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Testing the zonal stationarity of spatial point
processes: applied to prostate tissues and trees

locations

AZAM SAADATJOUY, ALl REZA TAHERIYOUN*,
AND MOHAMMAD Q. VAHIDI-ASL

This work aims to test the second-order stationarity of
a spatial point pattern based on the local spectra concept.
Using a logarithmic transformation, the mechanism of the
proposed test becomes approximately identical to a simple
two factor analysis of variance with the known variance of
the noise term. This procedure can be also used for testing
the stationarity in the neighborhood of a particular point of
the observation window. The same idea is used in post-hoc
tests to cluster the point pattern into stationary and non-
stationary sub-windows. The performance of the proposed
method is examined through a simulation study and is then
applied to a practical data. The proposed test shows a con-
siderable empirical power and satisfactorily empirical size.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 60G55,
62M15; secondary 62F15.

KEYWORDS AND PHRASES: Complete covariance density
function, Evolutionary periodogram, Spatial point process,
Spectral density function, Zonal stationarity.

1. INTRODUCTION

1.1 General aspects

A point pattern as a realization of a point process is a set
of points distributed irregularly in a window. The analysis
of a point pattern provides information on the geometrical
structures formed by the aggregation and interaction be-
tween points. The aggregation and interaction of points are
characterized by intensity and covariance density functions,
respectively. A point process is first-order stationary if its
intensity function is a constant function, while it is called
second-order stationary if all of its second-order character-
istics (e.g., the complete covariance density function) are
only a function of inter-points distances. A point process
is called stationary here when it is first- and second-order
stationary, simultaneously. Therefore, for a nonstationary
process at least one of the first- or second-order stationarity
characteristics does not hold to be true. The spectral density
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function of a stationary point process is the Fourier trans-
form of the complete covariance density function. The main
key point of this study is the fact that ‘the structure of the
complete covariance density and spectral density functions
may vary with the location when the stationarity assump-
tion is violated’.

Several efficient methods based on the spectral density
are available in the literature for studying the spatial struc-
ture of stationary processes. The spectral methods have
been used by [12] to investigate the asymptotic properties of
several estimation methods in a stationary process observed
on a d-dimensional lattice. The approximated locations of
events in a spatial point pattern have been presented using
the intersections of a fine lattice on the observation window
by [25] and the point spectrum has been approximated by
the lattice spectrum. A quick glance at the published lit-
erature shows that a considerable number of studies have
been dedicated to test the stationarity problem by testing
the first-order stationarity. Among the methods available,
we refer to [11] for a formal test of the first-order stationar-
ity of point processes. The proposed model-free test statis-
tic is based on the squared deviations of observed counts
of points from their expected counts under the first-order
stationarity. Chiu and Liu [5] have extended this method
to a general class of statistics by incorporating the infor-
mation of projected points onto the axes. For testing the
first-order stationarity of point processes in arbitrary re-
gions, a Kolmogrov-Smirnove type test is proposed by [29],
where the test statistic is obtained by maximizing the abso-
lute difference between the observed and estimated counts
of points.

The main interest of the statistical analysis is to evaluate
the second-order characteristics of point processes when the
first-order stationarity is satisfied. For this purpose, several
so-called summary statistics such as Ripley’s K-function
[26], L-function [4] and pair correlation function [28] have
been proposed.

Generally, a vague boundary exists between stationary
and nonstationary point processes containing zonal station-
ary processes. For the zonal stationary processes, there ex-
ist natural or artificial boundaries in a space where the co-
variance structure changes between the boundaries but the
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intensity structure remains unchanged. Both the zonal sta-
tionary and stationary point processes are first-order sta-
tionary, but unlike the stationary point processes, the zonal
stationary processes are not second-order stationary in the
whole of observation window. However, the restriction of
zonal stationary processes into some sub-regions of original
window are stationary. This concept is further explained in
Section 2.1. Based on a point pattern, we want to decide
between the zonal stationarity and the simple stationarity
assumption. One may suggest to employ methods developed
for regular observation of random fields. To this end, since
the point pattern is an irregular observation of points, we
need to partition the observation window, W C R¢, into
a regular d-dimensional grid where the ith edge of W is
divided into n;, i = 1,--- ,d, equidistant parts. Let N; rep-
resent the number of points in the sub-cube in the ith row,
where i = (i1,--- ,4q), and ¢; = 1,--- ,n;. We evaluate the
stationarity of a point pattern by testing the stationarity of
the random field {N;};. This test is similar to the test for
stationarity of random fields introduced by [10] but looses
the information about the locations of points. In the sec-
ond approach, we define the evolutionary spectra for the
realization of a point process and then examine the local
behavior of the discrete evolutionary spectra. The station-
arity assumption is rejected if the spectral density function
shows different behavior at least in two different regions of
the observation window. We mention the property of differ-
ent behaviors in different regions by second-order location
dependency. Our method is designed to detect the second-
order stationarity against this behavior.

