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Semiparametric varying-coefficient partially linear
models with auxiliary covariates
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In this paper, we consider a semiparametric varying-
coefficient partially linear model when some of the covari-
ates are only measured on a selected validation set whereas
auxiliary variables are observed for all study subjects. The
semiparametric profile-likelihood procedure for estimating
parametric and nonparametric component which incorpo-
rates information from auxiliary covariates is proposed. The
resulting estimators are consistent regardless of the speci-
fication of the relationship between the covariates and the
surrogate variables. Moreover, the proposed estimators are
asymptotically more efficient than the validation-set-only es-
timators. Asymptotic properties of the proposed estimators
are established. The finite sample performance is investi-
gated and compared with alternative methods via simula-
tion studies. The simulated results demonstrate that the
asymptotic approximations of the proposed estimators are
adequate for practice. We use a Boston Housing dataset to
illustrate the performance of the proposed method in prac-
tice.

AMS 2000 subject classifications: Primary 62G05;
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Keywords and phrases: Incomplete data, Validated sam-
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1. INTRODUCTION

To avoid the risk of introducing modeling biases in para-
metric regression models as well as those drawbacks of non-
parametric regression models (such as the curse of dimen-
sionality, the difficulty of interpretation and lack of extrapo-
lation capability), various efforts have been made to balance
the interpretation of linear models and flexibility of non-
parametric models. The partially linear model is the most
commonly used semiparametric regression model (c.f., [8],
[11], [21], [31], and references therein for the applications
and theoretical developments of partially linear models and
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their extensions). While various extensions of the partially
linear model were proposed in the literature, an important
extension of partially linear model is the semiparametric
varying-coefficient partially linear model (SVPLM). SVPLM
becomes popular and has been intensively studied recently
in the literature. For example, Kai et al. [16] extended the
estimation and variable selection of SVPLM in quantile re-
gression with the application to the plasam beta-carotene
level data; Tian et al. [24] focused on the variable selection
of SVPLM for longitudinal data; Shao et al. [23] incorpo-
rated flexible SVPLM regression tools for interval censored
data with a cured proportion; Bai et al. [1] introduced errors
correlated in space and time for panel data using SVPLM.

Typically, a semiparametric varying-coefficient partially
linear model (SVPLM) can be defined in the following way:

Y = αT (U)X+ βTZ+ ε,(1.1)

where Y denotes the response variable, (U,XT ,ZT ) is asso-
ciated covariates for Y , and ε presents the noise, indepen-
dent of (U,XT ,ZT ) and satisfying E(ε) = 0 and Var(ε) =
σ2. Define β = (β1, · · · ,βq)

T is a q-dimensional vector

of unknown parameters and α(·) = (α1(·), · · · , αp(·))T is
a p-dimensional vector of unknown coefficient functions.
Throughout the paper, we will focus on the univariate U
only, but the proposed method is directly applicable to the
case when U is multi-dimension.

Model (1.1) allows interaction between the covariate U
and X in such a way that a different level of covariate U
is associated with a different linear model. This enables us
to examine the extent to how the effects of covariates X
vary over different levels of the covariate U . It provides a
novel and general structure, which covers many well-known
semiparametric regression models, such as partially linear
models proposed by [8], varying-coefficient models proposed
by [13] and so on. Recently, there are extensive literature
focusing on investigation of the estimation procedure for
Model (1.1), such as [9], [33], [35] and so on. Especially, the
profile likelihood technique introduced in the paper of Fan
and Huang [9] makes the statistical inference for Model (1.1)
become effective and systematic.

However, in some applications, due to the limitations of
the cost, it is prohibitive to collect data on (Y, U,XT ,ZT )
for all subjects in the study. For example, it may be very
difficult or expensive to measure an informative covari-
ate U . But a surrogate W can be easily or cheaply as-
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certained. Then, a double- or two-stage sampling design
may be adopted by investigators as a cost-effective strat-
egy. Generally speaking, a primary sample is drawn from
the target population at the first stage of the study, wherein
data on rough or proxy, but less expensive, measurements
(Y,W,XT ,ZT ) for (Y, U,XT ,ZT ) are collected for all study
subjects. Second, the exact information on (Y, U,XT ,ZT )
is ascertained for a validation subsample drawn from the
primary sample. Thus, the data (Y, U,W,XT ,ZT ) can be
regarded as incomplete data in the sense that they are in-
completely observed for all subjects, except for validation
members.

Formally, consider a situation when the covariates U are
only exactly measured in a validation subsample but there
are auxiliary information W available for U on the whole
sample. Further, assume covariates X and Z as well as re-
sponse Y are easily and accurately measured in all subjects.
Summarize the assumptions and put them in the notations
below for further usage throughout the paper:

(a) The observations (Yi,Wi,X
T
i ,Z

T
i ), i = 1, · · · , N , of

the primary data are independently and identically dis-
tributed (IID) with finite first and second moments,
where N denotes the sample size of primary sample.

(b) The observations (Yi, Ui,Wi,X
T
i ,Z

T
i ), i ∈ V , of the

validation data are IID with finite first and second mo-
ments, where V denotes the validation subsample set
with n being its sample size.

(c) The validation subsample is assumed to be a random
draw from the primary sample. Let ρ denote the un-
known validation fraction, where ρ = limN→∞ n/N .

Then, the data (Y, U,W,XT ,ZT ) can be regarded as incom-
plete data in the sense that they are incompletely observed
for all subjects, except for validation members.

The incomplete data with surrogate/auxiliary covariates
available is very common phenomenon in practice, especially
in biomedical and economical research. There are several lit-
erature recently studying such cases of incomplete data in
SVPLMs (e.g., [2], [14], [17], [29], [30], [32] and [34]). For in-
stance, Zhou and Liang [34] considered the case when some
linear covariates in SPVLMs are unobservable, but there
are auxiliary variables available. As a special case of the SV-
PLM without parametric regression component, Li et al. [17]
and Xu et al. [30] addressed statistical inference of varying-
coefficient regression models in which some covariates are
not observed, but anxillary variables are available to remit
them; while Wang et al. [25] discussed a situation of the out-
come missing with the help of auxiliary information. So far,
no literature has discussed the statistical inference when the
observed data of the covariate U in the nonparametric part
of the SVPLM are incomplete. We aim to fill in this gap.

How to develop an effective estimating procedure to uti-
lize both the primary and the validation samples becomes a
critical issue. There are a great deal of literature studying
this issue based on various models (e.g., [4], [5], [7], [15], [20],
[22] and [26]). Enlightened by ideas of Chen and Chen [5]

and Jiang and Zhou [15], we propose an estimating proce-
dure by incorporating auxiliary information from the valida-
tion data sets to correct (or update) estimators of paramet-
ric and nonparametric varying-coefficient components based
on semiparametric profile least-squared methods. The pro-
posed method is robust in the sense that the consistency
of the estimators do not require a correct specification of
the relationship between observations U and W . Thus, it
avoids the bias created by the model misspecification. More-
over, the asymptotic variances of our proposed estimators
are easily obtained, making their usage convenient in the
practice.

To be specific, we utilize a working model in helping
of estimating parametric and nonparametric coefficients in
Model (1.1), which is a novel and quite different approach
than usual ideas in dealing with missing or measurement
error data. The first step of our proposed method is to ob-
tain the parametric estimators using validated and primary
sample, respectively. Then, a key step is to derive the joint
distribution of our parametric estimators under validated
and primary sample. Although the exact joint distribution
is difficult to find, their joint distribution can be proved to
be asymptotically multivariate normal. Based on the fact of
the conditional property of a multivariate normal distribu-
tion, we can use the conditional mean as an corrected (or
updated) estimator for the parametric components in Model
(1.1). As a matter of fact, if the asymptotic property of con-
ditional normality holds in finite samples as well, we know
that this conditional mean estimator is an uniformly best
linear unbiased estimator for the parametric components.

The proposed procedure developed in this paper can also
be applicable to situtations when the covariate U of non-
parametric part has additive errors or Berkson errors with
some validation data available. In comparison with the de-
convolution method for dealing with measurement errors ap-
pearing in the nonparametric part of semiparametric models
(e.g., [6], [10] and [18]), our proposed method, by using in-
formation from validated data, avoids the dependence on
the smoothness of the errors’ distribution in deriving of the
asymptotic property of estimators, and does not require the
linearity assumption of measurement errors.

Although our proposed method is mainly concentrated on
the situation when the covariate U in the varying coefficient
parts is incompletely observed for all subjects, the same logic
of the proposed idea can be easily generalize to cases when
other variables having incomplete values in Model (1.1). Sec-
tion 2 and Section 3 discuss the estimation method and the
asymptotic property of the estimators for parametric coeffi-
cients and nonparametric varying-coefficients, respectively.
Section 4 introduces the construction of asymptotic vari-
ance of the estimators and how to select bandwidth. Sec-
tion 5 and 6 illustrate some simulation results and apply
the proposed method to a real data example from Boston
Housing datasets. Section 7 concludes the results and points
out the future direction for the improvement of our method.
All proofs are postponed in Appendix.
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2. USING AUXILIARY COVARIATES TO
CORRECT (OR UPDATE) ESTIMATORS

OF PARAMETRIC COMPONENTS

In this section, we will develop a method to correct (or
update) the estimators of parametric components based on
their profile least-square estimators using merely validated
data. The key idea is to introduce a working model to com-
bine auxiliary information with validated data for yielding a
corrected (or updated) estimators of parametric coefficients
in Model (1.1). We will show that our proposed estimators
can significantly improve the efficiency of the estimators.

