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Interpretable selection and visualization of
features and interactions using Bayesian forests

VIKTORIYA KRAKOVNA, CHENGUANG DAI1, AND JUN S. Liu*

In analysis of scientific data, it is often of interest to learn
which features and feature interactions are relevant to the
prediction task. We present here Selective Bayesian Forest
Classifier, which strikes a balance between predictive power
and interpretability by simultaneously performing classifi-
cation, feature selection, feature interaction detection and
visualization. It builds parsimonious yet flexible models us-
ing tree-structured Bayesian networks, and samples an en-
semble of such models using Markov chain Monte Carlo. We
build in its feature selection capability by dividing the trees
into two groups according to their relevance to the outcome
of interest. Our method performed competitively compared
to top classification algorithms on both simulated data sets
and real data sets in terms of classification accuracy, and
often outperformed these methods in terms of feature selec-
tions and interaction visualizations.

KEYWORDS AND PHRASES: Feature selection, Interaction vi-
sualization, Bayesian forest.

1. INTRODUCTION

Feature selection and classification are key objectives in
machine learning. Many approaches have been developed for
these two problems, usually tackling them separately. Pop-
ular methods include Lasso [1], Random Forest [2], Naive
Bayes classifier [3], SVM [4], and neural networks. However,
aiming only at predictions tends to produce black box solu-
tions that are difficult to interpret, while performing feature
selection alone can be difficult to justify without being vali-
dated by prediction. In addition to selecting for relevant fea-
tures, it is also useful to detect interactions between them,
and this problem becomes especially difficult in high dimen-
sions. In many decision support systems, e.g. in medical di-
agnostics, the users care about which features and feature
interactions contribute to a particular decision.

Many methods focus either on feature selection [1] [5] or
on identifying feature interactions [2] [6] [7], or deal with
these tasks in two independent steps. However, feature se-
lection and feature interaction detection are often closely
related. Without identifying feature interactions, feature se-
lection can omit features that have weak marginal influence
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Figure 1. Example of a SBFC graph.

on the class label individually but have a large influence on
it jointly. Selective Bayesian Forest Classifier (SBFC) com-
bines predictive power and interpretability, by performing
classification, feature selection, and feature interaction de-
tection at the same time. Our method also provides a visual
representation of the features and feature interactions that
are relevant to the outcome of interest.

The main idea of SBFC is to construct an ensemble of
Bayesian network models [8], each constrained to be a forest
of trees divided into signal and noise groups based on their
relationship with the class label Y (see Figure 1 for an exam-
ple). The nodes and edges in Group 1 represent relevant fea-
tures and interactions. SBFC is inspired by Naive Bayes, an
exceedingly simple yet surprisingly effective classifier, which
assumes independence between the features conditional on
the class label. Starting from the Naive Bayes framework,
we build dependence structures on the features. The features
are partitioned into two groups based on their relationships
with the class label, and the groups are further divided into
independent subgroups, with each subgroup modeled by a
tree structure. Such models are easy to sample using Markov
chain Monte Carlo (MCMC). We combine their predictions
using Bayesian model averaging, and aggregate their feature
and interaction selections.

We show that SBFC outperforms state-of-the-art meth-
ods in terms of classification accuracy on both simulated
data sets and some real data sets (Tables 2, 3 and 4). By
adding noise features to the simulated data sets, we show
that SBFC can reliably perform feature selection and inter-
action detection in both low and high dimensions (Figure 3
and 4). We use a high-dimensional data set from the NIPS
2003 feature selection challenge to demonstrate SBFC’s su-
perior performance on a difficult feature selection task (Fig-
ure 6). An R package sbfc is available on CRAN.
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2. RELATED WORK

2.1 Bayesian network model

The restrictive conditional independence assumption of
NB often harms its performance when features are corre-
lated. At the opposite extreme, we have the unrestricted
Bayesian network model [8]. A Bayesian network (BN) is a
directed acyclic graph (DAG) that encodes a joint proba-
bility distribution over X. It contains two components: G
and ©, where G represents the DAG, and © stands for the
parameters needed to describe the joint probability distri-
bution. Each node represents a feature, and a directed edge
corresponds to a “parent — child” dependence relationship
between the features, so that each feature X is independent
of its non-descendants given its parents A;. The probability
distribution over X can be written as

d
Px) = [ POXIA).

j=1

Bayesian network models present a tremendous compu-
tational challenge. Structure learning is NP-hard in the gen-
eral case [9], as is exact inference [10]. The flexibility of the
BN model is also its curse when the number of features is
large, and the network structure can be difficult to interpret.

