
Statistics and Its Interface Volume 11 (2018) 581–586

Addressing varying non-ignorable missing data
mechanisms using a penalized EM algorithm:
application to quantitative proteomics data

So Young Ryu
∗

In multi-laboratory collaborative or large-scale proteomic
studies, it is challenging to analyze data properly due to
varying non-ignorable missing data mechanisms across ex-
periments. PEMM (Penalized EM algorithm incorporating
missing data mechanism) proposed by Chen, Prentice and
Wang [1] estimates both the mean and the covariance of
protein abundances in the presence of non-ignorable missing
data; however, PEMM assumes a common missing mecha-
nism for all experiments. This approach may be adequate
when experiments are performed under similar conditions,
but it may not work optimally when experiments are con-
ducted in different laboratories or over a long period of time.
In this paper, we extend PEMM to appropriately handle
varying missing data mechanisms for datasets generated at
multiple laboratories. Recognizing that jointly estimating
missing mechanisms and parameters of interest is a chal-
lenging task, we assume that missing data mechanisms are
known, and demonstrate benefits of incorporating multiple
missing mechanisms for datasets generated at different lab-
oratories. We call our algorithm PEMvM (Penalized EM
algorithm for varying non-ignorable missing mechanisms).
Our extension is simple and enjoys all the properties that
PEMM offers. When missing data mechanisms differ across
experiments, PEMvM performs better than PEMM in terms
of accurate mean estimation and data imputation. In this
paper, we demonstrate the performance of PEMvM using
both simulated and real proteomic data.
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1. INTRODUCTION

Mass spectrometry (MS) can quantify thousands of pro-
teins in complex biological samples and detect biomarker
proteins. Driven by the big data movement in proteomics,
several multi-laboratory consortia or large-scale proteomic
datasets became available; however, it is challenging to ana-
lyze such data collectively because of a high rate of missing
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values and non-ignorable missing data patterns [6, 5]. To
make it even harder for multi-laboratory collaborative stud-
ies, the missing data mechanisms across laboratories may
vary due to different instrument settings or experimental
procedures. Varying missing data mechanisms across lab-
oratories may also be observed in large-scale studies due
to several factors (i.e. different instrument conditions over
time, column degradation) [10].

In mass spectrometry data, less abundant proteins have
higher probabilities of being missing, thus the missing
data mechanisms of protein abundances are not random
(NMAR). Ignoring NMAR mechanisms may result in invalid
statistical inferences [9, 4], and inaccurate scientific conclu-
sions. Previously, several research groups proposed methods
that incorporated non-ignorable missing data mechanisms.
Luo et al. [6] proposed a Bayesian hierarchical model assum-
ing a linear relationship between the peptide missing prob-
ability and the observed abundance at the logit scale. Ryu
et al. [10] developed a censored regression model considering
intensity-dependent missing values. Recently, Chen, Pren-
tice and Wang [1] proposed a penalized EM algorithm incor-
porating a non-ignorable missing data mechanism (PEMM)
to jointly estimate the protein mean abundance and its co-
variance matrix. PEMM constrained the parameter space of
Σ and imposed a lower and upper bound of each eigenvalue
using a penalty amounting to an inverse-Wishart prior. The
performance of PEMM was demonstrated by comparing the
mean and covariance estimates to various methods such as
available case analysis, k-nearest neighbor imputation, and
penalized EM algorithm with MAR assumption. The co-
variance matrix estimated by PEMM can be useful to study
the association among proteins; however, to date, there is
no method that incorporates different non-ignorable miss-
ing value mechanisms across laboratories. In addition, as
noted in Chen, Prentice and Wang [1], it is challenging to
jointly estimate missing mechanisms and (μ,Σ).

In this paper, we extended the PEMM algorithm to han-
dle multiple non-ignorable missing data mechanisms assum-
ing that such missing mechanisms were known. We first out-
lined the PEMM algorithm and then introduced our exten-
sion, PEMvM (Penalized EM algorithm for varying non-
ignorable missing mechanisms). Then, we compared the per-
formances of these two algorithms in mean/covariance esti-
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mations and missing data imputations. We used both simu-
lated data and inter-laboratory data from the Clinical Pro-
teomic Technologies Cancer Consortium [1, 8] to demon-
strate the performance of PEMvM.