2.1 Estimation of parametric coefficients
based on validation subsamples

Although there are several ways to estimate the unknown
parameters { βj , j = 1, ..., q} and unknown coefficient func-
tions {αi(·), i = 1, ..., p} in a SVPLM, we will first adopt pro-
file least-square estimation for unknown parameter β based
on validated data. Fan and Huang [9] illustrated that under
the setting of model (1.1), profile least square estimation is
semiparametrically efficient.

Without loss of generality, suppose that
{(Uk, Xk1, · · · , Xkp, Zk1, · · · , Zkq, Yk), k = 1, · · · , n} is
the validated subsample of size n for Model (1.1). Given β
and applying the idea of the profile least squares estimation
(c.f., by [9]), Model (1.1) can be written as

Y ∗
k =

p∑
i=1

αi(Uk)Xki + εk, k = 1, · · · , n,(2.1)

where Y ∗
k = Yk −

∑q
i=1 βjZkj . This transforms our Model

(1.1) into the varying-coefficient models. Then the estima-
tion of coefficient functions {αi(·), i = 1, · · · , p} is reduced
to the following weighted local least-squares problem: find
{(ai, bi), i = 1, · · · , p} to minimize

n∑
k=1

[Y ∗
k −

p∑
i=1

{ai + bi(Uk − u0)}Xki]
2Khu(Uk − u0),

where Khu(·) = K(·/hu)/hu, K(·) is a kernel function and
hu is a bandwidth. Next, denote X = (X1, · · · ,Xn)

T , where
Xi is a column vector of X with Xi = (Xi1, · · · , Xip)

T for
i = 1, · · · , n. Similarly, let Z = (Z1, · · · ,Zn)

T with Zi =
(Zi1, · · · , Ziq)

T . Further, to simplify notation, we use

Du,hu =

⎛⎜⎝ XT
1

U1−u
hu

XT
1

...
...

XT
n

Un−u
hu

XT
n

⎞⎟⎠ , M =

⎛⎜⎝ αT (U1)X1

...
αT (Un)Xn

⎞⎟⎠ ,

Y = (Y1, · · · , Yn)
T and Vu,hu = diag(Khu(U1 −

u), · · · ,Khu(Un − u)). Then, Model (2.1) can be rewritten
as a matrix form below

Y − Zβ = M+ ε.(2.2)

The solution to Problem (2.2) is given by

[â1(u), · · · , âp(u), hb̂1(u), · · · , hb̂p(u)]T

= (DT
u,hu

Vu,huDu,hu)
−1DT

u,hu
Vu,hu(Y − Zβ),(2.3)

where the first p components in (2.3) are estimators of ele-
ments in α(U). Define S = (ST

1 , · · · ,ST
n )

T to be a smooth-
ing matrix dependent on the observations {(Ui,X

T
i ), i =

1, · · · , n}, where

Si = [XT
1 0p](D

T
ui,hu

Vui,huDui,hu)
−1DT

ui,hu
Vui,hu

for i = 1, · · · , n and 0p is a p-dimensional zero vector. Then,
the estimator of M is represented as

M̂ = S(Y − Zβ).(2.4)

Substituting M̂ into Equation (2.2), we obtain

(I− S)Y = (I− S)Zβ + ε,(2.5)

where I is a n × n identity matrix. Applying least squares
to the linear model (2.5), the validated estimator of β could
be obtained as

(2.6) β̂ν = {ZT (I− S)T (I− S)Z}−1ZT (I− S)T (I− S)Y.

Based on the assumptions (A.1),(A.3), and (A.5)-(A.8) in
the Appendix and an analogy to Theorem 4.1 of [9], we
have

√
n(β̂ν − β0)

D→ N (0,Σ11),(2.7)

where Σ11 = σ2Ω−1
u , Ωu = E(ZZT ) − E(H(U)),

Γ(U) = E(XXT |U), Φ(U) = E(XZT |U) and H(U) =
Φ(U)TΓ(U)−1Φ(U).

2.2 Updating the estimators of parametric
coefficients via auxiliary information

Chen and Chen [5] proposed a unified approach to the
estimation of regression parameters under double-sampling
designs, assuming that the validation sample is a simple ran-
dom subsample from the primary sample. They utilized a
specific parametric model to extract the partial information
contained in the primary sample but their resulting estima-
tor is consistent even if such a model is misspecified. Jiang
and Zhou [15] extended the idea of Chen and Chen [5] to an
additive hazard model when some of the true covariates are
measured only on a randomly selected validation set whereas
auxiliary covariates are observed for all study subjects.

Thus, enlightened by the idea used in Chen and Chen [5]
and Jiang and Zhou [15] for extracting partial information
from the primary sample, we substitute U in Model (1.1)
with its surrogate variable W and assume Y also follows an
auxiliary working model

Y = μT (W )X+ γTZ+ ι,(2.8)
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where ι is independent of (W,XT ,ZT ) and has E(ι) = 0 and
Var(ι) = σ2, μ(·) = (μ1(·), · · · , μp(·))T is a p-dimensional
vector of unknown coefficient functions for the working
model (2.8) and γ = (γ1, · · · , γq)T is a q-dimensional vector
of unknown parameters.

Similar as the derivation of (2.6), using the validation
data set, we are easily get the estimator of γ as below

(2.9) γ̂ν = {ZT (I− S̃)T (I− S̃)Z}−1ZT (I− S̃)T (I− S̃)Y,

where

Vw,hw = diag(Khw(W1 − w), · · · ,Khw(Wn − w)),

S̃i = [XT
1 0](DT

wi,hw
Vwi,hwDwi,hw)

−1DT
wi,hw

Vwi,hw

for i = 1, · · · , n, S̃ = (S̃T
1 , · · · , S̃T

n )
T and Dw,hw is defined

in the same fashion as Du,hu with the ith row replacing by
[XT

i ,X
T
i (Wi − w)/hw]. Following Lemma A.2, we have

γ̂ν
p→ γ0 = Ω−1

w {E(ZY )− E(ΦT (W )Γ−1(W )ΨT (W ))},

where Ωw = E(ZZT ) − E(H(W )), Γ(W ) = E(XXT |W ),
Φ(U) = E(XZT |U) and Ψ(W ) = E(XY|W ).

At the meantime, γ can be estimated by the full data via
the auxiliary working model (2.8), i.e.,

γ = {ZT
(I− S)T (I− S)Z}−1Z

T
(I− S)T (I− S)Y,

whereVw,hw = diag(Khw(W1−w), · · · ,Khw(Wn−w)),Y =
(Y1, · · · , YN )T , Z = (Z1, · · · ,ZN )T , Ī is N by N identity
matrix, Dw,hw and Dw,hw has the same form but with only
changing the dimension of Dw,hw from n × 2p to N × 2p,
and similar fashion has been used for the definition of S and
S̃. According to Lemma A.2, γ

p→ γ0 as well. Then, both γ
and γ̂ν are consistent estimators of γ0.

Theorem 2.1. Under assumptions given in the Appendix,

n1/2(β̂
T

ν −βT
0 , γ̂

T
ν −γT

0 )
T is asymptotically normal with mean

zero and covariance matrix Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, where

Σ11 = σ2Ω−1
u , Σ22 = σ2Ω−1

w +Ω−1
w ΩMΩ−1

w ,

Σ12 = σ2Ω−1
u {E(ZZT )− E(H(W ))− E(H(U))

+ E(Φ(U)TΓ(U)−1XXTΓ(W )−1Φ(W ))}Ω−1
w ,

and ΩM = E(κκT )− ττT , with

τ = E(Φ(U)α(U))− E(Φ(W )TΓ(W )−1Υ(W )),

κ = ZXTα(U)− ZXTΓ(W )−1Υ(W )

− Φ(W )TΓ(W )−1XXTα(U)

+ Φ(W )TΓ(W )−1XXTΓ(W )−1Υ(W ),

Υ(W ) = E(XXTα(U)|W ),

and Σ21 = {Σ12}T .

Then, by the distribution theory of multivariate normal
random variables, the conditional distribution of n1/2(β̂ν −
β0) given (γ̂ν − γ0) is asymptotically normal with mean
Σ12Σ

−1
22 n

1/2(γ̂ν − γ0). The conditional mean can be esti-
mated by substituting consistent estimators based on the
validation sample for Σ12 and Σ22, and replacing γ0 with the

estimator γ based on the full sample. Equating n1/2(β̂ν−β0)
with its estimated conditional mean, an updated estimator
β for β0 is

β = β̂ν − Σ̂12Σ̂
−1
22 (γ̂ν − γ),(2.10)

where the estimator β incorporates auxiliary information
available on all subjects. Since β̂ν , γ̂ν and γ are consistent,
whether the auxiliary covariate W is informative or not, β
will always be a consistent estimator of β0.