2.2 Tree-structured Bayesian methods

Tree structures are frequently used in computer science
and statistics because they provide adequate flexibility to
model complex structures, yet are constrained enough to
facilitate computation. SBFC was inspired by tree-based
methods such as Tree-Augmented Naive Bayes (TAN) [11],
Averaged Ome-Dependence Estimators (AODE) [12], and
Hidden Naive Bayes (HNB) [13], which relax the conditional
independence assumption of NB to allow tree structures on
the features.

TAN finds the optimal tree on all the features using the
minimum spanning tree algorithm, with the class label Y as
a second parent for all the features. The class label Y is the
first parent of all the features, and each feature has another
feature as its second parent, except for the root feature,
which has only one parent Y. While the search for the best
unrestricted Bayesian network is usually intractable [9], the
computational complexity of TAN is only O(d?*n), where d
is the number of features and n is the sample size [14].

AODE constrains the model structure to a star-tree
where all the features are children of the root feature, with
Y as a second parent, and averages over models with all
possible root features.

P(Y,X) = P(Y,Xy) [ [ P(X; | Y, Xx).
Jj#k

HNB, an extension of AODE, designates a hidden parent
X, for each feature X, and assumes that the impact of this
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hidden parent on X is a weighted average of the impact of
all the other features on X;:

P(X;| X, Y) =Y winP(X;|Xp,Y), > wj = L.
ki =y

These methods put all the features into a single tree,
which can be too restrictive and difficult to interpret, espe-
cially for high-dimensional data sets. We extend these meth-
ods by building forests instead of single-tree graphs, and
introducing a selection of relevant features and interactions.

2.3 Feature selection for classification

While the above approaches focus on building a de-
pendence structure, the following methods augment Nalve
Bayes with feature selection. Selective Bayesian Classifier
(SBC) [15] applies a forward greedy search method to select
a subset of features to construct a Naive Bayes model, while
Evolutional Naive Bayes (ENB) [16] uses a genetic algorithm
with the classification accuracy as its fitness function.

More generally, one can use feature selection as a prepro-
cessing step for any classification algorithm. Wrapper meth-
ods [17] select a subset of features tailored for a specific clas-
sifier, treating it as a black box. Feature Selection for Clus-
tering and Classification (VSCC) [18] searches for a feature
subset that simultaneously minimizes the within-class vari-
ance and maximizes the between-class variance, and remains
efficient in high dimensions. Categorical Adaptive Tube Co-
variate Hunting (CATCH) [19] selects features based on a
nonparametric measure of the relational strength between
the feature and the class label.

Our approach, however, is to integrate feature selection
into the classification algorithm itself, allowing it to influ-
ence the models built for classification. A classical example
is Lasso [1], which performs feature selection using L; regu-
larization. Some decision tree classifiers, like Random Forest
[2] and BART [20], provide importance measures for features
and the option to drop the least significant features. In many
applications, it is also key to identify relevant feature inter-
actions, such as epistatic effects in genetics. Interaction de-
tection methods for gene association models include Graphi-
cal Gaussian models [21] and Bayesian Epistasis Association
Mapping (BEAM) [22]. BEAM introduces a latent indica-
tor that partitions the features into several groups based on
their relationship with the class label. One of the groups in
BEAM is designed to capture relevant feature interactions,
but is only able to tractably model a small number of them.
SBFC extends this framework, using tree structures to rep-
resent an unlimited number of relevant feature interactions.

Our work is similar to the Extended TAN algorithm
(ETAN) [23], an extension of TAN that allows it to have
forest structure and features disconnected from the class la-
bel. While ETAN uses a variation on the Edmonds algorithm
for finding the minimum spanning forest, SBFC learns about
forest structures and estimation/prediction uncertainties us-
ing MCMC.



3. SELECTIVE BAYESIAN FOREST
CLASSIFIER (SBFC)

To combine feature selection and structure building,
SBFC partitions the features based on their relation to the
class label and builds tree structures within the partitions. It
uses MCMC to sample from the space of these graph struc-
tures, and performs classification based on multiple sampled
graphs via Bayesian model averaging.

3.1 Model

Given n observations with class label Y and d discrete
features Xj, j = 1,...,d, we divide the features into two
groups (see Figure 1 for an example):

Group 0 (noise): features that are unrelated to Y
Group 1 (signal): features that are related to ¥

We further partition each group into non-overlapping
subgroups mutually independent of each other conditional
on Y. For each subgroup, we infer a tree structure describ-
ing the dependence relationships among the features (many
subgroups have only one feature and thus a trivial struc-
ture). The number of subgroups in each group is unknown
a priori and will be inferred together with the tree struc-
tures via MCMC. Note that we impose such forest structures
for both signal and the noise groups. Some previous work
[22] assumes independence among the noise features, which
is problematic when correlated noise features are present.
Since the class label Y is a parent of every feature in Group
1, edges from Y are omitted in subsequent figures. We will
refer to the combination of a group partition and the re-
sponding forest structure as a graph.