2. METHODS

2.1 PEMM

The following is the PEMM algorithm developed by
Chen, Prentice and Wang [1]. In order to highlight the differ-
ence and similarity between PEMM and PEMvM, we use no-
tation that follows closely that of Chen, Prentice and Wang
[1]. We denote the complete protein abundance matrix as
X = (xij), where xij represents the jth feature (i.e. protein)
for the ith experiment where i = 1, ..., n and j = 1, ..., p. It is
assumed that X has a multivariate normal distribution. The
missing indicator matrix is denoted as M = (mij), where
mij = 0 if xij is observed, and mij = 1 if xij is missing.
Xi,obs = {xij : j ∈ Oi} where Oi represents the index set of
proteins being observed in experiment i. Then, the missing
data mechanism in PEMM is:

P (M|X, γ1, γ2) =
∏

i,j

P (mij = 1|xij , γ1, γ2)(1)

=
∏

i,j

min(eγ1+γ2xij , 1).

If γ2 is non-zero, its missing mechanism is NMAR. The
negative γ2 implies that the probability of not observing
protein abundance increases as the protein abundance de-
creases. It is also assumed that a missing data mechanism
of a protein abundance does not depend on the abundances
of other proteins but only its own abundance. In (1), we
decide not to include covariates (i.e. protein size) which
may influence the probability of missing data, but does not
depend on xij since such covariates do not contribute to
the calculation of the maximum penalized likelihood esti-
mates.

Then, with known missing data mechanism Γ = (γ1, γ2),

the maximum likelihood estimation of (μ̂, Σ̂) is the follow-
ing:

(μ̂, Σ̂) = arg maxμ,Σ LΓ(μ,Σ)

(2)

= arg maxμ,Σ{
n∑

i=1

log f(Xi,obs,Mi;μ,Σ,Γ)− P (Σ)}.

where μ and Σ are the mean and covariance matrixes of
protein abundances, and P (Σ) is a penalty term. P (Σ) =
λ

∑
l 1/dl+K log(

∏
l dl), where λ > 0 andK > 0 are penalty

parameters and {dl}pl=1 are the eigenvalues of Σ. The choice
of penalty parameters are λ = 5 and K = 5 based on previ-
ous numerical studies [1].

Given λ,K, and Γ, we estimate (μ̂, Σ̂) using the following
PEMM algorithm:

• Initialization. Set μ(0) = X̄ and Σ(0) = (n +
K)−1(nSx+λ(0)I) where X̄ and Sx are the sample mean
and the sample covariance based on available cases. λ(0)

is the smallest positive that satisfies λ(0) ≥ λ and the
minimum eigenvalue of the matrix nSx + λ(0)I is posi-
tive.

• Iterate until the relative difference between (b − 1)th

and (b)th iterations is less than tol:

– E-step: Given (μ(b−1),Σ(b−1)), estimate the con-
ditional expectation of the sufficient statistics:

A
(b)
i:mis,mis = Σ

(b−1)
i:mis,mis

−Σ
(b−1)
i:mis,obs(Σ

(b−1)
i:obs,obs)

−1Σ
(b−1)
i:obs,mis,

X̂
(b)
i,obs = X̂i,obs,

X̂
(b)
i,mis = μ

(b−1)
i,mis +Σ

(b−1)
i:mis,obs(Σ

(b−1)
i:obs,obs)

−1

×(X̂
(b−1)
i,obs − μ

(b−1)
i,obs ) + γ2A

(b)
i:mis,mis·1.

– M-step: Obtain the maximum penalized likelihood
estimates:
μ(b) = n−1

∑
i X̂

(b)
i ,

Σ(b) = (n+K)(−1)

×(
∑

i((X̂
(b)
i −μ(b))(X̂

(b)
i −μ(b))T +A

(b)
i )+λ(b)I),

where λ(b) < λ is chosen to be the smallest value
which makes Σ(b) positive-definite.

• Let μ = μ(b) and Σ = Σ(b).

