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A unified semi-empirical likelihood ratio
confidence interval for treatment effects in the
two sample problem with length-biased data
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In two sample studies, the treatment effects that we are
interested in may have different types, such as mean differ-
ence, the difference of probabilities, etc. In this work, we ap-
ply semi-parametric empirical likelihood principle to length
biased data and derived a unified empirical likelihood ra-
tio confidence interval for treatment effects. The empirical
likelihood ratio is shown to be asymptotically distributed as
chi-squared. Simulation studies show that the proposed con-
fidence interval has a better performance compared with its
counterpart which is based on normal approximation. The
severe effect caused by ignoring the length bias is also il-
lustrated by simulation. The proposed method is applied to
Oscar data to study the effect of high socio-economic status
on lifetime.
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1. INTRODUCTION

In survival analysis, it’s very common and necessary to
estimate the effect of a treatment compared with a control
group or estimate the difference between two treatments. Al-
though it originates in a medical literature concerned with
the causal effects of binary, yes-or-no ‘treatments’, the term
‘treatment effect’ is now applied, more generally, to other
fields of natural and social science, especially psychology,
political science, and economics. For instance, Redelmeier
and Singh [19] compiled Oscar data to study the effect of
high socio-economic status on health and lifetime: among
Hollywood performers, does winning an Oscar Award cause
their expected lifetime to increase? Some analysis by [19]
was based on mean lifetime differences between the Oscar
winners and the performers who were never nominated. In
this scenario, treatment means that the performer is nomi-
nated for an Oscar Award. Along with the generalization of
‘treatment’, the measure on its ‘effect’ associated with the
real problem can be presented by different types of statis-
tics. For example, Lin and Zhou [12] also uses Oscar data
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to study the effect of high socio-economic status on health
and lifetime, but their discussion is not only based on the
mean lifetime differences but also the probability that the
lifetime of an Oscar winner is longer than the performer who
is never nominated.

There are a variety of parametric and nonparametric
methods proposed to estimate the treatment effects for two-
sample problem. In many applications, the historical infor-
mation is available for the control group but unavailable for
the treatment group. In this situation, it is more reasonable
to apply the semiparametric model, in which one popula-
tion is modeled parametrically and the other nonparametri-
cally. Li et al. [11] proposed semiparametric estimate for the
quantile comparison function and showed that it could have
substantially smaller asymptotic variance than its nonpara-
metric counterpart proposed by [10]. One of its special cases,
where one population is assumed to be normally distributed,
has been discussed by [9]. A unified semiparametric method
for different types of treatment effects was proposed by [24]
for right-censored data. Based on the same semiparametric
model, another estimate was discussed by [4].

This paper is motivated by discussions about Oscar data
[21, 7, 12]. Based on the analysis of mean lifetime differ-
ences, it is stated by [19] that life expectancy is 3.9 years
longer for Oscar Award winners than other less recognized
performers. But later it is pointed out by [21] that the anal-
ysis in [19] suffers from immortal time bias—the performers
who live longer have more opportunities to be nominated.
Consider the example given by [7], both Henry Fonda and
Dan Dailey were first nominated for an Oscar Award but
did not win at the age of 35. Fonda finally won the Oscar at
age 77, while Dan died at age 64 and never won the Oscar
before death. Which means, by taking the age of the first
time nomination as the truncation time, the observations
in the nominee group (no matter if winning the award or
not) are actually left truncated. As we know, the left trun-
cated data are very common in prevalent study. Particularly,
when the incidence of the event follows a stationary Poisson
process, the left truncated data is called ‘the length-biased
data’ [2, 3]. As a special case of left truncation, the length
bias means that the left truncation time is uniformly dis-
tributed, and the sampling probability of survival time is
proportional to its length. With the length-biased sampling
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procedure being adopted, it is getting important to develop
the methodology for statistical inference of treatment ef-
fects in the two-sample problem with the length bias and
right censoring. Lin and Zhou [12] pooled all the nominees
(including both winners and non-winning nominees) as the
treatment group (nominee group), and took the perform-
ers who were never nominated as the control (non-nominee
group). By taking the age of the first time nomination as the
truncation time, they used the method proposed by [1] to
check the stationarity for truncation time and showed that
the length-bias assumption on lifetime data in the nominee
group was applicable. By applying a parametric model to
length-biased and right-censored data (nominee group) and
a nonparametric model to right-censored data (non-nominee
group), they proposed a unified semiparametric estimating
equation approach to estimate various types of treatment
effects. The large sample properties of the estimates were
discussed and the normal approximation confidence inter-
vals were constructed by the asymptotic normal distribution
of the point estimator.

In this paper, we will consider the same model as [12].
The contribution of this paper is to construct the confidence
intervals for several different types of treatment effect mea-
surements in the two-sample problem with the length bias
by using empirical likelihood ratio method. Empirical like-
lihood ratio method was first introduced by [22], then de-
veloped by [13, 14] and many others into a general method-
ology. Compared with normal approximation method and
bootstrap method for constructing the confidence interval,
empirical likelihood ratio method, as a data-driven method,
has many advantages in its accuracy, implementation and
flexibility. As we know, a normal approximation confidence
interval constructed by the asymptotic normal distribution
of a point estimator [12] has to be symmetric implied by
the asymptotic normality, whereas the empirical likelihood
confidence interval does not have predetermined shape. Em-
pirical likelihood confidence interval may have a better per-
formance than normal approximation confidence interval in
terms of coverage probability and it overcomes the under-
coverage problem of the normal approximation confidence
interval for small sample size [23]. Compared with the boot-
strap method, empirical likelihood can be Bartlett corrected,
improving the accuracy of inferences [6]. Moreover, empir-
ical likelihood confidence interval preserves the range of
the parameter. Likelihoods also make it easier to combine
data from multiple sources, with possibly different sampling
schemes. All these appealing features make the empirical
likelihood ratio confidence region applicable in a variety of
situations; see for example [5, 18, 8]. There has been a rich
body of literature on the empirical likelihood method in
various settings of statistical inference. We here just con-
centrate our review on the two-sample problem. Qin [15]
combined the empirical likelihood ideas and the paramet-
ric method to construct confidence intervals for the differ-
ence of two population means in a semiparametric model.