The prior distribution of the graph penalizes the number
of edges between features in each group and the number of
signal nodes (i.e., edges between features and Y) as follows:

P(G) o d~4(Eo(G)+E1(G) /) =Di(@) v,

where D;(G) is the number of nodes and F;(G) is the num-
ber of edges in Group ¢ of graph G, while v is a constant
equal to the number of classes.

The prior scales with the number of features d to penalize
very large, hard-to-interpret, trees in high dimensional cases.
The terms corresponding to the signal group are divided by
the number of possible classes v, to avoid penalizing large
trees in the signal group more than in the noise group by
default. The coefficients in the prior were determined em-
pirically to provide good classification and feature selection
performance (there is a relatively wide range of coefficients
that produce similar results).

Given the training data X (,,xq) (With columns X ;, j =
1,...,d) and Y(nx1), We break down the graph likelihood
according to the forest structure:

P(X,y|G)=Py|G)P(X |y,G)

Table 1. Parent sets for each feature type

Type of feature X; | Parent set A;
Group 0 root 0

Group 0 non-root {Xp; }
Group 1 root {v}
Group 1 non-root {Y, Xp, }

d
H X.;|Aj)

Here, A; is the set of parents of X; in graph G. This set
includes the parent X, of X; unless X; is a root, and V" if
X is in Group 1, as shown in Table 1. We assume that the
distributions of the class label Y and the graph structure G
are independent a priori.

Let v; and w; be the number of possible values for X;
and A; respectively. Then our hierarchical model for X is

[Xj | A]‘ = )\,ij\] ~ Mult(Oﬂ,\), A= 1,...,wj

«
0y 1Uj>
Ww;v;

Each conditional Multinomial model has a different pa-
rameter vector 8;). We consider the Dirichlet hyperparame-
ters to represent “pseudo-counts” in each conditional model
[11]. Let njxx be the number of observations in the training
data with X; = k (here we denote the v; values X; can take

05 ~ Dirichlet (

as 1,---,v;) and A; = X\, and njy = >, njka. Then
71)‘7 UJ
P(X 4|A;,051,- - 05,) = [T [T 05
A=1k=1

We then integrate out the nuisance parameters 6y,
A=1,...,w;. The resulting likelihood depends only on the
hyperparameter « and the counts of observations for each
combination of values of X; and A;.

ﬁf()

P(X|A;) =
l:lF( + 1

£ (s )
I

]

This is the Bayesian Dirichlet score, which satisfies the
likelihood equivalence [9]. Namely, reparametrizations of the
model that do not affect the conditional independence rela-
tionships between the features, such as pivoting a tree to a
different root, do not change the likelihood.

3.2 MCMC updates

Switch Trees: Randomly choose trees T1,..., T} without
replacement (we use k = 10, and propose switching each
tree to the opposite group one by one (see Figure 2a).
This is a repeated Metropolis update.
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(a) Switch Trees: switch tree {X5, X7} to Group 0, switch tree
{Xs} to Group 1]
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(b) Reassign Subtree: reassign node Xg to be a child of node Xs
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(c) Pivot Trees: nodes X¢ and X19 become tree roots

Figure 2. Example MCMC updates applied to the graph in
Figure 1.

Reassign Subtree: Randomly choose a node X;, detach
the subtree rooted at this node and choose a different
parent node for this subtree (see Figure 2b). This is a
Gibbs update, so it is always accepted.

We consider the set of nodes X that are not descen-
dants of X as candidate parent nodes (to avoid cre-
ating a cycle), with corresponding graphs G;. We also
consider a “null parent” option for each group, where
X; becomes a root in that group, with corresponding
graph G; for group i. Choose a graph G* from this
set according to the conditional posterior distribution
m(G*) (conditioning on the parents of all the nodes ex-
cept X, and on the group membership of all the nodes
outside the subtree). The subtree joins the group of its
new parent.

As a special case, this results in a tree merge if X; was
a root node, or a tree split if X; becomes a root (i.e.
the new parent is null). Note that the new parent can
be the original parent, in which case the graph does not
change.

Pivot Trees: Pivot all the trees by randomly choosing a
new root for each tree (see Figure 2¢). By likelihood
equivalence, this update is always accepted.
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For computational efficiency, in practice we do not pivot
all the trees at each iteration. Instead, we just pivot
the tree containing the chosen node X; within each Re-
assign Subtree move, since this is the only time the
parametrization of a tree matters. This implementation
produces an equivalent sampling mechanism.