The concept of evolutionary (i.e. time-dependent) spectra
of random processes has been introduced by [22, 21]. Testing
the stationarity of time series is a very famous consequence
of this concept [24]. Using the time-dependent spectra, the
asymptotic properties of nonstationary time series with lo-
cally stationary behavior have been investigated by [6]. The
remaining references somehow have used the evolutionary or
local spectra for testing the stationarity of regular trajecto-
ries of random fields except [2] that has proposed a test for
spatial stationarity based on a transformation of irregularly
spaced spatial data. Nonparametric and several parametric
procedures for modeling the spatial dependence structure of
a nonstationary spatial process observed on a d-dimensional
lattice have been proposed by [9]. Priestley’s idea has been
extended to test the stationarity and isotropy of a spatial
process [10].

This paper is organized as follows: In the sequel, we study
two motivating datasets. In the following section, we review
some concepts of point processes and present two spatial
spectral representations for a nonstationary spatial point
process. Moreover, the nonparametric estimates of the spec-
tral density of a nonstationary point process are proposed
in this section. A formal test of the second-order stationar-
ity is presented in Section 3. In Section 4, we examine the
proposed testing approach through a simulation study. We
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Figure 1. The locations of 649 trees of the Bar Colorado
forest in a rectangular window whose vertices are located at
the geographic coordinates (500, 0) and (700,333/3333). The

sampling window is rescaled into [0, 70]°.

also study the effect of location in the competition between
a specific genus of trees in 4.1.

1.2 Data and motivations

In this section, we propose two datasets and motivations
for their analysis in order to illustrate the mentioned prob-
lem comprehensively. The first dataset is devoted to the
location of Euphorbiaceae trees in a part of the Bar Col-
orado forest (Figure 1). We will discuss the sub-windows
of this figure in Sections 2.1 and 4.1. Generally, one of the
main and essential information for forest management and
its optimal and sustainable utilization is to determine the
frequencies of different types of trees, distribution pattern of
trees, and their competition. For example, the distribution of
trees seeds could have an impact on their aggregation while
competition among different species for moisture, light, and
nutrients acts oppositely. A positive autocorrelation or ag-
gregation may result from regeneration near parents, whilst
a negative autocorrelation results from their competition.
Therefore, it seems that variations of the aggregation struc-
ture will change the interaction structure of trees. Since the
local periodogram is influenced by the aggregation and inter-
actions of points, so we use this function to detect the loca-
tion(s) at which the pattern of trees distribution is changed.

The second data is the location of capillary profiles on a
section of prostate tissue. According to the anatomy of the
human body, blood circulation in the human body starts
from the heart, then flows through arteries, and finally re-
ceives to all parts of the body by capillaries. Capillaries are
the smallest vessels of the body, supplying the oxygen to tis-
sues and exchanging constituents between tissues and blood.
Figure 2 demonstrates the midpoints of the capillaries in
sections of a healthy and a cancerous prostate tissues. The
rescaled point patterns published by [13] have been used to
capture the coordinates of the capillaries. Since the quantity
of nutrients and oxygen required by different parts of a given
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(a) healthy tissue (b) cancerous tissue

Figure 2. The locations of 196 capillaries on a section of a

healthy prostate (2a) and the locations of 185 capillaries at
the same section from a cancerous prostate (2b).

organ of the body are not same, so it is expected that the
density of capillary network will be different in various parts
of the body. In order to scrutinize this issue, we examine the
behavior of evolutionary periodogram function at different
parts of a tissue.

2. NONSTATIONARY SPECTRAL
APPROACHES

2.1 Preliminaries and notations

Let X be a spatial point process observed within the
bounded region W C RZ. The first- and second-order in-
tensities are used to determine the aggregation and depen-
dency structure of the point patterns. The first-order inten-
sity function is defined as the expected number of points per
unit volume [7, page 43] in the following way:

E[Nx (da)]

Ax(a) = lim da]

|da]—0

a € RY

where d € N, da is an infinitesimal region around the point
a, |da| is the volume of this region, and Nx(da) is the num-
ber of points of X in this small region. The second-order
intensity, Axx, contains information about the stochastic
dependence of points in two different regions [7, page 43];
that is

E[Nx(da)Nx (db)]
dal|db| ’

)\XX (a, b) = 1
|dal,|db|—0
for any a,b € R? such that a # b. Bartlett [3] proposed the

unit-free complete covariance density function, s x x , defined
by

kxx(a,b) = Ax(a)d(a; —b1)d(az — ba)...0(aq — bg)
+ vxx(a,b),

where d(a) is the Dirac delta function and yxx is the co-
variance density function, which in turn is defined by

lim  (|dal|db])™"

a,b) =
7xx(a,b) |dal,|db|—0

x E[(Nx(da) — Ax(da)) (Nx(db) — Ax(db))]
= )\X)((a, b) — )\X(a))\X(b)