2.2 PEMvM

To properly handle multiple missing data mechanisms
across laboratories, we propose PEMvM (Penalized EM al-
gorithm incorporating varying non-ignorable missing mech-
anism). Assuming experiments from the same laboratory
were performed under similar condition, we group experi-
ments by their laboratories. We let gi be a group index of
ith experiment where there are q groups of experiments and
q ≤ n. To address different missing data mechanisms across
groups, we define the missing data mechanisms in PEMvM
as the following:

P (M|X,α,β) =
∏

i,j

P (mij = 1|xij ,α,β)(3)

=
∏

i,j

min(eαgi
+βgi

xij , 1),

where gi is a group index of experiment i determined prior to
analysis. We assume that α and β are known. In (3), each
group gi has unique missing data mechanism parameters.
When γ1 = α1 = ... = αq and γ2 = β1 = ... = βq, (1) and (3)
are the same. Thus, for a common missing data mechanism
case, PEMvM is reduced to PEMM. Similarly, if βgi < 0,
the missing mechanism for experiment i is NMAR. Then, we
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obtain the maximum likelihood estimation of (μ̂, Σ̂) given
the missing data mechanisms, θ = (α,β):

(μ̂, Σ̂) = arg maxμ,Σ Lθ(μ,Σ)

= arg maxμ,Σ{
n∑

i=1

log f(Xi,obs,Mi;μ,Σ, θ)− P (Σ)}.

(4)

We use the same penalty term as the PEMM algorithm
to ensure non-singular covariance matrix and concentration
matrix (λ = 5,K = 5). The same choice of penalty term was
used for both simulated and real data. Given λ, K, and θ,
we estimate (μ̂, Σ̂) using the following PEMvM algorithm:

• Initialization. Set μ(0) = X̄ and Σ(0) = (n +
K)−1(nSx+λ(0)I) where X̄ and Sx are the sample mean
and the sample covariance based on available cases. λ(0)

is the smallest positive that satisfies λ(0) ≥ λ and the
minimum eigenvalue of the matrix nSx + λ(0)I is posi-
tive.

• Iterate until the relative difference between (b − 1)th

and (b)th iterations is less than tol:

– E-step: Given (μ(b−1),Σ(b−1)), estimate the con-
ditional expectation of the sufficient statistics:

A
(b)
i:mis,mis = Σ

(b−1)
i:mis,mis

−Σ
(b−1)
i:mis,obs(Σ

(b−1)
i:obs,obs)

−1Σ
(b−1)
i:obs,mis,

X̂
(b)
i,obs = X̂i,obs,

X̂
(b)
i,mis = μ

(b−1)
i,mis +Σ

(b−1)
i:mis,obs(Σ

(b−1)
i:obs,obs)

−1

×(X̂
(b−1)
i,obs − μ

(b−1)
i,obs ) + βgiA

(b)
i:mis,mis·1.

– M-step: Obtain the maximum penalized likelihood
estimates:
μ(b) = n−1

∑
i X̂

(b)
i ,

Σ(b) = (n+K)(−1)

×(
∑

i((X̂
(b)
i −μ(b))(X̂

(b)
i −μ(b))T +A

(b)
i )+λ(b)I),

where λ(b) < λ is chosen to be the smallest value
which makes Σ(b) positive-definite.

• Let μ = μ(b) and Σ = Σ(b).

In the E-step, PEMvM uses different missing data mech-
anisms, βgi , for experiments from different groups, while
PEMM uses a common γ2 for all experiments. This change
in the missing data mechanism only affects the E-step, but
does not interfere with the M-step. Thus, the M-step is the
same for both PEMM and PEMvM. The proofs of PEMvM
are unnecessary given their similarity to PEMM.

We also impute the missing data using missing value esti-
mation at the final iteration b in the E-step of the PEMvM
algorithm:

X̂
(b)
i,mis = μ

(b−1)
i,mis +Σ

(b−1)
i:mis,obs(Σ

(b−1)
i:obs,obs)

−1(5)

×(X̂
(b−1)
i,obs − μ

(b−1)
i,obs ) + βgiA

(b)
i:mis,mis·1.

=where X̂
(b)
i,mis is the conditional expectation of missing data

given the non-ignorable missing data mechanisms and the
observed data. The R codes are available at https://github.
com/soyoungryu/PEMvM usingR.