3.3 Detailed balance for MCMC updates
3.3.1 Switch trees

Let m(G) = P(G|X,y) be the target distribution, and
let p be the probability that tree T is among the k trees
proposed for switching - this only depends on k and the
number of trees in the graph, which is constant during the
Switch update. Let G be the starting graph when propos-
ing to switch 7', and G* be the graph obtained from G by
switching T'. Then,

7(G)P(G — G¥)
=7(G)P(G — G* proposed)
- P(G — G* accepted | G — G* proposed)
, 7T(G*)p>
=1(Q) - p- 1,
m(G)-p mm( ~@)p
=pmin (7(G), 7(G"))

Since this expression is symmetric in G and G*, we can
conclude that the detailed balance condition holds:

7(G)P(G — G*) = n(G*)P(G — G).

3.3.2 Reassign subtree

Let G be the starting graph. We pick any node X, and
choose a non-descendant (or null) node to be its parent.
Suppose X has ¢ descendants - then the number of possi-
ble resulting graphs G; is d — ¢ (including G itself). The
backtracking update from G* is reassigning X again, which
results in the same possible graphs G;.

7(G)P(G — G*) = n(G)P(G — G* proposed)

. 1 n(G)
=" S w(Gy)

Ay n(Gy)
=7(G*)P(G* — Q)

3.3.3 Pivot trees

Let G be the starting graph when pivoting tree T of size
|T|. Let G* be the graph obtained by pivoting T'. By likeli-
hood equivalence, 7(G) = w(G*), so the proposal is always
accepted.

m(G)P(G — G*) = n(G)P(G — G* proposed)



1 o1
= w(G)m =7(G )|T|

= 7(G*)P(G* = G)

3.4 Classification using Bayesian model
averaging

Graphs are sampled from the posterior distribution using
the MCMC algorithm. We apply Bayesian model averaging
[24] rather than using the posterior mode for classification.
Since each graph structure gives us a predictive probability
for each test sample to belong to each possible class, we av-
erage these predictive probabilities over a thinned subset of
the sampled graph structures, and then choose the class la-
bel with the highest average probability. Given a test sample
with feature ™", we find

PY =y X =2z"", X,y)
S
x> P(Y =y|X =a"" G;)P(G;|X,y)

i=1

where S is the number of graphs sampled by MCMC (after
thinning by a factor of 50).

Given a graph G, we let R; denote the set of root nodes
in Group 1, and let E; be the set of non-root (“edge”) nodes
in Group 1. Let p; be the parent of feature z;. For the test
sample ™", we need to approximate the posterior predic-
tive probability for Y¢"* = ¢ for each class label c. Let the
training data be (X, y), with sample size N. Then we have

PY™ =c|lx=2"" G, X,v)
xP(Y"™ =¢)P(x =" | Y"" =¢,G, X,y)

#(yl = C) new new
A H P(z; =z | Y™™ = ¢, X, y)

JER1

X H P(z; = x;?ew|xp].
JjEEL

__ .new new __
—il'pj 7Y _C7Xay)7

where we can estimate P(z; =z [ Y = ¢, X, y) by

#(zij = 27,y = ¢)

#(yi = ¢ ’

and estimate P(z; = 27|z, = 2*", Y™ = ¢, X, y) by

iy = 27 2y, = 27", Y = ¢)

#(@ip; = Tp,ys = ¢)

In practice, instead of using the raw counts as in the
above estimation, we typically add « in the denomina-
tor and «/(w;v;) to the numerator, according to our
Dirichlet prior specification in Section 3.1. This avoids 0’s
for probability estimates and increases the robustness of
method.

4. EXPERIMENTS

4.1 Simulation study

We illustrate the capability of SBFC for prediction, fea-
ture selection and feature interaction detection by compar-
ing with the following 8 most popular classification algo-
rithms:

Lasso: R package glmnet [25],

SVM: Support Vector Machines, R package 1071 [4],

NB: Naive Bayes, R package 1071 [3]

LR: logistic regression,

RF: Random Forest, R package ranger [2],

CART: Classification and Regression Trees, R package
tree [6],

BART: Bayesian Additive Regression Trees, R package
BayesTree [20],

C5.0: R package C50 [7].

We designed two simulation studies: binary logistic re-
gression and multinomial logistic regression. In both cases
the data do not follow our posited model, but were simulated
in the standard forward regression fashion.

4.1.1 Logistic regression for binary responses
We consider the following “noisy” logistic regression
model:

logit(]P’(Y:1\X)):Xl—XQ-X3+X4-X5—X6+e

where we add different levels of noise € ~ N (0,02) to
test the robustness of the algorithms. The data generat-
ing process of features is as follows. For the variables in
Group 1 (signal), we simulated X, X2, X, independently
from N(0,1); X5 from N (X4, 1); and simulated X3 and Xg
nonlinearly as follows:

X3=1 (Q(()Q?),
Xeg=1 (q(({?