A point process is called stationary if its distribution is in-
variant under translations. It is called isotropic if its distri-
bution is invariant under rotations about the origin in R9.
For a stationary point process, the intensity function is con-
stant and the second-order characteristics depend only on
the lag vector. Moreover, for an isotropic process such de-
pendency is an exclusive function of the scalar length of lag
vector regardless of the orientation. Moving to the frequency
domain approaches, the spectral density function of a point
process is the Fourier transform of the complete covariance
density function. It is a function like fy x : & — C, where
Q is the space of frequencies defined as (see [20]) the Fourier
transform of the unit-free complete covariance density func-
tion, kxx [3]. For a nonstationary spatial process, Fuentes
[10] generalized the evolutionary spectra concept of time
series introduced by [22]. Following the same idea, we in-
troduce two different evolutionary periodograms of nonsta-
tionary point processes. A new class of nonstationary point
processes called ‘zonal’ stationary processes is introduced.
In each approach, an empirical spectral density function is
defined for this class whose physical interpretation is similar
to that of the spectrum of a stationary point process, but
it varies with location. Intuitively, a point process is called
zonal stationary if it behaves in an approximately stationary
way in several disjoint sub-regions. The formal definition of
the zonal stationary point process is as follows:

Definition 2.1. A first-order stationary point process X is
called zonal stationary on W C R? if there exists a partition
(W1, ..., W) for W such that 3rF > 0,Vr; > rF, Xw,o, are
second-order stationary for all¢ =1,... &k, where W;&r; =
(€€ Wit b(&,r:) C Wi,

In the definition above, X 4 denotes the restriction of X
to set A and b(&,r) shows a closed ball centered at £ with a
radius r. Furthermore, the minus-sampling method is used
to handling edge effects [19, page 39]. In this method, all
the boundary regions are excluded and only those regions ly-
ing entirely inside the observation window are sampled. The

first-order intensity functions of Xw,,7 =1,...,k, are equal
to constant A in each sub-region (Ax, (a) = A, a € R9).
The second-order intensity functions of Xy ,,7 = 1,...,k,

are only functions of lag vector in each sub-region but
vary from one sub-region to another (Axy x, (a,b) =

Axw, xw,(@—Db); a,b € R9).

Note 2.1. There exists an edge effect at the boundaries of
each W;. For reqular Wi, we assume that vxy, x, (|[1]]) =
o(||h]|€), where € > 1 is chosen such that the interaction of
far points in comparison with diameter of W; is negligible.
Note also that this is not a big concern since for the first-
order stationary processes the complete covariance density
function is equal to Noo + A\2(g — 1) where g is the paired
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correlation function and 6y is Dirac’s delta. Therefore, the
mentioned assumption is the consequence of the convergence
behavior of g(a) when ||a|| — oo. The simple examples to
study this behavior are Hawkes process [14], Log Gaussian
Cox process [19, Page 72] and x? Cox process [19, Page 76].

Creating appropriate partitions, the number of disjoint
sub-regions, and identifying their shapes have a great im-
portance on analyzing zonal stationary processes. For ana-
lyzing locally stationary random fields, [8] have postulated
that the shape of the sub-regions are known a priori and the
number of sub-regions is estimated using the Akaike infor-
mation criterion. A Voronoi tessellation has been employed
to construct the sub-regions in [16]. The regional behavior
of a point pattern can be detected through evaluating its
different features in the special regions. In this article we
propose a new method for partitioning the spatial domain
into disjoint sub-windows in which the restricted point pat-
terns are assumed to be stationary. It is worth mentioning
that sub-regions refer to subsets of the original observation
window within which local stationary point patterns are ob-
served. These areas do not have necessarily regular shapes.
However, ‘sub-windows’ refer to regular square areas used
throughout this study to partition the observation window.
Figure 3a shows the observation window of a zonal station-
ary point pattern such that the observed local point patterns
in each of the shaded connected sub-regions are stationary.
Firstly, the observation window is partitioned to 22 identi-
cal square-shaped sub-windows. The shape of sub-windows
are considered to be square for independence of the peri-
odograms [see 1, for details]. Our computation in each sub-
window is weighted (according to a regular weight function)
in a closed ball centered at the middle point of the sub-
window. This type of computation does not use the points
located near the boundaries, it is neither affected by the
edge effect nor the hard interaction of neighbor sub-regions
onto these points. Accordingly, the stationarity is examined
through these balls. Secondly, the number of regular par-
titions is increased in such a way that: 1) the asymptotic
results about the local spectra hold to be true by mean that
the number of points in each sub-window must be large
enough and the diameter of sub-windows are not smaller
than a specific value, 2) and the stationarity assumption
satisfied in each sub-window, 3) or it is verified that the
second-order properties of at least two sub-windows are dif-
ferent. This issue is shown in Figure 3b and 3c. Determi-
nation of sub-regions is a nonparametric problem since the
dimension of parameter space is uncountable. In practice
and for simplification, the nonparametric estimation prob-
lem is replaced with the parametric testing by assuming that
different local stationary point patterns are observed in reg-
ular sub-regions. Although determining these regions is cru-
cial in the spatial domain, this issue can be easily solved in
the frequency domain due to its independency from the ob-
servation window. This could be attributed to the fact that
the frequency domain is based on [—m, 7| regardless of the
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(a) observation window (b) 4 sub-windows