Later on, this method was applied to right-censored data by
[24, 17]. In this article, we derive the asymptotic chi-squared
distribution of the empirical likelihood ratio and construct
the confidence region for the treatment effects based on chi-
squared distribution. Then simulation studies show that the
proposed confidence interval has a better performance than
its counterpart which is based on normal approximation.
The severe effect caused by ignoring the length bias is also
illustrated by simulation. The proposed method is applied to
Oscar data to study the effect of high socio-economic status
on lifetime.

The rest of article is organized as follows. Section 2 intro-
duces the notation, sets up the model and applies the empir-
ical likelihood principle to the model. Section 3 presents the
confidence interval based on empirical likelihood principle.
At last, the numerical studies which include both simulation
study and real data analysis are conducted in Section 4. All
detailed proofs are given in Appendix.

2. SEMI-PARAMETRIC EMPIRICAL
LIKELIHOOD RATIO

2.1 Model set-up

Let X̃ and Ỹ be two independent nonnegative random
variables. Assume random variable X̃ be with the length-
biased sampling and random censoring model. Let A denote
the left-truncation time, which is assumed to be uniformly
distributed and independent with X̃. In the length-biased
sampling procedure, X̃ can be observed only when X̃ ≥ A.
Denote by X0 = A + T the survival time under a length-
biased sampling procedure, in which T denotes the residual
life time from recruitment. Then (X0, A) has the same joint
distribution as (X̃, A)|X̃ ≥ A. Let C be the residual cen-
soring time from recruitment and independent with (X̃, A).
Then only the censored survival timeX = min(X0, A+C) is
observed. The observations {(Xi, Ai, δi), i = 1, · · · , n} are n
independent and identically distributed copies of (X,A, δ),
where δ = I(X0 ≤ A+ C).

The random censoring model is assumed for random vari-
able Ỹ . Let V be the censoring variable, which is indepen-
dent with Ỹ . Define Y = min(Ỹ , V ) and d = I(Ỹ ≤ V ). The
observations {(Yj , di), j = 1, · · · ,m} are m independent and
identically distributed copies of (Y, d).

Usually, there is enough information available for the
control treatment but limited information available for the
new treatment group. Hence a semiparametric approach is
adopted in this article. A nonparametric distribution is as-
sumed for X̃. Let F1(x), S1(x) and f(x) be the distribu-
tion function, survival function and density function respec-
tively. A parametric form is assumed for Ỹ . Let f2(y; θ) be
the density function of Ỹ , which is of known form with p-
dimensional unknown parameter θ. Denote by F2(y; θ) and
S2(y; θ) the corresponding distribution function and survival
function respectively. It is assumed that the two samples are
independent and n/m → ζ as n,m → ∞.
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Let Δ be the q-dimensional parameter of interest, which
stands for q types of treatment effects. Assume that there is
an unbiased estimating function ψ such that

(1) EF1ψ(X̃, θ0, Δ0) = 0,

where θ0 and Δ0 are the true values of θ and Δ respectively.
The unbiased estimating function ψ can be derived accord-
ing to the type of interested treatment effect. For different
type of treatment effect measurement Δ, its corresponding
estimating function is given as follows.

i For mean difference, let Δ0 = EX̃ − EỸ and

ψ(X̃, θ0, Δ0) = X̃ −Δ0 −
+∞∫
0

ydF2(y; θ0);

ii For the difference of probabilities, i.e., P (X̃ ≤ t0) −
P (Ỹ ≤ t0) for a given t0, let Δ0 = F1(t0) − F2(t0; θ)
and ψ(X̃, θ0, Δ0) = I(X̃ ≤ t0)− F2(t0; θ)−Δ0;

iii For the probability of event I(X̃ < Ỹ ), let Δ0 =
EF1(1−F2(X̃; θ0)) and ψ(X̃, θ0, Δ0) = 1−F2(X̃, θ0)−
Δ0.

iv For the value on the receiver operating characteristic
curve, let Δ0 = 1− F1{F−1

2 (1− p; θ0)} for a given p ∈
(0, 1) and ψ(X̃, θ0, Δ0) = 1− I{X̃ ≤ F−1

2 (1− p; θ0)} −
Δ0.

2.2 Semiparametric empirical likelihood ratio

In this article, we apply the empirical likelihood principle
to obtain the confidence interval for Δ. It is noted that X̃ in
(1) is unobservable in the length-biased sampling procedure.
Therefore, we first set up an estimating equation based on
the feature of right-censored and length-biased sample.