+3x1 <X5 > qéig)

<Xz <qin) +2x1(Xe > qf}y)

< X5< q((f?) +2x1 (q(()57) < X5 < q(()i;)

where q&j ) refers to the o quantile of variable X;. For vari-
ables in Group 0 (noise predictors), all were simulated in-
dependently from N(0,1). We compare SBFC with other
algorithms in two settings: 100 noise features and 500 noise
features. Note that the simulated examples contain both
continuous and discrete features. In a pre-processing step,
SBFC uses the Minimum Description Length Partitioning
[26] to discretize continuous features. We made some signal
features highly correlated with other ones so as to increase
the difficulties of both prediction and feature selection.

For each experiment, we simulated 100 training cases and
1,000 test cases. We independently ran the experiments for
100 times to calculate the empirical mean and standard de-
viation of the prediction accuracy. Table 2 shows that SBFC
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Table 2. Classification accuracy of SBFC and seven other algorithms in logistic regression model.

Low dimensional case: 100 independent noise predictors
c=0 c=1 =2 c=3 oc=4
SBFC 0.728 +£(0.023) | 0.710 £(0.032) | 0.667 +(0.035) | 0.632 £(0.037) | 0.600 +(0.03R)
Lasso 0.632 £(0.040) 0.619 £(0.038) 0.587 £(0.033) 0.555 £(0.034) 0.543 £(0.029)
SVM 0.620 £(0.020) 0.607 £+(0.027) 0.588 +(0.022) 0.562 £(0.028) 0.549 £(0.025)
Naive Bayes 0.644 £(0.020) 0.627 £(0.022) 0.595 £(0.021) 0.568 £(0.025) 0.553 £(0.021)
Logistic regression | 0.510 £(0.026) 0.505 £(0.024) 0.509 £(0.019) 0.500 £(0.022) 0.507 £(0.018)
Random Forest 0.660 £(0.033) 0.641 £(0.035) 0.603 £(0.030) 0.573 £(0.030) 0.556 £(0.024)
CART 0.613 £(0.047) 0.599 £(0.040) 0.562 £(0.037) 0.536 £(0.033) 0.525 £(0.028)
BART 0.649 £(0.032) 0.631 £(0.032) 0.602 £(0.025) 0.576 £(0.029) 0.560 £(0.022)
C5.0 0.606 £(0.040) 0.593 £(0.034) 0.568 £(0.037) 0.542 £(0.031) 0.528 +(0.028)
High dimensional case: 500 independent noise predictors
c=0 oc=1 o=2 oc=3 oc=14
SBFC 0.724 £(0.026) | 0.702 £(0.027) | 0.663 £(0.033) | 0.628 £(0.029) | 0.594 +(0.036)
Lasso 0.616 £(0.033) | 0.606 £(0.033) | 0.570 £(0.032) | 0.548 £(0.030) | 0.536 £(0.027)
SVM 0.610 £(0.015) 0.602 £(0.016) 0.575 £(0.029) 0.558 £(0.030) 0.545 £(0.026)
Naive Bayes 0.605 +(0.020) 0.594 £(0.021) 0.565 £(0.022) 0.552 £(0.021) 0.535 £+(0.021)
Logistic regression | 0.505 +(0.023) | 0.505 £(0.024) | 0.502 £(0.021) | 0.503 £(0.022) | 0.500 £(0.018)
Random Forest | 0.651 £(0.034) | 0.628 £(0.032) | 0.583 £(0.034) | 0.561 £(0.029) | 0.543 £(0.024)
CART 0.580 +(0.045) 0.569 £(0.047) 0.526 +(0.032) 0.523 £(0.032) 0.514 +(0.025)
BART 0.617 £(0.020) | 0.607 £(0.018) | 0.579 £(0.023) | 0.561 £(0.025) | 0.547 £(0.023)
C5.0 0.589 £(0.039) 0.566 £(0.040) 0.544 £(0.030) 0.527 £(0.026) 0.514 £(0.021)
significantly outperformed all other tested classification al-
Group 1 Average graph

gorithms under different noise levels in both low and high
dimensional cases, demonstrating that SBFC was robust to
the number of noise features. Figure 3 shows the average
graph of the discovered feature interaction (100 noise fea-
tures and o = 0). We observe that SBFC reliably identifies
the signal features as well as relevant edges: Xo— X3, X4—X5
and X5 — X6~

4.1.2 Multinomial logistic regression

We extended the above simulation study to the “noisy”
multinomial logistic regression setting as follows:

log (P (Y =1|X)) x B11X1 — f12X2 - X3+ B13 X4 - X5

— B14Xs

log (P (Y = 2|X)) o o1 X1 — B22Xo - X3+ o3 Xy - X5
— P24 X6 + €1

log (P (Y = 3|X)) o #31X1 — 32Xz - X5+ 833Xy - X5
— B34 X6 + €2

where all the coefficients 3;;,7 = 1,2,3, j = 1,2,3,4 were
independently sampled from N (0,1). Similarly, ¢; and e
were independently sampled from NV (0, 02) and features in
both signal group and noise group were simulated exactly
the same as in the previous simulation study.