(¢) 9 sub-windows

Figure 3. Determination of sub-windows for a realization of
zonal stationary point process.
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Figure 4. A realization of the zonal stationary point process.

form of the observation window. The Bartlett window can
be used to determine different regions on which the features
must be evaluated and, accordingly, the regional behavior
of the point pattern can be detected by computing the local
periodogram.

Figure 4 shows a realization of a zonal stationary point
process in the window W = [0, 70]2. The local point patterns
are generated independently here in regular sub-regions. We
term zi,...,2z9 the middle points of Sq,...,Sg square sub-
regions from left to right and down to up, respectively. In
this figure, the point patterns in S3 and Sg are realizations
of the stationary Thomas process and the Simple Sequential
Inhibition (SSI) process, respectively, while the remaining
are realizations of the stationary Poisson processes. This
point pattern is denoted by y.



Figure 5. The regular realization of the N; random field
corresponding to the mentioned point pattern in Figure 4.

Suppose that we have a point process X observed on a
rectangular window W = [0,1] C R?, where 1 = (Iy,...,14),
that is the rectangular window with a vertex at the origin
of the Cartesian system and an opposite vertex on 1. Con-
struct {N;}; as explained previously. We consider a regular
ny X ... X ng grid on the study area and set n = H;l:l n;.
Let Nj be the number of points in the sub-cube with vertex
i=(i1,...,%q), %4 = 1,...,n; for j = 1,...,d. We define
the random field as V(s) = Nj if s belongs to the sub-cube
i. Figure 5 shows the image of N; random field obtained
from the point pattern presented in Figure 4. Now, one may
use the method of [10] to define the local periodogram of
the obtained random field. This approach eliminates the in-
formation of the location of points and hence we propose
another approach based on the nonstationary periodogram.

2.2 Nonstationary periodogram of point
processes

Assume that we have a point pattern x observed on a
rectangular window W = [0,1] € R? containing ny points.
Let D = {u; = (u1j,...,uq),j = 1,...,nx}, be the set of
positions of the points. Suppose the approximate locations of
points in a point pattern be represented by the intersections
of a my X ... X my fine lattice superimposed on the study
region. This lattice generates an irregular realization of a
binary random field {¢(s)} as

o ={ 5

((s) is a simple random field and it only considers the posi-
tions of points occurrence. There is an equivalence between
the point spectra of X and the spectra of the random field ¢
[25]. If X is a stationary point process, then ¢ will be a sta-
tionary random field. Consequently, any evidence of nonsta-
tionarity of ¢ could be a reason for rejection of the station-
arity hypothesis of X. Suppose that { be zonal stationary,
then its spectral density function, denoted by f,(w), is the
Fourier transform of the locally auto covariance function of

if seD
if s¢D.

¢ and z is the location around that ¢ behaves stationarily
([see 10]). If for a given z the function f,(w) is not sen-
sitive to w, then we conclude that in the neighborhood of
the given z, f,(w) belongs to a completely spatial random
point pattern. On the other hand, if for a given frequency
w, fz(w) is not sensitive to z, then we conclude that for the
given w, f,(w) does not behave locally. Practically, f,(w)
is unknown for every z and for every w and we restrict the
problem of estimation to specific Fourier frequencies and lo-
cations. Therefore, our approach is a parametric statistical
inference.