Under length-biased sampling, the truncation variable A
follows a uniform distribution and the joint density function
of (X0, A) is

(2) fX0,A(x, a) =
f1(x)I(x ≥ a)

μ
,

where μ = E(X̃) =
∫ +∞
0

xf1(x)dx. Denote by f0(x) and
S0(x) the density function and survival function of X0 re-
spectively. Then X0 has a length-biased density function

f0(x) = xf1(x)
μ . Under the assumption that the censoring

variable C is independent with (X̃, A), the probability of
observing a failure at time x is

P (X ∈ (x, x+ dx), δ = 1) =
f1(x)

μ
dx

∫ x

0

SC(z)dz

=
f1(x)π(x)

μ
dx,

where SC(·) is the survival function of C and π(x) =∫ x

0
SC(z)dz. By some simple calculation, we have

E

(
δ
ψ(X, θ,Δ)

π(X)

)
=

1

μ

∫ +∞

0

ψ(X, θ,Δ)f1(x)dx

=
1

μ
EF1ψ(X̃, θ,Δ) = 0.(3)

Therefore, an unbiased estimating function, δψ(X,θ0,Δ0)
π(X) ,

which is based on the observable variable X under length-
biased sampling, is constructed. Under the constraining con-
dition (3), the adjusted empirical likelihood ratio approach
is used to derive the confidence interval for Δ. Obviously,
there is a nuisance parameter SC(·) in (3). It is natu-
ral to replace it with its Kaplan-Meier estimator ŜC(t) =∏
u≤t

(
1− dNC(u)

L(u)

)
, where NC(u) =

n∑
i=1

I(Xi−Ai ≤ u, δi = 0)

and L(u) =
n∑

i=1

I(Xi −Ai ≥ u).

Let Fp be the distribution function that assigns probabili-
ties pi at points δi/π(xi). Thus the adjusted semi-parametric
empirical likelihood function is

(4) Ladj(θ,P) =
n∏

i=1

pi

m∏
j=1

f2(yj ; θ)
djS2(yj ; θ)

1−dj ,

where P denotes the set of all possible values of pi with
restrictions

∑n
i=1 pi = 1 and pi ≥ 0 (i = 1, · · · , n).

Denote by θ̂MLE the MLE based on the sample
for Ỹ , it is easy to show that when p̂i = 1

n

and θ̂ = θ̂MLE, Ladj(θ,P) attains its maximum value

n−n
∏m

j=1 f2(yj ; θ̂MLE)
djS2(yj ; θ̂MLE)

1−dj . Let

R(θ,P) =

n∏
i=1

npi

m∏
j=1

f2(yj ; θ)
djS2(yj ; θ)

1−dj

⎡
⎣ m∏
j=1

f2(yj ; θ̂MLE)
djS2(yj ; θ̂MLE)

1−dj

⎤
⎦
−1

,

then semiparametric empirical likelihood ratio is

R(Δ) = sup
θ,P

{
R(θ,P)

∣∣∣∣∣
n∑

i=1

pi = 1, pi ≥ 0,

n∑
i=1

piδi
π̂(xi)

ψ(xi, θ,Δ) = 0

}
,

where π̂(xi) is the estimate of π(xi) and π̂(xi) =∫ xi

0
ŜC(t)dt.
Let

L(θ,P) = − logR(θ,P)

= −
n∑

i=1

lognpi − �2(θ,y) + �2(θ̂MLE,y)(5)

� �EL(θ,P) + �2(θ̂MLE,y)

where �2(θ,y)=
m∑
j=1

{dj log f2(yj ; θ)+ (1− dj) logS2(yj ; θ)}.

Under the restriction
∑n

i=1
piδi
π̂(xi)

ψ(xi, θ,Δ) = 0, L(θ,P)

or �EL(θ,P) was first minimized with respect to P . By
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lagrangian multiplier method, we have

(6) pi = pi(θ) = n−1 (1 + w(xi)λ
T(θ)ψ(xi, θ,Δ))

−1
,

where w(xi) =
δi

π̂(xi)
and λ is Lagrange operator. With the

condition
∑n

i=1
piδi
π̂(xi)

ψ(xi, θ,Δ) = 0, λ(θ) is given as the

solution to

(7)
1

n

n∑
i=1

w(xi)ψ(xi, θ,Δ)

1 + w(xi)λT(θ)ψ(xi, θ,Δ)
= 0.

By plugging (6) into (5), the profile empirical log-likelihood
ratio is

(8) L(θ,Δ) = �EL(θ,Δ) + �2(θ̂MLE),

where

(9) �EL(θ,Δ) =
n∑

i=1

log {1 + w(xi)λ
T(θ)ψ(xi, θ,Δ)}−�2(θ).

By profiling out the nuisance parameter θ, maxθL(θ,Δ),
as the function of Δ, can be proved to have a chi-squared
distribution. Then the empirical likelihood confidence region
for Δ can be constructed through chi-squared distribution.

3. CONFIDENCE INTERVAL FOR
TREATMENT EFFECT

In this section we will prove that by minimizing (9) with
restriction

∑n
i=1

piδi
π̂(xi)

ψ(xi, θ,Δ) = 0, there exists an esti-

mate (λ̂, θ̂EL) which lies within an Op(n
−�),

(
1
3 < 
 < 1

2

)
neighborhood of the true value (λ0, θ0). The asymptotic nor-
mality of the estimate is then derived. By profiling out θ,
we will show that 2L(θ̂EL, Δ) is asymptotically distributed as
chi-squared with an adjustment factor. Then empirical like-
lihood confidence region for Δ can be constructed through
chi-squared distribution.

All the works in this section are based on the following
assumptions:

(i) τ1 ≤ τC , where τ1 = sup{t : S1(t) > 0} and τC =
sup{t : SC(t) > 0}, and

1

μ

∫ τ1

0

ψ2(u, θ,Δ)

π(u)
dF1(u) < ∞.