Theorem 2.2. Under the assumptions in the Appendix,
n1/2(β − β0) is asymptotically normal with mean zero and
covariance matrix

Δ = Σ11 − (1− ρ)Σ12Σ
−1
22 Σ21.

Remark 1 Since ρ ≺ 1 and observe that the first term
of Δ is the asymptotic variance for β̂ν , the expression of
Δ shows that asymptotically, the proposed estimator β is
more efficient than the estimator β̂ν .

Remark 2 It is easy to verify that an consistent estima-
tor of Δ is

Δ̂ = Σ̂11 − (1− ρ̂)Σ̂12Σ̂
−1
22 Σ̂21,(2.11)

where ρ̂ = n/N . We will discuss how to construct the con-
sistent estimator of Σ12,Σ22,Σ21 in Section 4.

3. ESTIMATION FOR NONPARAMETRIC
VARYING-COEFFICIENTS

Based on the updated estimator of β, i.e., β, in SVPLM
(1.1), we can now use validated data to derive the estimator
for α(u) from (2.3):

α̂ν(u) = [Ip,0p](Du,hu

TVu,huDu,hu)
−1(3.1)

×Du,hu

TVu,hu(Y − Zβ),

where Ip is a p× p identity matrix.

Lemma 3.1. Under the assumptions (A.1), (A.3), (A.5)-
(A.8), α̂ν(u) is a consistent estimate of α(u) and

√
nhu{α̂ν(u)−α(u)− α′′(u)

2
μ2h

2
u + o(h2

u)}
D→ N(0,Λ11),

where α′′(·) indicates the second-order derivative of α(·),
Λ11 = σ2ϑ0f(u)

−1Γ(u)−1, f(u) denotes the density of U ,
ϑ0 =

∫
K2(u)du, μ2 =

∫
u2K(u)du.
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Applying the similiar idea as constructing γ̂ν in Subsec-
tion 2.2, we can mimic the representation of the estimator
for α(u) using surrogate data, as

η̂(w) = [Ip, 0](D
T
w,hw

Vw,hwDw,hw )
−1(3.2)

×DT
w,hw

Vw,hw (Y − Zβ).

It is easy to prove that η̂(w) converges to η0(w), where

(3.3) η0(w) = Γ(w)−1E(XXTα(U)|W = w).

Based on the full data, we can obtain another consistent
estimator of η0(w),

η(w) = [Ip, 0](D
T

w,hw
Vw,hwDw,hw)

−1

×D
T

w,hw
Vw,hw(Y − Z β).

Theorem 3.2. Under assumptions in the appendix and
without loss of generality, assume hu = O(h) and hw =
O(h), then

√
nh

(
α̂(u)−α(u)− α′′(u)

2 μ2h
2
u

η̂(w)− η0(w)− ζ0(w)μ2h
2
w

)
,

is asymptotically normal, with zero mean and variance ma-
trix Λ, where

ζ0(w) = Γ(w)−1Υ
′′(w)

2

+ g(w)−1Γ(w)−1[g′(w)Υ′(w) +
g′′(w)

2
Υ(w)],

and Λ = diag(Λ11,Λ22) is a block-diagonal matrix with Λ11

defined in Lemma 3.1, Λ22 = σ2ϑ0g(w)
−1Γ(w)−1, g(·) being

the density of W with g′(·), g′′(·) being the first-order and
second-order derivative of g(·), respectively and similarly,
Υ′(·), Υ′′(·) being the first-order and second-order derivative
of Υ(·).

Remark Theorem 3.2 indicates that the asymptotical in-

dependence of α̂(u)−α(u)− α′′(u)
2 μ2h

2
u and η̂(w)−η0(w)−

ζ0(w)μ2h
2
w does not depend on the specific relationship be-

tween U and W . It illustrates that under general assump-
tions, if we try to refine the estimate of α(u) using similar

method as what we have done with β̂ν , it would not help
us to improve efficiency for the estimators of α(u) based on
validated sample. Thus, some new methodology is needed
to study further about how to refine and improve α̂(u) by
utilizing auxilary information from the primary sample.

4. CONSTRUCT CONSISTENT
ESTIMATORS FOR ASYMPTOTIC

VARIANCE AND SELECT BANDWIDTH

To derive the updated estimators of parametric coeffi-
cients, i.e., Equation (2.10), a crucial step is to construct

good estimators of variances and covariances between β̂ν

and γ̂ν . The quality of estimating those variance and co-
variance matrices will greatly impact on the corrected (or
updated) estimator β. To better guide our simulation study
and real data analysis later, a detailed discussion of how to
construct those estimators is addressed in this section. An-
other factor that will influence the quality of the corrected
(or updated) estimator β is the choice of bandwidth in es-
timating nonparametric varying-coefficients in Model (1.1).
A way using cross validation score function will be intro-
duced here for selecting the optimal bandwidth to construct
nonparametric estimators in Model (1.1).

4.1 Consistent estimators for asymptotic
variances

The nature of the corrected (or updated) estimator β will
greatly rely on the estimations of asymptotic variance and
covariance matrices, Σ12 and Σ22, respectively. According
to Theorem 2.2, the asymptotic variance of β, i.e., Δ is also
related to Σ12 and Σ22 and besides, Δ depends on Σ11 as
well. Also, the estimation of Δ will be the key for us to assess
the performance of the corrected (or updated) estimator β.
For instance, we can use the estimation of Δ to calculate the
frequentist probability coverage of β in simulations shown
in Section 5.

Firstly, let us take a look at constructing a consistent
estimator of Σ11, where Σ11 = σ2Ω−1

u . Using the similar
idea for proving Lemma A.2 in [9], we obtain

n−1ZT (I− S)T (I− S)Z
p→ Ωu.

Let Ẑ = (Ẑ1, ..., Ẑn)
T = SZ, then a consistent estimator of

Ωu is

Ω̂u =
1

n

n∑
i=1

(Zi − Ẑi)(Zi − Ẑi)
T .

Without ambiguity, let us redefine M̂ = S(Y−Zβ̂ν), which

is different from Equation (2.4) by replacing β with β̂ν . Note

q is the dimension of β̂ν . Then, the residuals sum of squares
(RSS) in Model (1.1) can be calculated via

RSS = 1/(n− q)
n∑

i=1

{Yi − M̂i − β̂
T

ν Zi}2,

which is an unbiased and consistent estimator of σ2.
To get an estimator of Δ, we further need to find suitable

consistent estimators for Σ12 and Σ22, respectively. Accord-
ing to Theorem 2.1, Σ22 consists of two parts. The first part
is σ2Ω−1

w , where σ2 can be estimated using RSS mentioned

above. Denote Z̃ = (Z̃1, · · · , Z̃n)
T = S̃Z, then a consistent

estimator of Ωw is

Ω̂w =
1

n

n∑
i=1

(Zi − Z̃i)(Zi − Z̃i)
T .

The consistency of Ω̂w is verified in the proof of Lemma A.3.
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Meanwhile for the expression of the second part of Σ22,
i.e., Ω−1

w ΩMΩ−1
w , the key to construct its consistent esti-

mator is to develop a consistent estimator of ΩM. Define

M̃ = (M̃1, · · · , M̃n)
T = S̃M̂, and replace τ by its consis-

tent estimator τ̂ = n−1
∑n

i=1(Zi − Z̃i)(M̂i − M̃i), then we
could use the following estimator as a consistent estimator
of ΩM,

Ω̂M = n−1
n∑

i=1

{(Zi − Z̃i)(M̂i − M̃i)}⊗2 − τ̂ τ̂T .

Here C⊗2 = CCT . Similarly, the consistency of Ω̂M has
been demonstrated in the proof of Lemma A.3.

Last, let us discuss the estimation of Σ12. Notice that

Σ12 = σ2Ω−1
u {E(ZZT )− E(H(W ))− E(H(U))

+ E(Φ(U)TΓ(U)−1XXTΓ(W )−1Φ(W ))}Ω−1
w .

According the the proof of Theorem 2.1 in the Appendix,

Σ̂12 = σ̂2Ω̂−1
u { 1

n

n∑
i=1

(Zi − Ẑi)(Zi − Z̃i)
T }Ω̂−1

w ,

is a consistent estimator of Σ12, where σ̂2 = RSS.

4.2 Selection of bandwidth

The selection of bandwidth is of great importance in non-
parametric regression, which can largely impact on the ac-
curacy of the estimations. However, according to the sim-
ulation study in [9], under the circumstance that the full
data are observable, the estimation of β in Model (1.1) is
insensitive to the choice of bandwidth. But the selection of
bandwidth in the nonparametric part is still a open question.
Thus, in practice, first, we often find a proper bandwidth to
get an estimator of β. Then, based on the estimation of β,
we estimate α(u) by choosing an optimal bandwidth. Since
in our case the part of the nonparametric covariate U is
unobservable, only a few validation sample is available, the
choice of bandwidth will also impact on the quality of the
estimators of β to some extent.