Consider a location varying filter to assign greater weights
to the neighboring values of z. The spatial local periodogram
at a location z and frequency w is | J,(w)|?, where

Ta(w) = \/; Dk 9(z — sk)C(sk) exp{—isf w}

5-1 45

NS w) exp{—iu
= \/Hlelj > 521 9(z — uj) exp{—iuj w}

(1) =

where g : R — R is the filter function with all the charac-
teristics mentioned by [10] with finite width B, defined as
By = [za llullg(u)du, and m = m; x ... x mg. The resulting
periodogram is not smooth enough to be used as an estima-
tion of the local spectra and, thus, |J,|? is smoothed using
the L? kernel family, {W,}, where for each p there exists a
constant C such that

(2)

Az(w) + 1B, (w),

lim p? / N)[Pdr = C,
Jm o7 ] e (]
where w,, is the Fourier transform of W,. Thus, the final
estimator is

Folw) = Lw) = /R Wyl Wl P

Analogous to [10], the covariance between the spatial peri-
odogram values I, (w) and I,,(w’) will be asymptotically
zero if either ||w 4+ w'|| 3> bandwidth of [T'(8)|> where T is
the Fourier transform of g and ||z; £25|| > bandwidth of the
function W,(u) [23]. For fixed z and w, one may conclude
the normality of A,(w) and B,(w) similar to the [20]. There
is no certain criterion in the literature for the required num-
ber of points to obtain the asymptotic normality of A, (w)
and B, (w). In fact, this criterion does not exist even for the
global version of A and B which are not dependent to the
locations, z. But our simulation study showed that when
the number of points in each sub-window exceeds 50, the
asymptotic normality is well-satisfied.

Figure 6 shows the spatial local periodogram of the men-
tioned y in Figure 5 at the Fourier frequencies and at the
locations z1, . .., 29 which are enough wide apart. The num-
ber of observed points of y in the considered sub-windows
are almost similar. Obviously, as shown in Figure 6, the
behavior of the local periodogram function of y varies at
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Figure 6. The spatial local periodogram of the point pattern
of Figure 4 at the locations z1, . . . ,zg and Fourier frequencies.

different locations. The shape of the local periodograms in
sub-windows with stationary Poisson patterns (around zj,
ke K ={1,2,4,5,6,7,9},) are broadly flat, reflecting the
absence of the interaction structure in the observed pat-
terns. In the sub-window with the stationary Thomas pat-
tern, for small values of ||w]|| the values of I,, (w) are larger
in comparison with I, (w) when j € K. In contrast, for the
sub-window with the Simple Sequential Inhibition pattern,
the values of I,,(w) are smaller than I, (w), j € K, when
|lw]| is small.

There is a fundamental difference between this location
dependent point spectra and the lattice-based local spectra
considered by [10]. A lattice-based spectrum describes the
spatial structure of a measured variable (i.e., tree heights) at
fixed equally spaced locations in an ny X ns grid. However,
in a local point spectrum, we consider the spatial structure
of the location (for example, locations of trees) of points
instead of a measured characteristic. Moreover, the first es-
timator ignores the information about the precise locations
of points compared with the second one.

Concerning the Bartlett’s window, g(u) is considered as
a multiplicative filter in the simulation study of Section 4;
e g(u) = [1°, g1(uy), where gi(u) = (4rh)~V/21}, 1<,
Thus, the Fourier transform of g becomes I'w) =
H?Zl(ﬁwj)_l sin(hw;). In addition, we consider W,(u)

to be of the form W,(u) = szl Wi p(u;), where Wy ,(u) =

1/p1jy)<p/2, corresponding to the Daniell window, implies

the accuracy of formula (2) with C' = (2)<.

3. TESTING THE STATIONARITY

In this section, we represent a formal test of stationarity
of a point process based on the arguments presented in the
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previous section. The analysis of the geometric structure of a
point pattern is strongly related to the aggregation of points
and interaction between points. When the aggregation of
points is the same at two different sub-windows, it is not easy
to visually discriminate the interaction effect in these sub-
windows. In this situation, the higher moments of the point
pattern such as the second-order intensity function must
be compared together in different areas. If the restricted
point patterns to disjoint sub-windows are assumed to be
independent, their second order properties can be compared
according to [27]. Without such independency, two-factor
analysis of variance model and following assumptions are
valid. We thus write (see also [15, 24])

(4)

Priestley and Subba Rao [24] have showed that asymptoti-
cally E[e(z,w)] = 0 and

Y(z,w) =Inl,(w) =n f,(w) + &(z,w).

(5)  o® = Ele(mw)]? = (C/p?) / IT(6)[de,

Rd
for w ¢ 014, where 14 = [—m,7]? and 6114 denotes the
boundary of the region 114 .

We select a set of locations z1,zs,...,2, and a set of
frequencies w1, ws,...,w, in such a way that an accept-
able sample is gathered in location and frequency spaces.
I,(w) is evaluated over this fine sample. The set of locations
and frequencies must also be wide apart enough in order
to e(z;,w;) and consequently I,, (w;) be uncorrelated. If we
write Yi; = Y(z;,w;), fij = In fp,(w;) and g;; = e(z;,w;),
then using the discussion on the normality of A, and B,, the
noise terms, €;;, are considered to be normally distributed
and Y;; are generated according to the model

Yij = fij +€45.

