6 missing values in y
to define X*. The subproblem is still solved by the Cadzow
method (39). Hence, it is still convergent with this choice.

Under our stopping criterion (see Subsect. 5.1), only 2
subproblems were needed for each case. The results on
RMSE and the iteration information are reported in Ta-
ble 5 and Table 6, where It = 2 for all cases. It can be
observed that not only the number of iterations (iter) has
been reduced, the RMSE has also seen significant reduc-
tion. Moreover, 4 out of 5 best cases were obtained by our
method for both w; and ws. The remaining one has its
RMSE (247.30 for ARAR starting point) not far from the
best RMSE (244.61 for ARAR starting point by the (Q, R)-
norm method). This is clearly demonstrated in Fig. 5(a),
where the both lines for SMM-Cadzow with (P, q) and (1,¢)
are below the others.

If we were even more “aggressive” in the sense that we

apply the warm start strategy at every iteration. That is,
~J+1

we replace XJ+1 in (39) by X |, we may achieve even

more reduction in RMSE. Fig. 5(b) plotted two cases of

SMM-Cadzow with (p,q) and LP(<). It is observed that both



Table 6. Number of iterations used by SMM-Cadzouw starting with the 5 points from Table 2

8 (p,q) 5 starting points
Model I Model II HWS ARAR SSA
It (iter) It (iter) It (iter) It (iter) It (iter)
P,9 2 (34) 2 (34) 2 (34) 2 (34) 2 (40)
LP(P,qd) 2 (34) 2 (32) 2 (30) 2 (36) 2 (40)
B=1 (1,&) 2 (38) 2 (34) 2 (38) 2 (36) 2 (40)
(w1) LP(¢) 2 (34) 2 (34) 2 (40) 2 (34) 2 (40)
(P, 9) 2 (30) 2 (30) 2 (34) 2 (32) 2 (34)
LP (P, d) 2 (30) 2 (32) 2 (40) 2 (36) 2 (40)
B =1.01 (1,¢) 2 (32) 2 (32) 2 (34) 2 (32) 2 (32)
(w2) LP(¢) 2 (32) 2 (32) 2 (38) 2 (34) 2 (36)
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Figure 5. RMSE comparison in Fig. 5(a) for wo with the
warm-start once and Fig. 5(b) for wy with the more
“aggressive” warm-start. Data were obtained by SMM-Cadzow
with the 5 initial points given in Table 2.

lines for (p,q) and LP(c) are below the other lines (ex-
cept one value 227.56 from Cadzow—a). An interesting prop-
erty is that the two lines are almost horizontal, suggesting
that the solutions are less dependent on the starting point
used. While we note that it may yield better RMSE in some
cases, however, the big question for this “aggressive” use
of the warm start strategy is that the resulting algorithm
may suffer non-convergence. Hence, we choose not to report
any further result for this choice and leave it to our future
research.

5.3 Example: fortified wine sales

This data [18], denoted as X*, consists of the monthly
sales of the fortified wine in Australia from January 1980
to December 1993 and it has been well studied via sev-
eral methods including Basic SSA [13], ESPRIT [25, 15]
and the Cadzow(«) algorithms in [28]. In particular, the
original series X* (N = 168) can be regarded as a realiza-
tion of the noisy signal X = S + IE, where the true signal
S = (s1,...,8n) and the noise E = (€1,...,€x) are respec-
tively given for k =1,..., N by

sk = 3997.74(0.9967)% 4 1174.75(0.9942)% sin(% — 2.249)
+425.75(1.0001)" sin(¥ +2.333)
+ 211.55(1.004)ksin(? + 1.677)
+169.33(1.0007)" sin(% +1.533)
+361.07(0.9884)" sin(¥ —2.901)

and ¢, = 353.17(0.9967)%c), with €, being Gaussian white
noise with mean of zero and variance of one. Please refer to
[28, Sect. 6] for why X* can be approximated this way.

We follow the computational setting used in [28], where
L =84, r = 11 and 1000 random realizations of X have been
used to test the reliability of the underlying algorithms to
extract the true signal S from X. It was demonstrated there
that among a class of Cadzow(«) algorithms, Cadzow(0.2)
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Table 7. RSME and computational cost comparison between the method SMM-Cadzow and Cadzow(0.2) in [28]. The results
are average over 1000 realizations of X

| Method | (p,q) | RMSE-S Mdist-X Mdist-X* ‘ It iter |
(P, Q) 111.69 255.31 306.45 4.43 41.54
SMM- LP(p,q) 114.49 255.80 307.94 4.75 49.85
Cadzow (1,¢) 114.53 255.51 307.81 5.90 58.19
LP(¢) 115.53 255.55 308.31 5.80 59.15

| Cadzow(a) | a=02 | 123.55 261.87 310.61 | - 10.74 |

Table 8. RSME and computational cost comparison between the method SMM-Cadzow and Cadzow(0.2) in [28]. The results
are average over 1000 realizations of X. The stopping criterion for SMM-Cadzow is tol = 10™2 and the maximum number of
iterations for each subproblem is set at 5