Hence, first, we utilize the cross validation method to
select an optimal bandwidth when estimating β, which is
widely applied in literatures of semiparametric varying co-
efficient models, e.g., [3], [9], and [34]. To estimate β, it in-
volves two bandwidths, hu and hw. Then, a cross validation
score function of hu and hw is defined as below

CV (hu, hw)=n−1
n∑

i=1

{
Yi −β

T

hu,hw,−iZi − α̂T
hu,−i(Ui)Xi

}2

.

(4.1)

In (4.1), βhu,hw,−i is computed via Equation (2.10) us-
ing validated subsample {(Zj ,Xj , Uj ,Wj , Yj), j �= i, j ∈
{1, · · · , n}} and {(Zj ,Xj ,Wj , Yj), j = n + 1, · · · , N}. The

bandwidth hu is used to compute β̂ν,−i without the ith
observation in Equation (2.10), while the bandwidth hw

is applied to yield γ̂ν,−i and γ−i without the ith sub-

ject. α̂hu,−i(·) is obtained by replacing β with βhu,hw,−i

in Equation (3.1). Then the optimal bandwidths of hu

and hw for estimating β are the value that minimize
the cross validation scores function, i.e. [hu,cv, hw,cv] =
argminhu,hwCV (hu, hw). Second, after obtaining the esti-
mator β, apply the cross validation idea again to choose the
optimal bandwidth of α̂(·), and achieve a better estimation
of α(u).

5. SIMULATION STUDIES

In this section, we present some results of Monte Carlo
simulations to show the finite sample performance of our
proposed estimators. We are going to consider two situa-
tions to generate the validated subsamples about U . One
is just a simple random draw from the whole sample, which
can be regarded as missing completely at random. The other
depends on the probability of the observed response Y and
the surrogate variableW . The purpose is to investigate finite
sample performance of our proposed estimator β in com-
parison with the naive estimator β̂ν , which is based on only

the validation subsample and the benchmark estimator β̂b,
which is based on the data where U is assumed to be exactly
measured.

Example 5.1 A special case is supposed that the valida-
tion sample is a simple random subsample from the primary
sample. Consider a SVPLM

Y = sin(2πU)X1 + exp(U)X2 + βZ + ε,

where the covariate U is uniformly distributed on [0,1],
X1 ∼ N(1, 1), X2 ∼ N(−1, 22), Z ∼ N(−1, 3.52) and
ε ∼ N(0, 1). Let β = 2 and we design the ratio to select
validation subsample from the primary sample are 0.20 and
0.40, respectively. Consider three kinds of relationship be-
tween the surrogate variable W and covariate U :

(1) additive error: W = U + ξ, where ξ ∼ N(0, 1) and is
independent of ε.

(2) nonlinear error: W = exp(U)+U+ξ, where ξ ∼ N(0, 1)
and is independent of ε.

(3) noninformative: W = U ′ + ξ, where U ′ ∼ N(0, 1) and
ξ ∼ N(0, 1), respectively, and further, U ′ is independent
of U and ξ is independent of U ′ and ε.

We simulate the data 1000 times for the setting men-
tioned above and assume in each simulation, the sample size
is N = 200 and 400. Choose the kernel function to be

Kh(·) =
1

h
√
2π

exp(
−(·)2
2h2

),

and use the cross-validation method to select an optimal
bandwidth for β, β̂ν and β̂b. For ρ = 0.2, the results of β,
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Figure 1. Example 5.1: Y = sin(2πU)X1 + exp(U)X2 +
βZ + ε with ρ = 0.2 and N = 200. U and W satisfies

W = U + ξ. The solid line represents the original curve, the
dotted line represents estimation by the naive method, the
dot dash line is estimated by the benchmark method, the

dashed line is obtained by the proposed method.

β̂ν and β̂b of N = 200 is listed in Table 1, while the re-
sults of N = 400 are shown in Table 7 in the Appendix B.
According to Theorem 2.2, the proposed method is more
asymptotic efficiency than the näive method. Table 1 sup-
ports this theoretic finding by showing that the proposed
procedure is better than the näive estimator β̂ν in finite
samples: 1) The proposed estimator β has smaller standard
deviation (SD), estimated standard error (SE) and mean

square error (MSE) than the näive estimator β̂ν ; and 2) the
proposed method has higher frequentist coverage (Cov) of
the truth within 95% confidence interval than that of the
näive method. In addition, by comparing SD, SE, MSE and
Cov with the benchmark estimator β̂b, the proposed esti-
mator β is also doing a good job. Similar conclusion can be
made from Table 7 in Appendix B, though the overall perfor-
mance of both the näive method and our proposed methods
are better when the sample size is larger. For ρ = 0.4, the
results of β, β̂ν and β̂b of N = 200 is listed in Table 11 in
the Appendix B, while the results of N = 400 are shown in
Table 8 in the Appendix B. The conclusions are similar as
ρ = 0.2 and we skip the detailed discussion here.

Figure 1 listed as an example to illustrate the comparison
for estimators of nonparametric varying-coefficients for the
nonlinear relationship, i.e., W = U + ξ, when ρ = 0.2 and
N = 200. The proposed method used Equation (3.1) to esti-
mate α(u), while the näive method replaced β̄ in Equation

(3.1) with β̂ν to compute α(u). The two estimates of α(u) do
not have obvious differences in the estimating nonparamet-
ric varying-coefficients in SVPLM models. It is reasonable

Table 1. The simulated results for the selection probability
equal to 0.2 when N = 200

W = U + ξ W = exp(U)+U+ξ W = U ′ + ξ

β β̂ν β̂b β β̂ν β̂b β β̂ν β̂b

Bias 0.000 0.001 -0.001 0.000 0.001 -0.001 0.000 0.001 -0.001
SE 0.044 0.053 0.021 0.042 0.053 0.021 0.050 0.063 0.021
SD 0.042 0.051 0.021 0.040 0.051 0.021 0.046 0.059 0.022
MSE 0.002 0.003 0.000 0.002 0.003 0.000 0.003 0.004 0.000
Cov 0.945 0.937 0.946 0.944 0.937 0.946 0.940 0.933 0.964

Table 2. The simulated results for
ρ = 1/[1 + exp(−1 +W − Y )] when N = 200 and

W = exp(U) + U + ξ

β1 β2 β3 β̂ν,1 β̂ν,2 β̂ν,3 β̂b,1 β̂b,2 β̂b,3

Bias 0.009 -0.004 0.013 -0.035 0.045 -0.046 0.002 -0.000 0.001
SE 0.050 0.054 0.147 0.070 0.075 0.187 0.021 0.023 0.075
SD 0.050 0.052 0.142 0.067 0.069 0.189 0.022 0.024 0.079
MSE 0.003 0.003 0.020 0.006 0.007 0.038 0.001 0.001 0.006
Cov 0.951 0.948 0.954 0.921 0.883 0.950 0.958 0.955 0.961

since the biases for both estimates are not large. For exam-
ple, in Figure 1, the MSE for the estimation of sin(2πU)
relative to its true value on the interval of [0, 1] are 0.011,
0.011 and 0.002 for the proposed method, the näive method
and the benchmark, respectively. Those differences between
the estimate and the truth of exp(U) are even invisible, all of
their MSE are less than 0.000. Similar results are obtained
for the nonlinear relationship of W = exp(U) + U + ξ and
noninformative relationship W = U ′ + ξ and also with the
different sample size, i.e., N = 400 and with different selec-
tion probability, i.e., ρ = 0.4 shown in the Appendix B. To
save the space, we omit other figures here.

Example 5.2 Another example is illustrated when the
selection of validated subsamples is not uniform among
the primary sample. In another word, the probability of
a sample being selected will generally depend on observed
values. Consider a covariate set Z has three predictors.
Then, the coefficient of β is a three-dimensional vector. We
select the validation subsample according to the scheme:
1) generate a uniform random variable m on [0, 1], 2) if
m ≤ 1/[1+exp(−1+W −Y )], we include the corresponding
sample in validated subset. Employ a SVPLM model below,

Y = cos(
√
2πU)X1 + sin(2πU)X2 + βTZ+ ε,

where the covariate U is uniformly distributed on [0, 1],
X1 ∼ N(1, 1), X2 ∼ N(−1, 22), Z1 ∼ N(−1, 3.52), Z2 ∼
N(2, 32), Z3 ∼ N(0, 1), and ε ∼ N(0, 1). Assume the true
value of β = (2,−1, 3)′ and we consider two relationships
for W and U in this situation:

(1) nonlinear error: W = exp(U)+U+ξ, where ξ ∼ N(0, 1)
and is independent of ε.
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Figure 2. Example 5.2:
Y = cos(

√
2πU)X1 + sin(2πU)X2 + βTZ+ ε with

ρ = 1/[1 + exp(−1 +W − Y )]. U and W satisfies
W = exp(U) + U + ξ. The solid line represents the original
curve, the dotted line represents estimation by the naive
method, the dot dash line is estimated by the benchmark

method, the dashed line is obtained by the proposed method.

(2) noninformative: W = U ′ + ξ, where U ′ ∼ N(0, 1) and
ξ ∼ N(0, 1), respectively, and further, U ′ is independent
of U and ξ is independent of ξ.