3. RESULTS AND DISCUSSION

3.1 Simulation results

We simulated multivariate normal data with varying
missing data mechanisms. The missing probability was cal-
culated using Equation (3). We let βgi = 0.2 where i = 1,...,
�n/2� and βgi = w where i = �n/2� + 1, ..., n. We var-
ied w to be either 0.4 or 0.6 in order to investigate the
association between PEMvM performance and missing data
mechanism differences between groups. We set αgi such that
the missing rates approximately ranged between 35% and
45%. μj was randomly sampled from the uniform distribu-
tion with a minimum value of 3 and a maximum value of
8. We let Σjj = 1 and Σjj′ with j �= j′ sampled from ei-
ther zero or N(0.5, 0.12). Given p = 30, we considered the
data with n < p and n ≥ p by varying n to be 10, 20, 30, 40,
or 50. We compared the performance between PEMvM and
PEMM using the mean standard errors between estimated
values and true values. For each simulation set, we per-
formed 1,000 simulations and reported the average values
of simulation results with the corresponding standard er-
rors. In PEMvM, the given (βg1 , ..., βgn) were used assum-
ing that missing mechanisms were known. Similarly, γ2 in
PEMM was set to be a mean of (βg1 , ..., βgn).

When multiple non-ignorable missing data mechanisms
were present, PEMvM performed better than PEMM in
terms of accurate missing value imputation and mean esti-
mation (Table 1 and 2). But these two algorithms performed
similarly in covariance estimations with a small improve-
ment for PEMvM (Table 3). More specifically, the MSEs of
imputed values decreased for both PEMM and PEMvM as
the sample size increased; however, the MSEs of imputed
values were smaller using a PEMvM approach (Table 1).
The superior performance of PEMvM in missing data im-
putation was more noticeable when missing data mechanism
differences between groups were larger. When β1 = 0.2 and
β2 = 0.4, we were able to decrease the MSEs of imputed
values by 6.69% to 17.36% using PEMvM. When β1 = 0.2
and β2 = 0.6, the MSEs of imputed values were decreased
by 14.57% to 26.64% using PEMvM. For mean estimations,
similar patterns were observed (Table 2). When the differ-
ence between β1 and β2 was 0.2, the MSEs of mean estima-
tions were improved by 10.50% to 18.78% using PEMvM.
When the difference between β1 and β2 was 0.4, the MSEs
of mean estimations were improved by 9.09% to 18.26% us-
ing PEMvM. For both cases, the MSEs of covariance esti-
mations between the two algorithms differ by less than 1%
with PEMvM performing slightly better. In summary, as
the missing data mechanism difference became larger be-
tween groups, the benefit of PEMvM was more pronounced,
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Table 1. Average mean squared errors (MSEs) between imputed missing values and true values over 1,000 simulations.
Standard errors were reported in parentheses. A relative difference represents a MSE difference of imputed data using two

algorithms divided by the MSE of PEMM. The negative relative difference means a decrease in MSE using a PEMvM approach

β1 = 0.2 vs. β2 = 0.4 n=10 n=20 n=30 n=40 n=50

PEMM 1.7604 (0.0177) 1.5128 (0.0130) 1.2072 (0.0066) 1.0685 (0.0038) 0.9971 (0.0027)

PEMvM 1.4683 (0.0117) 1.2501 (0.0076) 1.0832 (0.0041) 0.9971 (0.0027) 0.9661 (0.0023)

relative difference -16.59% -17.36% -10.27% -6.69% -8.32%

β1 = 0.2 vs. β2 = 0.6 n=10 n=20 n=30 n=40 n=50

PEMM 1.6981 (0.0557) 1.4496 (0.0089) 1.3169 (0.0065) 1.1805 (0.0041) 1.1699 (0.0040)

PEMvM 1.2458 (0.0256) 1.0887 (0.0043) 1.0198 (0.0034) 1.0084 (0.0027) 0.9658 (0.0023)

relative difference -26.64% -24.90% -22.56% -14.57% -17.45%

Table 2. Average mean squared errors (MSEs) between μ̂ and μ over 1,000 simulations. Standard errors were reported in
parentheses. A relative difference represents a MSE difference of mean estimations using two algorithms divided by the MSE of