The parameter f;; represents the treatment effect of both
the location at level z; and the frequency at level w;. By
considering the normality of the main effects, we can rewrite
the model as

Hy Y= p+a; + B+ vij + €ijs
(6) i=1,....m and j=1,...,n.
In this model, the parameters a; and §; represent the main
effects of the location and frequency factors, respectively,
and -;; represents the interaction between these two fac-
tors. As previously mentioned, the spectral density function
of a stationary point process does not oscillate locally and
it only varies by change of the frequencies. Therefore, the
stationarity of a point process can be tested by using the
analysis of variance methods and testing the model

Hy:Yij=p+Bj+¢ey, i=1,....m and j=1,...,n,

or equivalently Hy : «; = 0, i = 1,...,m, versus (6). The
rejection of Hy represents that at least one of the parameters



«; is not zero meaning that there exist at least two locations
z;,z; € W in such a way that f, (w) # fz;(w). A post-
hoc test is used to find different location(s) and thus we
may use this as a clustering method in the zonal stationary
point processes. Since the value of 02 = Var(g;;) is known,
the presence of the interaction factor, 7;;, can be tested
only using one realization of a given point process. If the
effect of interaction factor is not significant, then the point
process is uniformly modulated and In f,(w) will be additive
in terms of location and frequency. We can examine whether
the nonstationarity of the point pattern is restricted only
to some frequencies by testing for stationarity over these
frequencies. If X is an isotropic point process, then f,(w)
depends on its vector argument w only through its scalar
length ||w||, regardless of the orientation of w. Then, we can
test for isotropy by selecting a set of frequencies with the
same norms, say {w;,,w;,} where w;, # wj, but ||w;, || =
lws, ||, and test whether the frequency effect is significant.
Since ¢ is known, all of these comparisons are based on a
x? rather than F-test.

4. SIMULATION STUDY

In this section, we evaluate the performance of the pro-
posed test for detecting the zonal stationarity of a point
process. As mentioned in the previous section, using a loga-
rithmic transformation, the mechanism of the test is almost
identical to that of a two-factor analysis of variance.

In testing for stationarity and for a given number of sub-
windows, firstly we consider the interaction sum of squares.
If the interaction is not significant, we conclude that the
point process is a uniformly modulated process and the sta-
tionarity test is continued by evaluating the ‘between spatial
locations’ sum of squares. If the interaction sum of squares
turns out to be significant, we conclude that the point pat-
tern is nonuniformly modulated and nonstationary. After-
wards, we are going to investigate whether the source of
nonstationarity is the zonal behavior or not. This is equiva-
lent to the significant sum of squares of the location factor.

We set the nominal level of test at 0.05 and assume that
all of the point processes are observed on a rectangular win-
dow W = [0,70]°. Using (1), for all cases, we estimate f,(w)
in which g(u) and W,(u) employ h = 3 and p = 20, respec-
tively. The bandwidth of |T'(w)|? is approximately 7 /h. The
window W,(u) has a bandwidth of p. Thus, the space be-
tween locations, z;, and frequencies, w;, must be at least
20 and 7/3, respectively, in order to obtain approximately
uncorrelated estimates. For 9 sub-windows, the points z; are
chosen as Z; = (Zil,Ziz) = (7021/6,7022/6) with il,ig = 1,3
and 5, corresponding to a uniform spacing of 70/3 (just ex-
ceeding p = 20). Using the same reason to make independent
estimates, we need that the distance between frequencies ex-
ceeds /3. Thus, let w; be in form of (ji17/20, jom/20) for
41,72 = 1,8 and 15. Using (5), the value of o2 is calculated
as 02 = 16h?/(9p*) = 0.04. For the considered set of lo-
cations and frequencies, the degree of freedom for ‘between

spatial locations’, ‘between frequencies’ and ‘residual+ in-
teraction’ effects are dfy = 8, dfr = 8 and df;g, = 64, re-
spectively and correspondingly we denote ‘between spatial
locations’, ‘between frequencies’ and ‘residual+ interaction’
sum of squares with SSL, SSF and SSITEr. In the analysis
of variance table, we first evaluate the significance of the
interaction effect. If SSTEr/o? > x2,(0.05), we conclude
that the point pattern is nonstationary and nonuniformly
modulated. If the interaction is not significant, we conclude
that the point pattern is a uniformly modulated process,
and the stationarity versus the zonal stationarity test is pro-
ceeded by comparing SSL/o? with x2(0.05). Significance of
the location effect suggests that the point pattern is nonsta-
tionary. Similarly, in order to evaluate between frequencies
effect, SSF/o? is compared with x2(0.05) and the signifi-
cance of test confirms that the spectra is nonuniform.