As Example 5.1, we simulate the data 1000 times for the
setting mentioned above and assume in each simulation, the
sample size is N = 200 and 400. The estimated ρ of the
nonlinear error situation (1) is equal to 0.266 for N = 200
in Table 2 and 0.267 for N = 400 in Table 10 of the Ap-
pendix B, while the estimated ρ of the noninformative sit-
uation (2) are 0.359 for N = 200 in Table 3 and 0.356 for
N = 400 in Table 11 of the Appendix B. In Table 2, the bias
of our proposed estimators β1, β2, and β3 are much smaller

comparing to the näive estimators β̂ν,1, β̂ν,2 and β̂ν,3, re-
spectively. Also, in view of SD and SE, the proposed esti-
mators tend to have smaller values in relative to the näive
estimators. Moreover, the SD of the proposed estimators
are very close to the corresponding SE, which implies the
theoretical derivations of the asymptotic variance of β in
Theorem 2.2 is consistent with the empirical findings. No-
ticeably, the Cov of the proposed estimator are much higher
than that of the näive estimator, which shows the superior-
ity of β. In term of MSE criterion, our proposed methods are

Table 3. The simulated results for
ρ = 1/[1 + exp(−1 +W − Y )] when N = 200 and

W = U ′ + ξ

β1 β2 β3 β̂ν,1 β̂ν,2 β̂ν,3 β̂b,1 β̂b,2 β̂b,3

Bias 0.008 -0.005 0.021 -0.046 0.045 -0.058 0.001 0.001 0.002
SE 0.048 0.047 0.134 0.059 0.058 0.161 0.021 0.023 0.072
SD 0.049 0.048 0.133 0.059 0.057 0.162 0.022 0.024 0.079
MSE 0.002 0.002 0.018 0.006 0.005 0.029 0.000 0.001 0.006
Cov 0.949 0.953 0.949 0.875 0.875 0.933 0.971 0.955 0.964

Table 4. First 10 data points of subsample by seed 1000

MEDV NOX RM TAX PTRATIO
√
LSTAT

1 34.700 0.469 7.185 242.000 17.800 2.007
2 28.700 0.458 6.430 222.000 18.700 2.283
3 19.900 0.538 5.834 307.000 21.000 2.910
4 20.200 0.538 5.456 307.000 21.000 3.419
5 13.600 0.538 5.570 307.000 21.000 4.585
6 14.500 0.538 5.813 307.000 21.000 4.459
7 18.400 0.538 6.495 307.000 21.000 3.578
8 21.000 0.538 6.674 307.000 21.000 3.461
9 14.500 0.538 6.072 307.000 21.000 3.611
10 20.000 0.499 5.841 279.000 19.200 3.378

more comparable to the benchmark estimation. Regarding
to the estimation of the nonparametric part shown in Fig-
ure 2, since we obtain better estimates of β, our proposed
method performs better in estimating α(u) than the näive
method. Similar results are obtained for the noninformative
relationship W = U ′ + ξ see Table 3 for more details. Also,
we investigate the performance of our proposed methods in
comparison to the näive and benchmark methods with the
different sample size, i.e., N = 400 in both situations. Sim-
ilar conclusions can be drawn from Table 10 and Table 11,
respectively, in the Appendix B. However, to save the space,
we omit all other figures in the display.

6. REAL EXAMPLES

In this section, we illustrate the proposed method by in-
vestigating the Boston housing dataset from UCI machine
learning repository, which has been also studied in [9]. The
whole dataset can be downloaded from the website https://
archive.ics.uci.edu/ml/datasets/Housing. This dataset con-
stitutes the response variable, i.e., median value of owner-
occupied homes (MEDV) in 506 US census tracts in the
Boston area in 1970, and several covariates which can ex-
plain the variation in housing values [12]. For example, in
our study, we are going to choose NOX (nitric oxide con-
centration in parts per 10 million), RM (average number of
rooms per dwelling), TAX (full-value property-tax rate per
$ 10,000), PTRATIO (pupil-teacher ratio by town), LSTAT
(percentage of lower status of the population) as explana-
tory variables. Moreover, when we do the exploratory data
analysis, we have found that CRIM (per capita crime rate
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Table 5. Estimators by different random seeds using Scheme 1

Scenario β(Tn) β̂ν(Tn) β̂b(Tn)

1 -0.573(21.74) -0.564(21.70) -0.628(80.44)
2 -0.590(60.83) -0.655(61.44) -0.628(80.44)
3 -0.588(33.85) -0.502(34.53) -0.628(80.44)
4 -0.575(29.48) -0.725(29.60) -0.628(80.44)
5 -0.443(33.89) -0.468(33.86) -0.628(80.44)
6 -0.635(30.49) -0.701(30.34) -0.628(80.44)

by town) and LSTAT are highly correlated. To investigate
the benefits of our proposed methods, we are going to use
CRIM as our surrogate variable, which is fully observed and
presume LSTAT be partially observed. In practice, it is also
more often to collect information on criminal rate than to
observe lower status of the population. Thus, our assump-
tion makes sense here.

To simplify the notations, we denote MEDV by Y , and
denote the covariates NOX, RM, TAX, PTRATIO by X1,
X2, X3, Z, and set U =

√
LSTAT, and W = log(CRIM).

We consider the SVPLM model below for the analysis of
the Boston housing data, i.e.,

Y = α1(U) + α2(U)X1 + α3(U)X2(6.1)

+ α4(U)X3 + βZ + ε.

A similar SVPLM model was used in Fan and Huang [9].
Further, we consider two situations for generating validated
subsamples.

Scheme 1 : Assume the observed validated subsamples be
randomly drawn from the whole population of Boston
housing with the selection probability being 0.2.

Scheme 2 : Assume the observed validated subsamples be
randomly drawn from the whole population of Boston
housing with the selection probability 1/[3 + exp(2 +
W − Y )], which implies the validated subsamples are
more difficult to collect when the criminal rate is in-
creasing and the median value of owner-occupied homes
is higher.

Using different random seeds, we will get different validated
subsample according to schemes above. Thus, if different
random seeds were picked, the selected validated subsam-
ples in Boston housing datasets would be different, which
would yield different results. For example, one of the vali-
dated subsample selected by Scheme 1 was shown in Table 4.
To save the space, we only illustrate the first 10 observations
in this validated subsample.

We display 6 different scenarios of random seeds with two
schemes mentioned above to generate validated subsamples,
the inferences of the parametric estimators are shown in
Table 5 and Table 6, respectively. Moreover, in Table 6, we
illustrate the estimated validation fraction ρ̂ for the refer-
ence to the readers since it is expected that there are vari-
ations among the selection probabilities in Scheme 2 since
they depend on the criminal rate and median value of owner-

Table 6. Estimators by different random seeds using Scheme 2

Scenario β(Tn) β̂ν(Tn) β̂b(Tn) ρ̂

1 -0.618(34.85) -0.607(34.85) -0.628(80.44) 0.306
2 -0.464(66.28) -0.478(66.33) -0.628(80.44) 0.340
3 -0.420(29.13) -0.460(29.21) -0.628(80.44) 0.326
4 -0.594(31.86) -0.686(31.84) -0.628(80.44) 0.354
5 -0.659(49.75) -0.641(49.89) -0.628(80.44) 0.332
6 -0.311(39.85) -0.258(39.67) -0.628(80.44) 0.385

occupied homes. If we regard the benchmark estimator β̂b as
our best guess for the truth, then from Table 5 and Table 6,
we can see our corrected (updated) estimator β̄ is uniformly

closer to the benchmark estimator β̂b in most scenarios. Fur-
ther, we examine the significance of β �= 0 in the SVPLM
model (6.1) using the profile likelihood ratio (PLR) test in-
troduced in Fan and Huang [9]. For each scenario listed in
Table 5 and Table 6, Tn is the corresponding PLR test statis-
tic, and since 2Tn > χ2

0.05 = 3.84, the PLR test of β �= 0 is
significant at the nominal level 0.05 in all cases. This indi-
cates the house value tends to be lower in the tracts where
pupil-teacher ratio by town are higher, which is persistent
with the findings in Fan and Huang [9].

7. CONCLUSION

In this paper, we have developed an effective estimating
procedure to utilize available data from auxiliary covariates
to estimate parametric coefficients in SVPLM models when
we only have small proportional sample of covariates in the
nonparametric component observed as validated samples.
One great advantage of our resulting estimators is that their
consistency does not depend on the specific relationship be-
tween the true covariates and the surrogate variables. Be-
sides, they are more efficient than the validation-set-only
estimators either shown in asymptotical properties or in the
performance of finite sample simulations.

One of our next goal is to generalize our methodology
to focus on the incorporation of the missing mechanism of
validated subset into the estimation. If we can introduce
this missing mechanism via an inverse probability weighted
scheme in Equation (2.6), we envision we can get a better

estimator for β̂ν , which can further improve our corrected
(updated) estimators β in Equation (2.10). Similarly, by in-
corporating missing mechanism via an inverse probability
weighted scheme, we are expected to improve the efficiency
of the estimation of the nonparametric components α(u).