PEMM. The negative relative difference means a decrease in MSE using a PEMvM approach

β1 = 0.2 vs. β2 = 0.4 n=10 n=20 n=30 n=40 n=50

PEMM 0.2291 (0.0034 ) 0.1419 (0.0023) 0.0811 (0.0014) 0.0500 (0.0007) 0.0435 (0.0007)

PEMvM 0.2018 (0.0028 ) 0.1152 (0.0017) 0.0679 (0.0010) 0.0447 (0.0005) 0.0370 (0.0004)

relative difference -11.89% -18.78% -16.33% -10.50% -14.97%

β1 = 0.2 vs. β2 = 0.6 n=10 n=20 n=30 n=40 n=50

PEMM 0.1744 (0.0070) 0.0983 (0.0013) 0.0645 (0.0008) 0.0479 (0.0006) 0.0409 (0.0005)

PEMvM 0.1586 (0.0057) 0.0811 (0.0009) 0.0527 (0.0006) 0.0400 (0.0004) 0.0335 (0.0004)

relative difference -9.09% -17.47% -18.26% -16.56% -18.17%

Table 3. Average mean squared errors (MSEs) between Σ̂ and Σ over 1,000 simulations. Standard errors were reported in
parentheses. A relative difference represents a MSE difference of mean estimations using two algorithms divided by the MSE of

PEMM. The negative relative difference means a decrease in MSE using a PEMvM approach

β1 = 0.2 vs. β2 = 0.4 n=10 n=20 n=30 n=40 n=50

PEMM 0.0701 (0.0007) 0.0617 (0.0007) 0.0435 (0.0066) 0.0333 (0.0003) 0.0315 (0.0004)

PEMvM 0.0649 (0.0004) 0.0540 (0.0004) 0.0395 (0.0041) 0.0315 (0.0002) 0.0279 (0.0002)

relative difference -0.30% -0.51% -0.33% -0.17% -0.33%

β1 = 0.2 vs. β2 = 0.6 n=10 n=20 n=30 n=40 n=50

PEMM 0.0635 (0.0014) 0.0498 (0.0004 ) 0.0418 (0.0065) 0.0315 (0.0002) 0.0297 (0.0002 )

PEMvM 0.0604 (0.0011) 0.0452(0.0003) 0.0373 (0.0034) 0.0292 (0.0002) 0.0246 (0.0002)

relative difference -0.18% -0.31% -0.34% -0.20% -0.20%

especially for missing value imputations and mean estima-
tions. At various sample sizes, PEMvM had smaller MSEs
of imputed value, μ̂, and Σ̂ compared to PEMM.

3.2 Spiked-in human proteins in yeast

We applied PEMvM to 45 UPS1 (Universal Proteomics
Standard Set 1) proteins that were previously used to inves-
tigate the performance of PEMM compared to other meth-
ods (i.e. available case analysis, k-nearest neighbor imputa-
tion, penalized EM algorithm with MAR assumption) [1]. In
brief, UPS1 proteins were spiked in the yeast lysate samples
at three different concentrations. Then, each protein mixture
was analyzed by mass spectrometry three times at four dif-
ferent laboratories. The software Sahale [7] was used to mea-

sure protein abundance in these samples. The dataset was

available in Chen, Prentice and Wang [1]. The median val-

ues of yeast protein abundances were used to normalize data

since their concentrations were equal in all mixtures. There

were protein mixtures with UPS1 protein concentrations of

20 fmol/μL, 6.7 fmol/μL and 2.2 fmol/μL. The missing rates

for these sets were 9.8%, 23.7%, and 51.1% with the least

missing rate for the highest UPS1 protein concentration. We

labeled them as Mixture 1, 2, and 3, respectively. Since it

was more adequate to use a dataset with the least missing

rate (Mixture 1) as a reference dataset, we compared UPS1

proteins between Mixture 1 vs. Mixture 2 (Comparison I)

and Mixture 1 vs. Mixture 3 (Comparison II). Since miss-

ing data mechanisms were unknown for this experiment, we
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estimated θgi = (αgi , βgi) using available-case mean esti-
mates of protein abundances and their missing percentages
as shown in Chen et al. [2].