‘ Method ‘ (p,q) ’ RMSE-S Mdist-X Mdist-X* ‘ It iter ‘
(P,q) 113.70 255.35 307.40 2.07 10.56
SMM- LP(p,q) 113.28 251.91 307.57 2.35 11.34
Cadzow (1,e) 118.17 256.49 308.96 2.12 11.20
LP(e) 118.56 255.87 309.28 2.27 11.97

| cadzou(a) | a=02 | 123.36 260.80 31055 | - 5 |

performed the best in terms of the RMSE from S. Therefore,
we will compare our SMM-Cadzow method with Cadzow(0.2)
(our own implementation). The stopping criterion used for
Cadzow(0.2) is same as that in [28]. The average results of
RMSE over 1000 realizations are reported in Table 7, where
RMSE-S is the average RMSE between the obtained series
and the true signal S. Since both X and X* contain noise,
RMSE is not an appropriate term any more to represent
the mean-distance (Mdist for short) between the obtained
series X and X or X*. We hence use Mdist-X and Mdist-X*
instead of RMSE-X and RMSE-X* respectively. The column
It includes the average number of the subproblems solved
and iter is the average number of the projections used. In
our experiment, the Gaussian white noise was generated by
setting the Matlab random generator rng = ’default’ so
that the 1000 realizations can be reproduced.

It can be clearly observed that SMM-Cadzow yielded bet-
ter RMSEs for all cases than Cadzow(0.2). In particular, the
choice (P, q) led to the lowest RMSE-S (111.69), but the cost
of the number of iterations is about 5 times as expensive as
Cadzow(0.2) (41.54 vs 10.74 under the iter column in Ta-
ble 7). If we restrict the maximum number of projections
used for each subproblem to be 5 and set the tol = 1072
(rather than 10~3 previously), we still obtained better re-
sults than Cadzow(0.2). This time, the cost is roughly the
same order of magnitude. The results are reported in Ta-
ble 8.

When the true sales data X* is used, the extracted signals
by SMM-Cadzow and Cadzow(0.2) are plotted in Fig. 6 and
the respective RMSE and iteration information are included
in Table 9. Once again, SMM-Cadzow obtained significantly
better results than that by Cadzow(0.2). In particular, if we
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Table 9. RSME and computational cost comparison between
the method SMM-Cadzow and Cadzow(0.2) in [28] when the
sales data X* is used. The stopping criterion for SMM-Cadzow
is set tol = 1073

| Method | (p,q) | RMSE-S  Mdist-X* | It iter |
,9) 99.18 266.52 5 44
SMM- | LP(p,q) | 98.98 26.83 |3 30
Cadzow (1,¢) 99.44 265.93 5 59
LP(¢) | 97.82 2622 |5 55
Cadzow(a) | aa=0.2 121.99 279.55 - 11

look closely at the plots in Fig. 6, the difference between
the extracted signals by the two methods are sizeable and
visible at certain points. For example, at the 5th and 8th
month, the real sales data are (3756,4426). The extracted
data for the two months by SMM-Cadzow are (4418, 5373) and
(4689, 5684) by Cadzow(0.2). Hence, a significant improve-
ment was made by SMM-Cadzow at those two points. We also
like to point out that the performance of the two methods
is quite similar at many other points (see Fig. 6).

Our final remark is about the question whether our final
iterate is able to return a rank r solution. We take it for ex-
ample of the final iterate X by our SMM-Cadzow method with
(p,d) = LP(P,q). The sum of the first 11 largest singular
values of X explains 99.94% of the sum of all singular val-
ues. The ratio between the 12th largest singular value and
the 11th largest singular value is 1.45 x 10~°. Hence, it is
safe to assume that X has the finite rank . The magnitude
of all the singular values can be seen from its log scale plot
in Fig. 7.
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Figure 6. Fig. 6(a) plots the signal extracted by SMM-Cadzow
with the choice LP(P,q)) and RMSE = 98.98. Fig. 6(b) plots
the signal extracted Cadzow(a) with o = 0.2 in [28] and
RMSE = 121.99. The extracted series and their corresponding
original series in X* are linked by a line.

6. CONCLUSION

In this paper, we studied the problem of extracting a time
series of finite rank from its noisy observation under arbi-
trary weights. This problem is known computationally very
challenging and two major methods are already available.
One is the method based on the (@, R)-norm approxima-
tion by Gillard and Zhigljavsky [11] and the other is the
class of methods represented as Cadzow(«) by Zvonarev and
Golyandina [28]. The purpose of this paper is to provide a
third choice based on the technique of majorization.

The key difference is that we approximate the original
problem by a sequence of well-defined subproblems, which
are easier to solve. We demonstrated the advantages of the
proposed method, named as SMM-Cadzow due to the fact that
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Figure 7. Singular values of X in their log,, scale.

the subproblem is solved by the Cadzow method [4]. For ex-
ample, the latest gradient information was used to construct
the new approximation once a new iterate was obtained. The
approximation can be improved through a smaller (p,q)
weights, which can be refined by linear programming (cheap
computational cost). The method was guaranteed to con-
verge if the sandwich inequality is satisfied at each iter-
ate. Moreover, its numerical performance was demonstrated
against two popular test problems and a thorough compar-
ison with the two existing methods were conducted to show
its improvement.

This paper mainly focuses on introducing a new approx-
imation framework and how its quality can be improved.
Several important questions remain to be investigated. For
example, instead of using the Cadzow method for the sub-
problems, a more powerful approach would be to use global
methods as already explored in [16, 5]. It is also an interest-
ing question whether we can define a new objective function
that is ensured to be decreasing to lead to convergence. The
research in nonconvex optimization [1] has strongly indi-
cated that it is promising in tackling nonconvex structural
problems as considered in this paper. We leave those topics
for our future research.
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