APPENDIX A. ASYMPTOTIC PROPERTIES
AND THEIR PROOFS

Without ambiguity, we suspend the subscript of hu and
hw in the notation Du,hu , Dw,hw and similarly, for the no-
tation Vu,hu and Vw,hw . Also, we will use h, instead of
distinguishing hu and hw, in the context. For example, the
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assumption (A.8) will be applicable to both hu and hw, so
we use h to present as this common property applied to any
bandwidth we discussed in the paper. Before we give out
the outline of the proofs for those theorems in the text, the
following assumptions are needed for deriving our results
which could be found in many SVPLM references such as
[9] and [34]:

(A.1) The random variable U has a bounded support U .
Its density function f(·) is Lipschitz continuous and
bounded away from 0 on its support.

(A.2) The surrogate variable W has a bounded support
W with g(·) being Lipschitz continuous density and
bounded away from 0 on its support.

(A.3) The p×pmatrix E(XXT |U = u), are non-singular for
each u ∈ U . E(XXT |U), E(XXT |U)−1, and E(XZT |U)
are all Lipschitz continuous.

(A.4) The p × p matrix E(XXT |W ), are non-singular for
each W ∈ W . E(XXT |W ), E(XXT |W )−1, E(XZT |W ),
E(XY |W ) and E(XXTα(u)|W ) are all Lipschitz con-
tinuous.

(A.5) There is an s > 2 such that E‖X‖2s < ∞ and
E‖Z‖2s < ∞ for some ς < 2− s−1 such that N2ς−1h →
∞.

(A.6) {αi(·), i = 1, · · · , p} have the continuous second
derivative in U ∈ U as well as W ∈ W .

(A.7) The function K(·) is a symmetric density function
with compact support and has finite second moment.

(A.8) nh8 → 0 and nh2/(log(n))2 → ∞.

where (A.1), (A.2), (A.6), (A.7), (A.8) are common assump-
tions to make the estimate of nonparametric component to
converge, whereas (A.3), (A.4), (A.5) are necessary condi-
tions for proving the asymptotic normality of profile least-
squares estimator of parametric component. And the fol-
lowing notation will be used in the proof of the lemmas and
theorems below. Let μi =

∫
uiK(u)du, ϑi =

∫
uiK2(u)du,

cn = { log(1/h)
nh }1/2 + h2 and set Γ(u) = E(XXT |U = u),

Φ(u) = E(XZT |U = u), Γ(w) = E(XXT |W = w),
Φ(w) = E(XZT |W = w), Ψ(w) = E(XY |W = w), Υ(w) =
E(XXTα(u)|W = w).

Lemma A.1. Let (X1, Y1) · · · (Xn, Yn) be n independent
and identically distributed random vectors, where Yi’s are
scalar random variables. Further assume that E| y |s < ∞
and supx

∫
| y |sf(x, y)dy < ∞, where f(·) denotes the joint

density of (X, Y ). Let K(·) be a bounded positive function
with a bounded support, satisfying a Lipschitz condition.
Given that ε < 1− s−1 for some n2ε−1h → ∞, then

sup
x

| 1
n

n∑
i=1

[Kh(Xi − x)Yi − E{Kh(Xi − x)Yi}] |

= Op({
log(1/h)

nh
}1/2).

Proof. This follows immediately from Proposition 4 ob-
tained by Mack and Silverman [19].

Lemma A.2. Under the conditions (A.2),(A.4),(A.5)-
(A.8), we can show that

γ̂ν = {ZT (I− S̃)T (I− S̃)Z}−1ZT (I− S̃)T (I− S̃)Y
p→ γ0

where γ0 = Ω−1
w {E(ZY ) − E(ΦT (W )Γ−1(W )Ψ(W ))} and

Ωw = E(ZZT )− E(Φ(W )TΓ(W )−1Φ(W )). Similarly,

γ = {ZT
(I− S)T (I− S)Z}−1Z

T
(I− S)T (I− S)Y

p→ γ0

Proof. Following the same idea of Lemma A.2 in [9], using
Lemma A.1 and Assumptions (A.2), (A.4), we have

1

n
DT

wVwDw = g(w)Γ(w)⊗
(

1 0
0 μ2

)
{1 +Op(cn)},

(A.1)

holding uniformly for any w ∈ W and note g(·) is the density
of W . Similarly,

1

n
DT

wVwZ = g(w)Φ(w)⊗ (1, 0)T {1 +Op(cn)},(A.2)

holds uniformly for any w ∈ W . Combining Equations (A.1)
and (A.2), then the equation below holds uniformly for any
w ∈ W ,

[XT ,0p](D
T
wVwDw)

−1DT
wVwZ

= XTΓ(w)−1Φ(w){1 +Op(cn)}.

This implies

(I− S̃)Z(A.3)

=

⎛⎜⎝ ZT
1 −XT

1 Γ(W1)
−1Φ(W1){1 +Op(cn)}

...
ZT

n −XT
nΓ(Wn)

−1Φ(Wn){1 +Op(cn)}

⎞⎟⎠ .

Therefore,

n−1ZT (I− S̃)T (I− S̃)Z

= n−1
n∑

i=1

ZiZ
T
i

−
(
2n−1

n∑
i=1

ZiX
T
i Γ(Wi)

−1Φ(Wi)

+ n−1
n∑

i=1

Φ(Wi)
TΓ(Wi)

−1XiX
T
i Γ(Wi)

−1Φ(Wi)

)
× {1 +Op(cn)}.

Using the Law of Large Numbers, we have

n−1
n∑

i=1

ZiZ
T
i

p→ E(ZZT ),

n−1
n∑

i=1

ZiX
T
i Γ(Wi)

−1Φ(Wi)
p→ E(H(W )),
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n−1
n∑

i=1

Φ(Wi)
TΓ(Wi)

−1XiX
T
i Γ(Wi)

−1Φ(Wi)

p→ E(H(W )).

Therefore,

n−1ZT (I− S̃)T (I− S̃)Z
p→ Ωw.(A.4)

Applying the same idea, we can prove

n−1ZT (I− S̃)T (I− S̃)Y
p→ E(ZY )− E(Φ(W )TΓ(W )−1Ψ(W )).

Then, we can conclude that

γ̂ν = {ZT (I− S̃)T (I− S̃)Z}−1ZT (I− S̃)T (I− S̃)Y
p→ γ0.

Similarly, we can show

γ = {ZT
(I− S)T (I− S)Z}−1Z

T
(I− S)T (I− S)Y

p→ γ0

holds.

Lemma A.3. Under the conditions (A.2),(A.4),(A.5)-
(A.8),

γ̂ν = {ZT (I− S̃)T (I− S̃)Z}−1ZT (I− S̃)T (I− S̃)Y

is asymptotically normal, i.e.,

√
n(γ̂ν − γ∗

0)
D→ N (0,Σ22),

where Σ22 = σ2Ω−1
w + Ω−1

w ΩMΩ−1
w , ΩM = E(κκT ) − ττT

with τ , κ defined in Theorem 2.1 and γ∗
0 = β0 + Ω−1

w τ .

Combining with the result
√
n(β̂ν − β0)

D→ N (0,Σ11), it is
easy to see that γ∗

0 = γ0.

Proof. If we substitute the model Y = αT (U)X+ βTZ+ ε
into the expression of γ̂ν (i.e.(2.9)), then we have

γ̂ν = β0 + {ZT (I− S̃)T (I− S̃)Z}−1ZT (I− S̃)T (I− S̃)M

+ {ZT (I− S̃)T (I− S̃)Z}−1ZT (I− S̃)T (I− S̃)ε.

The second term might create bias when we use γ̂ν to esti-
mate β0. From conditions (A.2), (A.4) and Lemma A.2, we
can first simplify,

1

n
DT

wVwM = g(w)Υ(w)⊗ (1, 0)T {1 +Op(cn)}.

Together with (A.1), the following equation holds uniformly
in w ∈ W ,

[XT ,0p]{DT
wVwDw}−1DT

wVwM

= XTΓ(W )−1Υ(w){1 +Op(cn)}.

Then, using (A.3), we have

n−1ZT (I− S̃)T (I− S̃)M

= n−1
n∑

i=1

[Zi − Φ(Wi)
TΓ(Wi)

−1Xi{1 +Op(cn)}]

× [XT
i α(Ui)−XT

i Γ(Wi)
−1Υ(Wi){1 +Op(cn)}].

As before, using the Law of Large Numbers and the results
of (A.4), we have

{ZT (I− S̃)T (I− S̃)Z}−1ZT (I− S̃)T (I− S̃)M(A.5)
p→ Ω−1

w {E(Φ(U)α(U))− E(Φ(W )TΓ(W )−1Υ(W ))}.

Then, we can rewrite the expression of
√
n(γ̂ν − γ∗

0) as

√
n(γ̂ν − γ∗

0)

=
√
n(γ̂ν − β0 − Ω−1

w τ)

=
√
nΩ−1

w

1

n
{ZT (I− S̃)T (I− S̃)M− nτ}

+
√
nΩ−1

w

1

n
ZT (I− S̃)T (I− S̃)ε+ op(1)

� I1 + I2 + op(1).

First, let us consider I2. Notice any element in S̃ε satisfies

[XT ,0p](D
T
wVwDw)

−1DT
wVwε = Op(cn).