(ii) ψ2(x, θ,Δ), ψ̇θ(x, θ,Δ) and ψ̇Δ(x, θ,Δ) are continu-
ous and bounded by some function M1(x) in a
neighborhood of the true value (θ0, Δ0) such that
1
μ

∫ τ1
0

M3
1 (u)

π2(u) dF1(u) < ∞, EF1 ψ̇θ(x, θ,Δ) �= 0, and

EF1 ψ̇Δ(x, θ,Δ) �= 0.
(iii) The density function f2(y; θ) is three times differen-

tiable with respect to θ on A = {y : f2(y; θ) > 0},
which is assumed to be independent of θ. There ex-
ists a function M2(y) such that for any y ∈ A and θ,
Eθ|M2(Y )| < ∞.

(iv) The information matrix I(θ) with the entries

Iij = −
∫ τ2

0

∂2 log f2(y; θ)

∂θi∂θj
(1− SV (y))f2(y; θ)dy

−
∫ τ2

0

∂2 logS2(y; θ)

∂θi∂θj
(S2(y; θ)dSV (y),

for i, j = 1, 2, · · · , p, which are continuous and positive
definite. Here, τ2 = sup{t : S2(t; θ)SV (t) > 0} and
SV (·) is the survival function of V .

Theorem 3.1. Suppose that Assumptions (i)–(iv) hold.
Then, as n → ∞, with probability one L(θ,Δ) attains its

maximum value at some point θ̂EL in the interior of the ball
‖θ − θ0‖ < n−�

(
1
3 < 
 < 1

2

)
, and θ̂EL and λ̂ = λ(θ̂EL) sat-

isfy

Q1n(λ̂, θ̂EL) = Q2n(λ̂, θ̂EL) = 0,

where

Q1n(λ, θ) =
1

n

∂�EL(θ,Δ)

∂λ

=
1

n

n∑
i=1

w(xi)ψ(xi, θ,Δ)

1 + w(xi)λTψ(xi, θ,Δ)
,(10)

Q2n(λ, θ) =
1

n

∂�EL(θ,Δ)

∂θ

=
λ

n

n∑
i=1

w(xi)ψ̇θ(xi, θ,Δ)

1 + w(xi)λTψ(xi, θ,Δ)
− 1

n

∂�2(θ)

∂θ
.(11)

Theorem 3.2. Suppose Assumptions (i)–(iv) hold. Then

√
n

(
λ̂

θ̂EL − θ0

)
D−→ N(0, V1),

where V1 = (vij)2×2 is with v11 = C2
θΓ0 + C2

θβ
T
0Σ

−1
0 β0,

v12 = v21 = Cθβ
T
0 (Σ + β0σ

−2
0 βT

0 )
−1 − C2

θΓ0β
T
0Σ

−1
0 ,

and v22 = C2
θΓ0Σ

−1
0 β0β

T
0Σ

−1
0 + (Σ0 + β0σ

−2
0 βT

0 )
−1Σ0

(Σ0+β0σ
−2
0 βT

0 )
−1, in which Cθ = (σ2

0 +βT
0Σ

−1
0 β0)

−1, σ2
0 =

σ2
0(θ0, Δ), σ2

0(θ,Δ) = 1
μEF1

(
ψ2(Xi;θ,Δ)

π(Xi)

)
, β0 = β0(θ0, Δ),

β0(θ,Δ) = 1
μEF1

(
ψ̇θ(Xi; θ,Δ)

)
, Σ0 = ζ−1I(θ0), I(θ)

is given in Assumption (iv). Γ0 = Γ (θ0, Δ), Γ (θ,Δ) =

E
(

δ(Xi)
π(Xi)

ψ(Xi; θ,Δ) +
∫ τC
0

B(s)
SC(s)ST (s)dM

C
i (s)

)2

, in which

MC
i (t) = I(Xi − Ai ≤ t, δi = 0)−

∫ t

0
I(Xi − Ai ≥ s)dΛC(s)

and ΛC(·) is the cumulative hazard function of the cen-

sored time C, B(s) = E
{

δ(Xi)
π(Xi)

ψ(Xi; θ,Δ)h(s,Xi)
}

=
1
μEF1 {ψ(Xi; θ,Δ)h(s,Xi)}, and h(s, t) =
I(s≤t)
π(t)

∫ t

s
SC(u)du.

Theorem 3.3. Under Assumptions (i)–(iv), the profile em-

pirical log-likelihood ratio function for Δ, L(θ̂EL, Δ), is such
that

2ρ(θ,Δ)L(θ̂EL, Δ)
D−→ χ2(1),
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Table 1. Comparison of confidence intervals between semiparametric empirical likehood (SEL) method and semiparametric
estimating equation (SEE) method

Δ1 = E(X̃ − Ỹ ) Δ2 = P (X̃ > Ỹ )
SEE SEL SEE SEL

CR (n,m) MP CP Length MP CP Length MP CP Length MP CP Length

20% (50,50) 1.10 93.0 2.67 1.16 93.0 2.47 0.65 91.6 0.27 0.66 91.2 0.23
(100,100) 1.03 94.8 2.05 1.08 95.2 1.65 0.65 92.6 0.21 0.65 94.6 0.18
(200,200) 1.08 94.9 1.43 1.13 94.6 1.21 0.65 95.2 0.16 0.65 95.8 0.14

40% (50,50) 0.99 94.8 2.95 0.93 95.2 2.59 0.64 91.2 0.29 0.64 94.8 0.26
(100,100) 1.02 95.6 2.07 1.01 96.2 1.67 0.64 94.6 0.23 0.65 95.1 0.20
(200,200) 1.00 94.9 1.55 0.98 95.1 1.32 0.64 93.6 0.16 0.64 96.4 0.15

‘MP’ means middle point of the confidence interval. ‘CP’ means coverage probability. ‘Length’ means the average length of the
confidence interval.

where ρ(θ,Δ) =
Γ0+βT

0 Σ−1
0 β0

σ2
0+βT

0 Σ−1
0 β0

, and Γ0, β0, σ
2
0 and Σ0 are de-

fined in Theorem 3.2.