For each experiment, we simulated 200 training cases and
1,000 test cases. We independently repeated the experiment
for 200 times to stabilize the empirical prediction accuracy.
In this simulation study, lasso refers to the multinomial lasso
and we did not run logistic regression and BART since they

508 V. Krakovna, C. Dai, and J. S. Liu

Figure 3. Left: True feature interaction in the signal group;
Right: An average graph from SBFC with 100 noise features.
We set 0 = 0 and used 500 training cases to stabilize the
selection results.

cannot handle multi-class situations. Table 3 shows that
SBFC still significantly outperformed all other tested al-
gorithms. We note that multinomial lasso performed very
unstably in this multi-class classification problem, while the
stabilities of other methods are comparable. Figure 4 shows
that SBFC correctly identified the feature interactions in
the signal group with a small number of noise features be-
ing mistakenly selected.

4.2 Real data sets
4.2.1 SPECTF heart data set

The SPECTF heart data set from UCI repository [27]
contains the Single Proton Emission Computed Tomogra-



Table 3. Classification accuracy of SBFC and six other algorithms for multinomial logistic regression model.

@ © - -

Figure 4. Left: True feature interaction in the signal group;
Right: An average graph from SBFC with 100 noise features.
We set 0 = 0 and use 500 training cases to stabilize the
selection results. We omitted some similar variables as X~
and X1, with low proportions in the signal

group.

phy (SPECT) image of 267 patients. For each patient, there
are 44 continuous features extracted from the SPECT image
and the associated binary class label is the overall myocar-
dial perfusion diagnosis: normal and abnormal. All numeri-
cal features have integer values from 0 to 100. The SPECTF
data set is originally divided into 80 instances of training
data and 187 instances of testing data. We compared the
prediction performances of SBFC and other classification
algorithms in two ways: (1) We train all the algorithms on a
common training data set and compare their prediction ac-
curacies on the common test data; (2) We combine the train-
ing data and the test data together and run a 5-fold cross
validation. Table 4 shows that SBFC outperformed other
methods in terms of classification accuracy. The 78.61% clas-
sification accuracy of SBFC is also better than the CLIP3
algorithm [28], which is a standard approach to generate
classification rules from the SPECT images and achieved

Low dimensional case: 100 independent noise predictors
c=0 c=1 =2 c=3 o=4
SBFC 0.682 £(0.035) | 0.654 +(0.036) | 0.603 +(0.032) | 0.562 £+(0.035) | 0.519 £(0.030)
Lasso 0.496 +(0.107) 0.470 £(0.100) 0.439 +(0.090) 0.394 +(0.082) 0.362 £+(0.070)
SVM 0.578 +(0.035) 0.564 £(0.040) 0.527 £(0.037) 0.515 £(0.042) 0.479 £(0.032)
Naive Bayes 0.597 £(0.042) 0.573 £(0.042) 0.532 £(0.034) 0.500 £(0.032) 0.463 £(0.025)
Random Forest | 0.633+£(0.031) 0.606 £(0.032) 0.560 £(0.028) 0.535 £(0.027) 0.4924(0.030)
CART 0.593 £(0.045) 0.560 £(0.047) 0.503 £(0.037) 0.474 £(0.039) 0.429 £(0.026)
C5.0 0.561 £(0.042) 0.538 £(0.039) 0.487 £(0.028) 0.457 £(0.028) 0.422 £(0.022)
High dimensional case: 500 independent noise predictors
c=0 c=1 =2 c=3 oc=4
SBFC 0.679 £(0.022) | 0.637 +(0.027) | 0.588 +(0.022) | 0.545 +(0.018) | 0.518 £(0.028)
Lasso 0.496 £(0.095) 0.483 £(0.091) 0.440 £(0.089) 0.385 £(0.076) 0.367 £(0.068)
SVM 0.550 £(0.044) 0.529 +(0.045) 0.526 £(0.042) 0.483+£(0.040) 0.464+(0.033)
Naive Bayes 0.560 £(0.038) 0.541 £(0.036) 0.525 £(0.037) 0.479 £(0.038) 0.446 £(0.027)
Random Forest | 0.559 £(0.022) 0.545 £(0.019) 0.533 £(0.023) 0.492 £(0.024) 0.446 £(0.018)
CART 0.585 +(0.036) 0.568 +(0.037) 0.547 +(0.030) 0.502 +(0.038) 0.470 +(0.030)
C5.0 0.534 £(0.038) 0.512 £(0.033) 0.478 £(0.034) 0.433 £(0.026) 0.405 £(0.021)
77.0% classification accuracy compared with cardiologists’
Group 1 Average graph