Applying (A.3), n−1ZT (I− S̃)T (I− S̃)ε can be written as

1

n
ZT (I− S̃)T (I− S̃)ε =

1

n

n∑
i=1

{Zi − Φ(Wi)
TΓ(Wi)

−1Xi}

× εi{1 + op(1)}.

By the Central Limit Theorem (CLT), we could obtain the
asymptotic normality of I2, i.e.,

n−1/2Ω−1
w ZT (I− S̃)T (I− S̃)ε

D→ N (0, σ2Ω−1
w ).(A.6)

Next, consider I1, where n−1{ZT (I− S̃)T (I− S̃)M − nτ}
can be written as

n−1ZT (I− S̃)T (I− S̃)M− τ

= n−1
n∑

i=1

{
ZiX

T
i α(Ui)− ZiX

T
i Γ(Wi)

−1Υ(Wi)

− Φ(Wi)
TΓ(Wi)

−1XiX
T
i α(Ui) + Φ(Wi)

TΓ(Wi)
−1

× XiX
T
i Γ(Wi)

−1Υ(Wi)− τ
}
{1 +Op(cn)}

� n−1
n∑

i=1

{κi − τ}{1 +Op(cn)},

where

κi = ZiX
T
i α(Ui)− ZiX

T
i Γ(Wi)

−1Υ(Wi)
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− Φ(Wi)
TΓ(Wi)

−1XiX
T
i α(Ui)

+ Φ(Wi)
TΓ(Wi)

−1XiX
T
i Γ(Wi)

−1Υ(Wi).

Following the assumption in the Introduction that
(Wi, Ui,Xi,Zi) are i.i.d random vectors for any i = 1, · · · , n
and using the CLT, then I1 is asymptotic normal, i.e.,

n−1/2Ω−1
w {ZT (I− S̃)T (I− S̃)M− nτ}(A.7)

D→ N (0,Ω−1
w ΩMΩ−1

w ).

Moreover, from Model (1.1), we know ε and
(W,U,XT ,ZT ) are independent and E(ε) = 0. Thus,
the cross section term of I1 and I2 are zero, and then

√
n(γ̂ν − γ∗

0)

= n−1/2Ω−1
w

n∑
i=1

{κi − τ}

+ n−1/2Ω−1
w

n∑
i=1

{Zi − Φ(Wi)
TΓ(Wi)

−1Xi}εi + op(1).

Using asymptotic expressions (A.6) and (A.7), we have

√
n(γ̂ν − γ∗

0)
D→ N (0,Σ22).

Thus, it is easy to derive that γ̂ν
p→ γ∗

0, From Lemma A.2,

we have γ̂ν
p→ γ0. Hence, for the uniqueness of limits, γ∗

0

must be equal to γ0.

Lemma A.4. Under the conditions (A.2),(A.4),(A.5)-
(A.8), the estimator of γ0 based on full samples, i.e., γ,
is asymptotically normal,

√
N(γ − γ0)

D→ N (0,Σ22),

where Σ22 is the same as defined in Lemma A.3.

Proof. The outline of the proof of this lemma is directly
follow the proof of Lemma A.3. We just need to replace n
with N and use notations of full data set in the proof of
Lemma A.3.

Proof of Theorem 2.1 in Section 2.

Proof. Let θ̂ν =

(
β̂ν

γ̂ν

)
and θ0 =

(
β0

γ0

)
, then the goal

becomes to derive

√
n(θ̂ν − θ0)

D→ N (0,Σ).

By an analogy to Theorem 4.1 in [9] and from Lemma A.3,
we have

√
n(θ̂ν − θ0)

=
1√
n

n∑
i=1

(
Ω−1

u {Zi − Φ(Ui)
TΓ(Ui)

−1Xi}εi
Ω−1

w [{Zi − Φ(Wi)
TΓ(Wi)

−1Xi}εi + {κi − τ}]

)

× {1 + op(1)}

Then using the Slutsky Theorem and the CLT, we have

√
n(θ̂ν − θ0)

D→ N (0,Σ) , Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Noticing that εi and κi are mutually independent, then

Σ12 = σ2Ω−1
u {E(ZZT )− E(H(W ))− E(H(U))

+ E(Φ(U)TΓ(U)−1XXTΓ(W )−1Φ(W ))}Ω−1
w .

This ends the proof of Theorem 2.1.

Proof of Theorem 2.2 in Section 2.

Proof. From (2.10), we know that the expression of β is

β = β̂ν − Σ̂12Σ̂
−1
22 (γ̂ν − γ).

Then β − β0 could be rewritten as

β − β0(A.8)

= (β̂ν − β0)− Σ̂12Σ̂
−1
22 (γ̂ν − γ0) + Σ̂12Σ̂

−1
22 (γ − γ0).

Set Θ̂ = (β̂
T

ν , γ̂
T
ν ,γ

T )T and Θ0 = (βT
0 ,γ

T
0 ,γ

T
0 )

T . If we can

derive the asymptotical normality of
√
n(Θ̂−Θ0), then the

asymptotical normality of
√
n(β − β0) is a linear combina-

tion of
√
n(Θ̂−Θ0) using (1,−Σ̂12Σ̂

−1
22 , Σ̂12Σ̂

−1
22 ) (c.f., The-

orem 3.3.4 in [27]).
Similar as the derivation in the Proof of Theorem 2.1, we

have
√
n(Θ̂−Θ0)

Δ
= A1 +A2 + op(1),

where

A1 =
√
n

⎛⎝ 1
n

∑n
i=1 Ω

−1
u [t(Ui)]εi

1
n

∑n
i=1 Ω

−1
w {t(Wi)εi + [κi − τ ]}

1
n

∑n
i=1 ρΩ

−1
w {t(Wi)εi + [κi − τ ]}

⎞⎠ ,

A2 =
√
n

⎛⎜⎝ 0
0√

ρ(1−ρ)√
N−n

∑N
i=n+1 Ω

−1
w {t(Wi)εi + [κi − τ ]}

⎞⎟⎠ ,

where t(Wi) = Zi − Φ(Wi)
TΓ(Wi)

−1Xi and t(Ui) = Zi −
Φ(Ui)

TΓ(Ui)
−1Xi. Noticing that {εi}ni=1 and {κi}ni=1 are

mutually independent, using the CLT,

A1
D→ N

⎛⎝0,

⎛⎝ Σ11 Σ12 ρΣ12

Σ12 Σ22 ρΣ22

ρΣ12 ρΣ22 ρΣ22

⎞⎠⎞⎠ ,

A2
D→ N

⎛⎝0,

⎛⎝ 0 0 0
0 0 0
0 0 ρ(1− ρ)Σ22

⎞⎠⎞⎠ .

Since {εi}ni=1 and {κi}ni=1 are i.i.d., combining the asymp-
totic normality of A1 and A2, we obtain
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√
n(Θ̂−Θ0)

D→ N

⎛⎝0,

⎛⎝ Σ11 Σ12 ρΣ12

Σ12 Σ22 ρΣ22

ρΣ12 ρΣ22 ρΣ22

⎞⎠⎞⎠ .

As β − β0 = (1,−Σ̂12Σ̂
−1
22 , Σ̂12Σ̂

−1
22 )(Θ̂ − Θ0) and Σ̂12, Σ̂22

are consistent estimators of Σ12 and Σ22, respectively, then
using Theorem 3.3.4 in [27] again, we get the result

√
n(β − β0)

D→ N (0,Δ)

where Δ = Σ11−(1−ρ)Σ12Σ
−1
22 Σ21, and here Σ21 = ΣT

12.

Proof of Lemma 3.1 in Section 3.

Proof. Based on the proof of Lemma A.2 in [9],

1

n
DT

uVuDu = f(U)Γ(U)⊗
(

1 0
0 μ2

)
{1 +Op(cn)},

and representing Y using Model (1.1), then the estimator of
α(u) in Equation (3.1) can be rewritten as

α̂(u) = [Ip,0p](D
T
uVuDu)

−1DT
uVu(Y − Zβ)

= [Ip,0p](D
T
uVuDu)

−1DT
uVu(α

T (U)X+ ε)

+ [Ip,0p](D
T
uVuDu)

−1DT
uVuZ(β0 − β)

= f(u)−1Γ(u)−1 1

n

n∑
i=1

XiεiKh(Ui − u){1 +Op(cn)}

+ f(u)−1Γ(u)−1 1

n

×
n∑

i=1

XiX
T
i α(Ui)Kh(Ui − u){1 +Op(cn)}

+ f(u)−1Γ(u)−1

× 1

n

n∑
i=1

XiZ
T
i (β0 − β)Kh(Ui − u){1 +Op(cn)}.

For any Ui ∈ (u − h, u + h), using Taylor’s expansion we
have

α(Ui) = α(u) +α′(u)(Ui − u) +
α′′(u)

2
(Ui − u)2 + o(h2).

Plugging the above expression into

n∑
i=1

XiX
T
i α(Ui)Kh(Ui − u),

we have

α̂(u)−α(u)− α′′(u)

2
μ2h

2 + op(h
2)(A.9)

= f(u)−1Γ(u)−1 1

n

n∑
i=1

XiεiKh(Ui − u)× {1 +Op(cn)}

+ Γ(U)−1Φ(u)(β0 − β) + op(n
− 1

2 ).