It should be noted that the adjustment factor ρ(θ,Δ) in
Theorem 3.3 involves unknown parameters θ and Δ. There-
fore, in order to construct the confidence interval for Δ,
ρ(θ,Δ) is replaced with its estimate ρ̂(θ̂MLE, Δ̂), where Δ̂
can be any consistent estimate of Δ. For example, we can
choose Δ̂ of [12]. Since both θ̂MLE and Δ̂ are consistent,

ρ̂(θ̂MLE, Δ̂) is obviously consistent.

Corollary 3.1. Suppose that the assumptions of Theo-
rem 3.3 hold, then

lim
n→∞

P (Δ ∈ Iα) = 1− α,

where Iα = {Δ : 2ρ̂(θ̂MLE, Δ̂)L(θ̂EL, Δ) ≤ χ2
1−α(1)} and

χ2
1−α(1) is the 1− α quantile of χ2(1).

4. NUMERICAL STUDIES

4.1 Simulation studies

In this section, we conduct simulation studies to evalu-
ate the coverage probability and the average length of 95%
semiparametric empirical likelihood (SEL) confidence inter-
val proposed in this article, compare it with semiparamet-
ric estimating equation (SEE) normal approximation confi-
dence interval proposed by [12] and show that the proposed
approach outperforms the normal approximation method on
the basis of shortness of length of confidence interval. More-
over, the severe consequence of ignoring length bias is also
assessed by simulation study 2. It shows that ignoring the
length bias leads to confidence intervals for parameters that
are far beyond the true values and the coverage probabilities
are very poor.

Let X̃ be distributed as Γ (α, β) with α = β = 2. It can be
easily derived that X0 is distributed as Γ (α+1, β). Let the
conditional distribution of left truncation variable A condi-
tioned on X0 be U(0, X0). Moreover, let the distribution of
censoring random variable C be distributed as Exp(c1) with

mean c1, where the value of c1 is set to control the censoring
rate. Let Ỹ be from Exp(θ) with mean θ = 3. The censoring
variable V is from Exp(c2), where the value of c2 is also set
to control the censoring rate of observations for Ỹ .

Two inferences here are of interest to us. One is the mean
difference Δ1 = E(X̃ − Ỹ ), and the other one is the prob-
ability of event I(X̃ > Ỹ ), i.e., Δ2 = P (X̃ > Ỹ ). The
corresponding estimating functions can be constructed as

ψ1(X̃, θ,Δ1) = X̃ −Δ1 − θ, ψ2(X̃, θ,Δ2) = F2(X̃, θ)−Δ2.

With all the above settings, we have that the true values
of Δ1 and Δ2 are 1 and 0.64, respectively. We generate 500
samples, of size n = m = 50,100 and 200 and each with
censoring rate 20% and 40%.

Simulation study 1 Lin and Zhou [12] applied semi-
parametric estimating function method to obtain the point
estimate and construct the normal approximation confi-
dence interval. For convenience, their approach is denoted
as SEE. Simulation study 1 is designed to evaluate the cov-
erage probability and the average length of 95% confidence
interval based on the proposed SEL method and compare it
with its competitor SEE. The results are summarized in Ta-
ble 1. As expected, the length of confidence intervals based
on both SEL and SEE decrease along with the increase-
ment of the sample size n and m. When the censoring rate
increases from 20% to 40%, the length of confidence inter-
vals based on both SEL and SEE increase. Moreover, it is
clear that the confidence intervals based on both SEL and
SEE have good coverage probabilities, which are all closed
to the nominal level 0.95. Meanwhile, the length of confi-
dence intervals based on SEL are better than SEE in all
cases.

Simulation study 2 Simulation study 2 is designed to
assess the severe consequence of ignoring length bias. In
this study, we ignore the length bias and treat the obser-
vations for X̃ as Γ (2, 2) right-censored data. Then Kaplan-
Meier estimator of survival function of censoring variable
C is taken as the the estimate of π(xi). The superscript ˜
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Table 2. SEL confidence intervals with and without length bias taken into account

Δ1 = E(X̃ − Ỹ ) Δ2 = P (X̃ > Ỹ )
SEL RC SEL LBRC SEL RC SEL LBRC

CR (n,m) MP CP Length MP CP Length MP CP Length MP CP Length

20% (50,50) 2.60 25.5 2.06 1.16 93.0 2.47 0.75 28.7 0.17 0.66 91.2 0.23
(100,100) 1.92 61.2 2.22 1.08 95.2 1.65 0.70 46.4 0.19 0.65 94.6 0.18
(200,200) 2.55 15.4 1.45 1.13 94.6 1.21 0.73 22.7 0.12 0.65 95.8 0.14