In the following study, we simulate 1,000 realizations of
stationary and zonal stationary point processes to study the
empirical size and power of the proposed test. Table 1 shows
the ratios of rejections of Hy. The ratios of rejections for
the realizations of stationary processes represent the em-
pirical size and the ratios of rejections for the realizations
of zonal stationary processes represent the empirical power
of the test. We consider realizations of the Thomas process
because its clustered behavior makes it similar to a zonal
stationary process. To simulate a Thomas process of the
parameter (J, 7, 1), the ‘parent’ point process is firstly gen-
erated according to a stationary Poisson point process of
intensity ¢ in the study region. Then, each parent point is
replaced independently by ‘offspring’ points which the num-
ber of offspring points of each parent is generated according
to a Poisson distribution with mean pu. Finally, the position
of each offspring relative to its parent location is determined
by a bivariate normal distribution centered at the location
of parent with covariance matrix diag(72, 7%). The process is
denoted by T'(d, 7, ) and the expected number of observed
points is an increasing function of §. We also consider the
realizations of stationary Poisson processes of intensity A,
denoted by P(A). The results of Table 1 show that the em-
pirical size of test decreases for the larger values of § and ap-
proaches the nominal level. The great values of empirical size
are due to the use of asymptotic normal distribution for Y;;.
In fact, this asymptotic behavior is valid for a large enough
number of points at each grid. For different realizations of
stationary Poisson processes, the empirical size is zero ex-
cept for P(20). For the point pattern y (demonstrated in
Figure 4), the point pattern in S3 is a realization of the sta-
tionary Thomas process with parameters 6 = 0.046, 7 = 1
and p = 4, and the point pattern in Sg is a realization of
the SSI process with Inhibition distance » = 1.5. The point
patterns in the other sub-windows are realizations of the
stationary Poisson processes with intensity 0.184.

To simulate a SSI process with Inhibition distance r,
points are added one-by-one. Each new point is generated
according to the uniform distribution in the window inde-
pendent from previous points. If the distance between the
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Table 1. The rejections ratios of stationarity in 1,000 times replications of testing procedure with the realization of Thomas,
Poisson and zonal stationary point processes

Model number of sub-windows using 9 frequencies without wg
T(2,1,6) 9 0.128 0.085
7(2,1,8) 9 0.105 0.060
T(5,0.25,4) 9 0.084 0.039
T(5,0.25,6) 9 0.059 0.033
T7(5,0.25,8) 9 0.059 0.033
7(5,0.5,4) 9 0.040 0.014
7(5,0.5,6) 9 0.026 0.009
T7(5,0.5,8) 9 0.037 0.017
T(5,1,4) 9 0.016 0.006
T(5,1,6) 9 0.013 0.005
7(5,1,8) 9 0.002 0.001
T(7,0.25,4) 9 0.042 0.019
T(7,0.25,6) 9 0.033 0.013
T(7,0.25,8) 9 0.023 0.015
7(7,0.5,4) 9 0.017 0.003
T(7,0.5,6) 9 0.013 0.005
T7(7,0.5,8) 9 0.006 0.001
T(7,1,4) 9 0.004 0.003
T(7,1,6) 9 0.000 0.001
7(7,1,8) 9 0.000 0.000
P(20) 9 0.003 0.001
P(30) 9 0.000 0.000
P(50) 9 0.000 0.000
Y 9 0.999 0.999
ZST 9 1.000 1.000
ZST 4 0.994 0.993
ZSI1I 9 0.999 1.000
ZSIIT 4 0.979 0.985

existing points and the new point is smaller than r, then
the newly-generated point is eliminated and another ran-
dom point is generated. The empirical power of test is close
to one for the point pattern y. In order to obtain the empir-
ical power of test, two other zonal stationary point patterns
are generated on a rectangular window W = [0, 70]>. Both
zonal stationary point patterns consist of four local station-
ary point patterns observed on regular square sub-regions
of W as follow:

e Zonal stationary I (ZSI): In three sub-windows out
of four, realizations of 7°(0.0163,1,4) are considered
and the remained sub-window contains a realization of
SSI(3).

e Zonal stationary II (ZSII): In two sub-windows, re-
alizations of 7°(0.0184,1,4), and in the remained sub-
windows realizations of SSI(2) and P(0.0735) are con-
sidered.

For both above-mentioned zonal stationary point patterns
the considered test is carried out by taking into account
22 and 3? sub-windows. By considering 22 sub-windows,
h = 3 and p = 34 are taken into account which returns

= 0.0138. The frequencies wj,j = 1...,9 are consid-
ered as before but z; are chosen as the midpoints of four
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sub-windows as z; = (70/4,70/4), zo = (3 x 70/4,70/4),
z3 = (70/4,3x70/4) and z4 = (3x70/4,3 x 70/4). For this
set of locations and frequencies, we have df;, = 3, dfp = 8
and dfrp, = 24. The test procedure is similar to the case
where the observation window is partitioned into 3% sub-
windows. The empirical power of test is close to one in all
the zonal stationary cases.