Then, according to Theorem 2.1,
√
n(β0 − β)

D→ N (0,Δ),

which implies (β0−β) = op(n
− 1

2 ). Combining this into (A.9)

and using CLT, we have
√
nh{α̂(u) − α(u) − α′′(u)

2 μ2h
2 +

op(h
2)} D→ N (0,Λ11).

Lemma A.5. Under assumption (A.2),(A.4), (A.5)-(A.8),
the estimator of nonparametric function η(w) based on the
validation subsample, η̂(w), has the following asymptotic
normality

√
nh{η̂(w)− η0(w)− ζ0(w)μ2h

2 + op(h
2)} D→ N (0,Λ22),

where Λ22 = σ2ϑ0g(w)
−1Γ(W )−1 and

ζ0(w) = Γ(w)−1Υ
′′(w)

2
+ g(w)−1Γ(W )−1[g′(w)Υ′(w)

+
g′′(w)

2
Υ(w).

Lemma A.6. Under assumption (A.2),(A.4), (A.5)-(A.8),
the estimator of nonparametric function η(w) based on the
full sample, η(w), has the following asymptotic normality

√
Nh{η(w)− η0(w)− ζ0(w)μ2h

2 + op(h
2)} D→ N (0,Λ22),

where Λ22 = σ2ϑ0g(w)
−1Γ(w)−1.

Note: The proof of Lemma A.5 is the similar as that of
Lemma 3.1, while the proof of Lemma A.6 is the same as
that of Lemma A.5 except replacing n with N . Thus, we
omit the details here.

Proof of Theorem 3.2 in Section 3.

Proof. In this proof, we will reuse hu and hw to distinguish
the bandwidth used for estimating α(·) and η(·), respec-
tively. From Lemma A.5 and Lemma 3.1, it is easy to verify
that

√
nh

(
α̂(u)−α(u)− α′′(u)

2 μ2h
2
u

η̂(w)− η0(w)− ζ0(w)μ2h
2
w

)
=

1√
nh

n∑
i=1

(
f(u)−1Γ(U)−1XiεiK(Ui−u

hu
)

g(w)−1Γ(W )−1XiεiK(Wi−w
hw

)

)
× {1 + op(1)}.

with the assumption hu = O(h) and hw = O(h). Since
{εi, i = 1, 2, ..., n} are i.i.d random variable, then following
the CLT,

√
nh

(
α̂(u)−α(u)− α′′(u)

2 μ2h
2
u

η̂(w)− η0(w)− ζ0(w)μ2h
2
w

)
D→ N (0,Λ).

where Λ ≡
(

Λ11 Λ12

Λ21 Λ22

)
. Definition of Λ11 and Λ22 are

given in Lemma A.5 and Lemma 3.1, and Λ12 = ΛT
21, where

Λ12 =
1

h
f(u)−1Γ(u)−1σ2
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Table 7. The simulated results for the selection probability
equal to 0.2 when N = 400

W = U + ξ W = exp(U)+U+ξ W = U ′ + ξ

β β̂ν β̂b β β̂ν β̂b β β̂ν β̂b

Bias 0.000 0.001 -0.000 0.001 -0.000 0.001 -0.001 -0.003 -0.000
SE 0.033 0.040 0.015 0.033 0.041 0.015 0.033 0.038 0.015
SD 0.033 0.040 0.015 0.031 0.040 0.015 0.033 0.040 0.015
MSE 0.001 0.002 0.000 0.001 0.002 0.000 0.001 0.002 0.000
Cov 0.951 0.949 0.953 0.944 0.947 0.955 0.960 0.960 0.951

Table 8. The simulated results for the selection probability
equal to 0.4 when N = 200

W = U + ξ W = exp(U)+U+ξ W = U ′ + ξ

β β̂ν β̂b β β̂ν β̂b β β̂ν β̂b

Bias 0.001 0.001 0.000 -0.000 0.001 -0.000 0.000 0.001 0.001
SE 0.033 0.037 0.021 0.031 0.037 0.021 0.033 0.036 0.021
SD 0.031 0.036 0.021 0.030 0.036 0.021 0.031 0.035 0.021
MSE 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.000
Cov 0.941 0.935 0.956 0.937 0.930 0.955 0.942 0.938 0.941

× E[XXTK(
U − u

hu
)K(

W − w

hw
)]g(w)−1Γ(w)−1.

If we assume the joint density of (U,W ) exists, and denote it
as l(u,w), which is Lipchitz continuous as well as twice dif-
ferentiable. Further, define ϕ(u,w) = E(XXT |U = u,W =
w), then

E[XXTK(
U − u

hu
)K(

W − w

hw
)]

= E[ϕ(u,w)K(
U − u

hu
)K(

W − w

hw
)]

=

∫ ∫
ϕ(U,W )K(

U − u

hu
)K(

W − w

hw
)l(U,W )dUdW

= hu

∫
K(

W − w

hw
)

×
{∫

ϕ(thu + u,W )l(thu + u,W )K(t)dt

}
dW

≈ hu

∫
K(

W − w

hw
)ϕ(u,W )l(u,W )dW

= huhw

∫
K(s)ϕ(u, shw + w)l(u, shw + w)ds

≈ O(h2)ϕ(u,w)l(u,w).

Therefore, we have Λ12 = O(h). Similarly, Λ21 = O(h). This

shows when h → 0, α̂(u) − α(u) − α′′(u)
2 μ2h

2
u and η̂(w) −

η0(w)− ζ0(w)μ2h
2
w are asymptotically independent.

APPENDIX B. ADDITIONAL SIMULATION
RESULTS FOR SECTION 5

In this section, we present several different simulation re-
sults for Example 5.1 and Example 5.2. Table 7 to Table

Table 9. The simulated results for the selection probability
equal to 0.4 when N = 400

W = U + ξ W = exp(U)+U+ξ W = U ′ + ξ

β β̂ν β̂b β β̂ν β̂b β β̂ν β̂b

Bias -0.000 0.000 -0.000 0.001 0.001 -0.001 0.001 0.001 0.001
SE 0.033 0.039 0.015 0.032 0.039 0.015 0.032 0.037 0.014
SD 0.033 0.040 0.015 0.031 0.041 0.015 0.033 0.040 0.015
MSE 0.001 0.002 0.000 0.001 0.002 0.000 0.001 0.002 0.000
Cov 0.959 0.954 0.961 0.946 0.953 0.955 0.953 0.963 0.967

Table 10. The simulated results for
ρ = 1/[1 + exp(−1 +W − Y )] when N = 400 and

W = exp(U) + U + ξ

β1 β2 β3 β̂ν,1 β̂ν,2 β̂ν,3 β̂b,1 β̂b,2 β̂b,3

Bias 0.010 -0.010 0.025 -0.033 0.038 -0.031 -0.000 -0.001 0.002
SE 0.032 0.034 0.096 0.043 0.046 0.122 0.015 0.016 0.052
SD 0.034 0.036 0.097 0.045 0.047 0.128 0.015 0.017 0.054
MSE 0.001 0.001 0.010 0.003 0.004 0.017 0.000 0.000 0.003
Cov 0.955 0.954 0.945 0.892 0.866 0.953 0.961 0.963 0.960

Table 11. The simulated results for
ρ = 1/[1 + exp(−1 +W − Y )] when N = 400 and

W = U ′ + ξ

β1 β2 β3 β̂ν,1 β̂ν,2 β̂ν,3 β̂b,1 β̂b,2 β̂b,3

Bias 0.011 -0.009 0.028 -0.042 0.042 -0.046 -0.000 0.000 0.000
SE 0.031 0.031 0.090 0.038 0.037 0.104 0.014 0.015 0.052
SD 0.033 0.033 0.091 0.040 0.039 0.110 0.015 0.017 0.054
MSE 0.001 0.001 0.009 0.003 0.003 0.014 0.000 0.000 0.003
Cov 0.951 0.956 0.950 0.830 0.830 0.950 0.965 0.961 0.950

9 illustrate the results yielded from different scenarios for
Example 5.1. In Table 7, it shows our proposed method and
the näive method are both comparable to the benchmark es-
timates when N = 400 under the selection probability equal
to 0.2. It makes sense since in this situation even the näive
method will have large enough sample size to estimate the
unknown parameter. Table 8 and Table 9 display the results
for the selection probability equal to 0.4 for N = 200 and
N = 400, respectively. Table 8 shows that the performance
of our proposed method is outweigh the näive method in
term of comparing SD, SE, MSE and Cov. Moreover, in com-
parison to the benchmark estimation, our proposed method
is doing a good job in estimating β in the SVPLM model.
However, both our proposed method and the näive method
are producing good estimates of β when the sample size is
larger as shown in Table 9. Table 10 and Table 11 display
the results for Example 5.2 when the sample size increases to
N = 400 for the nonlinear relationship W = exp(U)+U + ξ
and the noninformative relationship W = U ′ + ξ, respec-
tively. In either N = 400 or N = 200 situation, our pro-
posed method is doing much better in comparison to the
näive method for both nonlinear and noninformative rela-
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tionship when the selection probability depends on observed
values. Our method tends to have smaller bias and higher
frequentist coverage.

Received 20 July 2016
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