Since the mixtures were analyzed at multiple laborato-
ries, we suspected that the protein abundance data gen-
erated at different laboratories had different missing data
mechanisms. As shown in Table 4, the missing rates varied
across laboratories. Moreover, different laboratories had dif-
ferent magnitudes of missing rate changes between mixtures.
For example, the missing rate difference between Mixture 1
and 2 in Laboratory 3 was 18.52% (= 20.74%−2.22%), while
their difference in Laboratory 2 was 6.67% (= 15.56% −
8.89%). The values of β̂gi ranged from 0.05 to 0.17.

When PEMvM was applied to this multi-laboratory data,
PEMvM estimated (mean) protein abundances more accu-
rately than PEMM (Table 5). The true UPS1 protein con-
centration differences between mixtures were used to indi-
rectly measure the accuracy of means estimated by PEMM
and PEMvM. We note that, due to varying ion efficiencies
of peptides (i.e. fragments of proteins), it was not feasible
to directly measure the actual protein abundances [3, 11].
However, since the same peptide sequences had the same ion
efficiencies, it was possible to measure relative abundance
differences between mixtures and use this information to
measure the accuracy of means estimated by PEMM and
PEMvM. When PEMvM was employed instead of PEMM,
the MSEs of mean protein abundance differences between
two mixtures decreased by 7.42% for Comparison I (Mixture
1 vs. 2) and by 1.28% for Comparison II (Mixture 1 vs. 3).
The magnitudes of MSEs were quite different between Com-
parison I and II. This was expected since Mixture 3 had a
missing rate of over 50%, thus making it harder to accurately
estimate protein abundance differences. We also estimated
the variance of protein abundance differences among UPS1
proteins. Since the true abundance differences between mix-
tures were the same for all 45 UPS1 proteins, it would be
ideal if variance was similar to the MSE. As shown in Table
5, the MSEs were reasonably close to their variances.

PEMvM performed better than PEMM in terms of ac-
curately measuring relative protein ratios in a presence of
varying missing mechanisms; however, we want to note lim-
itations of our proposed method. First, in our study, we as-
sume that missing mechanisms are known; however, jointly
estimating missing mechanisms and protein abundances is
important, but is not an easy task due to computational
limitation. Thus, future study on this topic is necessary
to further improve the performances of both PEMM and
PEMvM. Secondly, PEMvM must be applied with caution
to the dataset that may have a common missing mecha-
nism. In such cases, PEMvM will be reduced to PEMM if
missing mechanisms can be accurately estimated; however,
when missing data mechanisms cannot be estimated accu-
rately, PEMvM may perform worse than PEMM owing to
uncertainty in measuring missing data mechanisms.

Table 4. The missing rates of UPS1 proteins

Mixture 1 Mixture 2 Mixture 3

Laboratory 1 9.63% 22.22% 42.96%

Laboratory 2 8.89% 15.56% 39.26%

Laboratory 3 2.22% 20.74% 54.07%

Laboratory 4 18.52% 36.30% 68.15%

Table 5. MSE errors of log2 transformed mean protein ratios
for Comparison I (Mixture 1 vs. 2) and Comparison II

(Mixture 1 vs. 3)

Comparison I MSE Variance

PEMM 0.5418 0.5418

PEMvM 0.5016 0.5000

relative difference -7.42% -7.72%

Comparison II MSE Variance

PEMM 1.8406 1.6606

PEMvM 1.8170 1.6382

relative difference -1.28% -1.35%

4. CONCLUSION

The multi-laboratory consortium or large-scale proteomic
studies can provide valuable information about robust pro-
tein biomarkers for diseases; however, careful attention is
needed to properly analyze such datasets. Among many
challenges in analyzing such datasets, we are interested in
properly handling non-ignorable missing data mechanisms.
In this paper, we extended the PEMM algorithm to incor-
porate varying missing data mechanisms across laboratories.
Our algorithm PEMvM can also be used in large-scale pro-
teomic studies, especially when the biological samples are
analyzed over several years. For example, missing data pat-
terns may vary after a major instrument tuning, even when
the samples are analyzed by the same instrument. Thus,
it would be necessary to consider the varying missing data
mechanisms.
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