40% (50,50) 1.74 29.7 1.82 0.93 95.2 2.59 0.69 30.8 0.14 0.64 94.8 0.26
(100,100) 2.35 4.8 1.00 1.01 96.2 1.67 0.74 17.2 0.09 0.65 95.1 0.20
(200,200) 1.66 10.6 0.87 0.98 95.1 1.32 0.69 21.1 0.10 0.64 96.4 0.15

‘MP’ means middle point of the confidence interval. ‘CP’ means coverage probability. ‘Length’ means the average length of the
confidence interval.

is used to denote the estimates without considering length
bias. The resulting estimate of π(xi) is π̃(xi) = S̃C(x) =∏

u≤t(1 −
dÑC(u)

L̃(u)
), where ÑC(u) =

∑n
i=1 I(Xi ≤ u, δi = 0)

and L̃(u) =
∑n

i=1 I(Xi ≥ u). The corresponding SEL
confidence interval for two sample treatment effect based
on right-censored data were discussed by [24]. Following
their result, the SEL confidence interval without consider-
ing length bias is constructed and summarized in Table 2.
To avoid confusion, denote by SEL LBRC and SEL RC the
SEL confidence intervals with and without length bias taken
into account respectively. We can see that when length bias
is ignored, the average length of the confidence interval has
no big difference compared with SEL LBRC. But the mid-
points of confidence interval for both Δ1 and Δ2 are far be-
yond the true values. As a result, the coverage probabilities
are very poor. This is not surprising, because the observa-
tions for X̃ is actually length biased, which means the units
with longer lifetime have more opportunities to be sampled.
Therefore, failing to take length bias of X̃ into account will
result in the positive bias for estimates of Δ1 and Δ2.

4.2 Real data analysis

In this section, we apply the proposed method to Oscar
data to study the effect of high socio-economic status on
lifetime. Besides, for the purpose of comparison, the SEE
method and the SEL method without length bias taken
into account (SEL RC) are also applied. Lin and Zhou [12]
pooled all the nominees (including both winners and non-
winning nominees) as the treatment group (nominee group),
and took the performers who were never nominated as the
control (non-nominee group). By considering the age of
first time nomination as the truncation time, [12] used the
method proposed by [1] to check the stationarity for trun-
cation time and showed that the length-bias assumption on
lifetime data in the nominee group was applicable. In this ar-
ticle, we follow their discussion and use our proposed method
to derive the confidence intervals for the inferences that we
are interested in.

The Oscar data includes the records of 1,670 performers
from 1928 to 2000. Due to the wrong information, two cases

(ID number 1075 and 1430) are excluded from our computa-
tion. Among 1,668 performers, 766 observations with 57.31%
censored belonged to nominee group and 902 observations
with 48.89% censored belonged to non-nominee group. Let
X̃ and Ỹ denote the lifetime for nominee group and non-
nominee group respectively. In order to study if being nomi-
nated for an Oscar Award would have an impact on the life-
time, two inferences Δ1 = E(X̃ − Ỹ ) and Δ2 = P (X̃ < Ỹ )
are employed. The age of the first time nomination A was
taken as the truncation variable. The applicability of the
length-bias assumption on lifetime data in nominee group
was shown by [12]. To determine the distribution for non-
nominee group, [12] obtained the Kaplan-Meier estimate for
non-nominee’s lifetime and used the Q-Q plot to show that
the Weibull distribution W (α, β) with α = 81.3, β = 6.8
is appropriate. We follow the above settings and obtain
the maximum likelihood estimates α̂MLE = 81.2939 and
β̂MLE = 6.7887.

Table 3 presents the confidence intervals for Δ1 and Δ2

for Oscar data set based on semiparametric empirical like-
hood (SEL) method, semiparametric estimating equation
(SEE) method and SEL method without length bias taken
into account (SEL RC). Our results are consistent with the
results from [12]. All 95% confidence intervals for Δ1, even
the results from SEL RC, are less than zero, which means
that the Oscar Award nomination has the negative impact
on lifetime extension. Similarly, all 95% confidence intervals
for Δ2 are greater than 0.5, which also supports the state-
ment that the Oscar Award nomination has the negative
impact on lifetime extension. This negative impact may be
due to the high pressure or hard work for keeping their high
socio-economic level. On the other side, compared with the
confidence intervals by SEE and SEL, the confidence interval
for Δ1 by SEL RC is much closer to zero and the confidence
interval forΔ2 by SEL RC is closer to 0.5. This phenomenon
is quite similar to the simulation study and it is caused by
ignoring the length bias for nominee group X̃. Moreover,
the confidence intervals based on the proposed method are
shorter than the ones based on SEE method for both Δ1

and Δ2. This is also similar to the simulation study.
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Table 3. Confidence intervals for Oscar data set based on
SEL method, SEE method and SEL RC

Δ1 = E(X̃ − Ỹ ) Δ2 = P (X̃ < Ỹ )

95% CI Length 95% CI Length

SEE (−7.4792,−3.3624) 4.1168 (0.5560, 0.6328) 0.0772

SEL (−6.4901,−4.4762) 2.0139 (0.5670,0.6170) 0.0500

SEL RC (−3.9532,−2.0574) 1.8959 (0.5136,0.5615) 0.0479

APPENDIX A

To prove Theorem 3.1, we first present and prove
the following lemmas. The asymptotic normality of
1√
n

∑n
i=1

δi
π̂(xi)

ψ(xi; θ,Δ) was proved by [12]. For conve-

nience, we present it as Lemma A.1.