final diagnoses.
4.2.2 corral data set

The corral data set [29] contains six binary features
{X1, X5, X3, X4, X5, X6}, which generates the associated
class label as Y = (X1 A X3) V (X3 A X4). X5 is a noise
feature in Group 0 and Xj is a signal feature in Group
1, which is correlated with the class label with 25% er-
ror. Thus in the corral data set, the relevant features
are {X1, Xo, X3, X4, Xs}, and the most relevant edges are
{X1, X5}, {X3, X4}, while other edges between the first four
features are less relevant, and any edge with X5 or Xg is
incorrect. Figure 5 shows a sampled graph and the aver-
age graph of SBFC, illustrating that SBFC successfully re-
covered the true correlation structure between the features,
with the most relevant edges appearing most frequently (as
indicated by thickness). Table 4 compares the classification
accuracy (5-fold CV) of SBFC and other standard algo-
rithms. We see that SBFC as well as SVM have the best
prediction performance for this data set.

4.2.3 madelon data set

The madelon data set has been used in the 2003 NIPS
feature selection challenge. Feature selection on this data
set is considered to be challenging since (1) the data set is
high dimensional with 20 relevant features and 480 noise
features; and (2) no feature is informative by itself and all
the relevant features are correlated with each other [30]. Fig-
ure 6 shows that SBFC reliably selected the correct set of
20 relevant features [31] for this high-dimensional dataset,
while other methods such as Lasso, BART and Random For-
est failed this task. Regardless of the selection proportion
or significance, Lasso, BART and Random Forest missed
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Table 4. Classification accuracy for the SPECTF heart data set, corral data set, and madelon data set

Figure 5. Up: A sampled graph for the corral data set; Down:
Average graph for the corral data set.

15 features, 6 features, and 1 feature, respectively. We also
note, however, that Table 4 shows that SBFC’s classifica-
tion accuracy was right in the middle among all the tested
methods, and was at the lower end of all tree-based al-
gorithms (e.g., Random Forest, CART, BART and C5.0).
There are two possible reasons for this: (1) SBFC is de-
signed for types of data whose features can be arranged
as a set of non-overlapping trees conditional on Y. In con-
trast, other tree-based algorithms allow one variable to ap-
pear in multiple nodes of the single and multiple trees. For
the madelon data set, since all the features are correlated
with each other, it might not be sufficient to model their
joint distribution as non-overlapping trees by SBFC. (2)
SBFC requires pre-discretization of the data so that all the
features become categorical. For computational efficiency,
we use binary binning [26] for high dimensional data sets.
Such a discretization procedure might lead to an informa-
tion loss.
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Data Method SBFC | Lasso | SVM NB LR RF CART | BART | C5.0
train/test | 0.786 | 0.657 | 0.743 | 0.679 | 0.556 | 0.743 0.775 0.737 | 0.679
SPECTE heart 5-fold CV | 0.846 | 0.809 | 0.793 | 0.738 | 0.763 | 0.824 | 0.793 0.812 | 0.801
corral 5-fold CV 1.00 0.867 | 1.00 | 0.869 | 0.862 | 0.966 0.812 0.919 0.990
madelon 5-fold CV | 0.634 | 0.607 | 0.620 | 0.598 | 0.600 | 0.671 | 0.782 0.760 | 0.758
— o 5. THE R PACKAGE
The R package is available on CRAN and at github.
° X5 org/vkrakovna/sbfc. The command for running the algo-
rithm is sbfc(data). It expects a discretized data set as
input, which can be produced using the data_disc() com-
mand.
5.1 Graph visualizations
The sbfc_graph() command creates visualizations of the
Group 1 Group 0 relevant features and feature interactions identified by the
° X5 MCMC algorithm, such as those in Figures 3, 4 and 5. The
command sbfc_graph(average=FALSE, iter=N) shows

the sampled graph for the N-th MCMC iteration. The Group
1 nodes are dark-shaded, and the Group 0 nodes are light-
shaded.

The command sbfc_graph(average=TRUE) shows an av-
erage graph, aggregating information from all MCMC sam-
ples. The nodes are color-coded according to relevance - the
proportion of samples where the corresponding feature ap-
peared in Group 1 (dark-shaded nodes appear more often).
Edge thickness also corresponds to relevance - the propor-
tion of samples where the corresponding feature interaction
appeared. To avoid clutter, only edges that appear in at least
a certain proportion of the sampled graphs are shown, spec-
ified by the edge_cutoff option, which defaults to 0.1. To
see more of the low-relevance edges, lower the edge_cutoff
value.

If you have a data set with meaningful variable labels, you
can add these to your graph by setting the labels option to
a set of labels of your choice. To determine which groups of
features influence the predictions the most, you can visually
identify clusters of thicker edges in the graph. See Figure 5
for an example.