Lemma A.1. Under the Assumptions (i) and (ii),

1√
n

n∑
i=1

δi
π̂(xi)

ψ(xi; θ,Δ)
D−→ N(0, Γ (θ,Δ)),

where Γ (θ,Δ) is defined in Theorem 3.2.

Proof. For a detailed proof please refer to [12].

Lemma A.2. Under the Assumptions (i) and (ii), the fol-
lowing equalities hold.

(i)
1

n

n∑
i=1

{
δiψ(xi; θ,Δ)

π̂(xi)

}2

= σ2
0(θ,Δ) + op(1),

(ii)
1

n

n∑
i=1

δiψ̇Δ(xi; θ,Δ)

π̂(xi)
= γ0(θ,Δ) + op(1),

(iii)
1

n

n∑
i=1

δiψ̇θ(xi; θ,Δ)

π̂(xi)
= β0(θ,Δ) + op(1),

where σ2
0(θ,Δ) = 1

μEF1

(
ψ2(X;θ,Δ)

π(X)

)
, β0(θ,Δ) =

1
μEF1

(
ψ̇θ(X; θ,Δ)

)
and γ0(θ,Δ) = 1

μEF1

(
ψ̇Δ(X; θ,Δ)

)
.

Proof. Firstly,

1

n

n∑
i=1

{
δiψ(xi; θ,Δ)

π̂(xi)

}2

≤ 2

n

n∑
i=1

{
δiψ(xi; θ,Δ)

π(xi)

}2

+
2

n

n∑
i=1

{
δiψ(xi; θ,Δ)

π̂(xi)

}2

sup
0≤xi≤x(n)

∣∣∣∣π(xi)− π̂(xi)

π(xi)

∣∣∣∣
2

.

By the law of large numbers and Assumption (i), we have
that

2

n

n∑
i=1

{
δiψ(xi; θ,Δ)

π(xi)

}2

→ 2σ2
0(θ,Δ) < ∞,

where σ2
0(θ,Δ) = E

(
δ(X)ψ(X;θ,Δ)

π(X)

)2

= 1
μEF1

(
ψ2(X;θ,Δ)

π(X)

)
.

According to [20],

sup
0≤xi≤x(n)

∣∣∣∣π(xi)− π̂(xi)

π(xi)

∣∣∣∣
= sup

0≤xi≤x(n)

∣∣∣∣∣∣
1

n

n∑
j=1

∫ τC

0

h(s, xi)

SC(s)ST (s)
dMC

j (s) + op(n
−1/2)

∣∣∣∣∣∣
= oP (1),

where h(s, xi) and MC
j (s) are defined in Theorem 3.1, there-

fore,

1

n

n∑
i=1

{
δiψ(xi; θ,Δ)

π̂(xi)

}2

≤ Op(1)/(1− op(1)) = Op(1).

1

n

n∑
i=1

{
δiψ(xi; θ,Δ)

π̂(xi)

}2

=
1

n

n∑
i=1

{
δiψ(xi; θ,Δ)

π(xi)

}2

+
1

n

n∑
i=1

{
π(xi)− π̂(xi)

π̂(xi)π(xi)

}2

δ2i ψ
2(xi; θ,Δ) +

2

n

n∑
i=1

π(xi)− π̂(xi)

π̂(xi)π2(xi)
δ2i ψ

2(xi; θ,Δ)

= I1 + I2 + I3,

and

I1 = σ2
0(θ,Δ) + op(1),

I2 ≤ sup
0≤xi≤x(n)

∣∣∣∣π(xi)− π̂(xi)

π(xi)

∣∣∣∣
2
1

n

n∑
i=1

{
δiψ(xi; θ,Δ)

π̂(xi)

}2

= op(1)Op(1) = op(1),

I3 ≤ 2

{
1

n

n∑
i=1

(
π(xi)− π̂(xi)

π(xi)π̂(xi)
ψ(xi; θΔ)δi

)2

1

n

n∑
i=1

(
1

n
ψ(xi; θ,Δ)δi

)2
}1/2

= 2(I1I2)
1/2 = op(1).

Therefore,

1

n

n∑
i=1

{
δiψ(xi; θ,Δ)

π̂(xi)

}2

= σ2
0(θ,Δ) + op(1).

With the similar discussion, (ii) and (iii) can be also de-
rived.

Lemma A.3. The following equality holds uniformly on
{θ : ‖θ − θ0‖ ≤ cn−�}, where 1/3 < 
 < 1/2 and c is some
constant:

λ(θ) = Op(n
−�)

and

λ(θ) =

∑n
i=1 w(xi)ψ(xi, θ,Δ)∑n

i=1 {w(xi)ψ(xi, θ,Δ)}2
+ oP (n

−�),

where λ(θ) is determined by (7).
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Proof. Denote Zi = λ(θ)w(xi)ψ(xi, θ,Δ), and it is followed
from (7) and the equality 1

1+Zi
= 1− Zi

1+Zi
that

1

n

n∑
i=1

w(xi)ψ(xi, θ,Δ) =
1

n

n∑
i=1

λ(θ){w(xi)ψ(xi, θ,Δ)}2
1 + λ(θ)w(xi)ψ(xi, θ,Δ)

,

thus

λ(θ)

n

n∑
i=1

{w(xi)ψ(xi, θ,Δ)}2 ≤

1

n

n∑
i=1

w(xi)ψ(xi, θ,Δ)(1 + λ(θ) max
1≤i≤n

(w(xi)ψ(xi, θ,Δ))),

which implies that

λ(θ)

{
1

n

n∑
i=1

{w(xi)ψ(xi, θ,Δ)}2 − 1

n

n∑
i=1

w(xi)ψ(xi, θ,Δ)

max
1≤i≤n

∣∣∣∣δiψ(xi; θ,Δ)

π̂(xi)

∣∣∣∣
}

≤ 1

n

n∑
i=1

w(xi)ψ(xi, θ,Δ).(A.1)

By Assumption (ii) and a similar proof of Lemma 3 of
[14], we obtain

max
1≤i≤n

∣∣∣∣δiψ(xi; θ,Δ)

π(xi)

∣∣∣∣ = op(n
1/3).

Therefore,

max
1≤i≤n

|w(xi)ψ(xi, θ,Δ)| ≤ max
1≤i≤n

∣∣∣∣δiψ(xi; θ,Δ)

π(xi)

∣∣∣∣(
1 + sup

0≤x≤x(n)

∣∣∣∣π(x)− π̂(x)

π(x)

∣∣∣∣
)

= op(n
1/3),

Moreover, by Lemma A.1,

1√
n

n∑
i=1

w(xi)ψ(xi, θ0, Δ) → N(0, σ2
0(θ0, Δ)),

and with Lemma A.2 (iii) and Assumption (ii), we have

1

n

n∑
i=1

w(xi)ψ(xi, θ,Δ) =
1

n

n∑
i=1

w(xi)ψ(xi, θ0, Δ) +Op(n
−�)

= Op(n
−�).(A.2)

Combining (A.1), (A.2), (A.2) and Lemma A.2 (i), we have

(A.3) λ(θ) = OP (n
−�).

On the other hand, by applying Taylor expansion to (7),
we can have

λ(θ) =

∑n
i=1 w(xi)ψ(xi, θ,Δ)∑n

i=1(w(xi)ψ(xi, θ,Δ))2
+Rn,

where

Rn =

{
λ2(θ,Δ)

n∑
i=1

(w(xi)ψ(xi, θ,Δ))3(1 + oP (1))

}
{

n∑
i=1

(w(xi)ψ(xi, θ,Δ))2

}−1

≤ λ2(θ,Δ) max
1≤i≤n

|w(xi)ψ(xi, θ,Δ)|(1 + oP (1))

= OP (n
−2�)oP (n

1/3) = oP (n
−�).

Proof of Theorem 3.1. By Lemma A.3 and following the
similar arguments to the proof of Lemma 1 of [16], the result
can be easily proved.

Proof of Theorem 3.2. By (10) and (11), the values of par-
tial derivatives of Qin(λ, θ) (i = 1, 2, 3) with respect to λ
and θ at (0, θ0) are as follows.

∂Q1n(0, θ0)

∂λ
= − 1

n

n∑
i=1

(w(xi)ψ(xi, θ0, Δ))
2
;

∂Q1n(0, θ0)

∂θ
=

1

n

n∑
i=1

w(xi)ψ̇θ(xi, θ0, Δ);

∂Q2n(0, θ0)

∂λ
=

1

n

n∑
i=1

w(xi)ψ̇θ(xi, θ0, Δ);

∂Q2n(0, θ0)

∂θT
= − 1

n

∂2�2(θ0)

∂θT∂θ
.

The remaining proof can follow the similar discussion in
Theorem 1 of [16].

Proof of Theorem 3.3. First, with the equality

Q2n(0, θ̂MLE, Δ) = −∂�2(θ̂MLE)
∂θ = 0 and by applying

Taylor expansion to (8), we have that

1

n
L(θ̂EL, Δ) =

λ̂

n

n∑
i=1

w(xi)ψ(xi, θ̂MLE, Δ)

− λ̂2

2n

n∑
i=1

(
w(xi)ψ(xi, θ̂MLE, Δ)

)2

− 1

2n
(θ̂EL − θ̂MLE)

T
∂2�2(θ̂MLE)

∂θ∂θT
(θ̂EL − θ̂MLE)

+ oP (1).

(A.1) and (A.2) yield that

λ̂

n

n∑
i=1

w(xi)ψ(xi, θ̂MLE, Δ)

=
λ̂2

n

n∑
i=1

(
w(xi)ψ(xi, θ̂MLE, Δ)

)2

+ oP (n
−�).(A.4)

Once again, it follows from Taylor expansion that

1

n

∂�2(θ̂EL)

∂θ
=

1

n

∂�22(θ̂MLE)

∂θ∂θT
(θ̂EL − θ̂MLE) + oP (n

−�).
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On the other hand, it follows from Q2n(λ̂, θ̂EL, Δ) = 0 that

1

n

∂�2(θ̂EL)

∂θ
=

λ̂

n

n∑
i=1

w(xi)ψ̇θ(xi, θ̂EL, Δ)

1 + λ̂w(xi)ψ(xi, θ̂EL, Δ)
= λ̂β0 + op(1).

Therefore,

(A.5) θ̂EL − θ̂MLE = λ̂

{
1

n

∂2�2(θ̂MLE)

∂θ∂θT

}−1

β0 + op(1).

Combining (A.4), (A.5), Lemma A.2 and Theorem 3.2, we
obtain that

(A.6) 2L(θ̂EL, Δ) = (
√
nλ̂)2(σ2

0 + βT

0Σ
−1
0 β0) + op(1).

Theorem 3.2 indicates that

2L(θ̂EL, Δ)
D−→ (C2

θΓ +C2
θβ

T

0Σ
−1
0 β0)(σ

2
0+βT

0Σ
−1
0 β0)χ

2(1).
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