5.2 Example: heart disease data set

The heart disease data set from UCI repository [27] con-
tains 13 variables related to heart disease, such as age, heart
rate and blood pressure, and 270 observations. We are inter-
ested in identifying which features and feature interactions
contribute to the presence of heart disease.

We begin by removing rows with missing values and dis-
cretizing the data set using Minimum Description Length
partitioning. We then run SBFC on the discretized data set.
Since the data set is a bit too small to divide into a training
and test set, we leave the n_train argument for the number
of training rows unspecified.


github.org/vkrakovna/sbfc
github.org/vkrakovna/sbfc
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Figure 6. Feature selection results for the madelon data set. SBFC selects the correct set of 20 relevant features [31]. Other
methods such as Lasso, BART and Random Forest missed 15 features, 6 features and 1 feature respectively.

heart = data_disc(heart_data, n_train=NULL)
heart_result = sbfc(heart)

By default sbfc () runs 5-fold cross-validation if a test set
is not supplied, and sbfc_graph () uses the MCMC samples
from the first cross-validation fold. If you are not interested
in classification and just want to get MCMC samples and
graphs, you can run sbfc(heart, cv=FALSE). Since this
data set has variables with meaningful names, we supply
these as node labels for the graph.

heart_labels = c("Age", "Sex", "Chest Pain",
"Rest Blood Pressure", "Cholesterol",
"Blood Sugar", "Rest ECG", "Max Heart Rate",
"Angina", "ST Depression", "ST Slope",

"Fluoroscopy Colored Vessels", "Thalassemia")
sbfc_graph(heart_result, labels=heart_labels,
width=700)

In order to identify those important features, run
signal_var_proportion(heart_result, nvars). Fig-
ure 7 shows the signal proportion, which is defined as the
proportion of MCMC samples of a specific variable in the
signal group (Group 1). The command returns the top
nvars features in decreasing order of signal proportion.
For comparison, Table 5 shows the feature rankings by
Random Forest, Lasso and BART. To perform MCMC
diagnostics, plot the log posterior as shown in Figure 8
using logposterior_plot (heart_result).

Group 1 proportion
00 02 04 06 08 10

L

Sex
Max HR
Angina
STD
STS
Vessels
Thal
Chest
Age
Rest BP

Figure 7. Top 10 selected signal features by SBFC on the
heart disease data set.

-1140

Log posterior

-1150

T T T T T
2000 4000 6000 8000 10000

Figure 8. Log posterior diagnostic plots for the heart disease
data set. Total run is 10,000 iterations, with burn-in for the
first 2,000 iterations.
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Table 5. Feature ranking for heart disease data set by Random Forest, Lasso, and BART

Method 1 2 3 4 5 6 7 8 9 10 11 12 13
RF Chest  Thal. Vessels Angina Max HR STD  STS Sex Age Rest BP  Chol. Sugar ECG
Lasso  Vessels Chest Thal. STD STS Angina Sex Max HR Age Rest BP  Chol. Sugar ECG
BART  Chest Thal. Vessels Max HR Age Sex STS STD Angina Rest BP  Chol. Sugar ECG
Group 1 Group 0
o000 o 55
Depr?s-smn Thalassemia
ST Fluoroscopy Rest Blood Rest
@ Depression 5;;2:2 PrBeI:::re SEEEL Sugar EEZ

(b)

Figure 9. (a) A sampled graph for the heart disease data set by SBFC; (b) Average graph for the heart disease data set by
SBFC.

Figure 9 shows the results of feature selection and fea-
ture interaction detection of SBFC on the heart disease data
set. The dark-shaded features in the average graph are the
most relevant for predicting heart disease. There are several
groups of relevant interacting features: (Sex, Thalassemia),
(Chest Pain, angina), and (Max Heart Rate, ST Slope, ST
Depression). The features in each group jointly affect the
presence of heart disease. Figure 9(c¢) compares feature rank-
ings with other methods, showing that all the methods agree
on the top 9 features, which SBFC ranked almost equally
(all with posterior probability very close to 1).

6. CONCLUSION

SBFC is an integrated tool for supervised classification,
feature selection, interaction detection, and visualization. It
splits the features into signal and noise groups according to
their relationship with the class label, and uses tree struc-
tures to model dependencies among both signal and noise
features. The tree dependence structure gives SBFC ade-
quate modeling flexibility, excellent feature and interaction
selection performances, and competitive classification accu-
racies even when the signal to noise ratio decreases and the
number of irrelevant features increases. Since our simula-
tions showed that SBFC performed well with well-behaved
features, in practice it might be helpful to first “normalize”
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the features (e.g., capping outliers, or conducting quantile
normalizations) before feeding them into SBFC.
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