Since the value of the periodogram at higher frequencies
can be taken as the contribution of random errors only, so we
ignore wg = (157/20,157/20) (the frequency with the high-
est norm) and perform the test by considering wi,...,ws.
Therefore, we have dfp = 7 and df; g, = 7dfr,. The results of
Table 1 show that the empirical size of test decreases when
wyg is removed from the set of considered frequencies. This
means that some parts of information are killed by putting
wg aside.

4.1 Real data
4.1.1 Trees data

As mentioned earlier, the first dataset is devoted to the
locations of Fuphorbiaceae trees, as shown in Figure 1. First
of all, we use Guan’s KPSS test ([11]) to examine the first-
order stationarity of this point pattern. From the empirical



Table 2. Analysis of variance table for the trees data

Item df  SS  x*(=SS/5%)
Between spatial locations 3 0.18 12.74
Between frequencies 8 11.60 838.00
Interaction + residual 24 0.37 26.60
Total 35 1214 877.34

pair correlation function plot, the dependency appears to be
ignorable after m,, = 5. The resulting Guan’s test statistic
is equal to 0.1607, which is smaller than the critical value
at level of 0.05 (= 0.3244). Thus, it is concluded that this
point pattern is first-order stationary and we can then pro-
ceed our test. Postulating that all of the assumptions made
in Section 4 are valid for this case, we consider h = 3 and
p = 34. Thus, the distance between the locations z; and fre-
quencies w; points must be at least 34 and /3, respectively,
and the value of o2 will be equal to 16h%/(9p?) ~ 0.0138.
The points z1, . ..,2z4 are the centroids of the four equally-
dimensioned subregions denoted by Si,...,S, from left to
right and down to up, respectively. More precisely, the points
z; are chosen as z; = (70/4,70/4), zo = (3 x 70/4,70/4),
(70/4,3 x 70/4), and z4 = (3 x 70/4,3 x 70/4).
We denote the restricted point patterns to Si,...,S4 by
X1, ...,Xy, respectively. The number of observed trees at the
regions Sq,...,Sy are almost the same. Firstly, we consider
the estimate of K function for investigating the inter-point
dependence aspects of these point patterns. The sample K
functions of each point pattern along the theoretic K func-
tion of the stationary Poisson process are shown in Figure 7.
Simply speaking, the gray areas of all the figures represent
the acceptance regions of the stationary Poisson model for
data. The hypothesis of stationary Poisson model will be
rejected at level of @ = 0.05, when the sample statistic does
not remain between the given boundaries at least for a point
r € Ry. When the sample K functions compared with the
prepared boundaries, the lack of fitness of stationary Pois-
son process to all of the point patterns is emphasized. Visu-
ally, the sample K functions of all the point patterns except
X5 are approximately the same. In the following, we ap-
ply our proposed method to test the nonstationarity of this
point pattern. Afterwards, if the test rejects the stationar-
ity assumption against the zonal stationarity, then we use
the post-hoc tests for detecting the location(s) at which the
structure of trees pattern is changed.

Table 2 presents the results of the analysis of variance for
this setting of locations and frequencies using the logarithm
of local periodogram. The interaction term is not significant
(x? is small compared to x3,(0.05) = 36.42) confirming that
the point pattern is uniformly modulated. Moreover, both
‘between spatial locations’ and ‘between frequencies’ sums
of squares are highly significant (SSL/o? > x3(0.05) = 7.81
and SSF/o? > x2(0.05) = 15.51), suggesting that the point
pattern is nonstationary and the spectra are nonuniform.
The analysis of variance indicates a significant difference in
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(b) Sample K function of X»
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Figure 7. The estimated K function for trees data computed
for point patterns restricted in square windows with centers
Z1,...,24 and the resulting point process is mentioned by
X1,...,Xy, respectively. The figures contain the sample K

functions (solid line), the theoretic functions for the
stationary Poisson point process (dashed red line), and upper
and lower boundaries based on the enveloping of 99
simulations from stationary Poisson process (gray area).

the locations effect. Thus, we use the Bonferroni method for
multiple comparisons to discover different locations. There is
a set of (3) = 6 hypotheses to test, say, o; = «; for i # j and
1,7 = 1,...,4. The Bonferroni method rejects each test if
SSL/o? > x3(a/6). The Bonferroni method simply reduces
the significance level of each individual test so that the sum
of the significance levels is no greater than «.

Table 3 shows the results of post-hoc tests. There is a sig-
nificant difference between the local periodograms at loca-
tions z9 and z4, while the behavior of the local periodograms
does not change at other locations. Since the numbers of ob-
served trees in both areas (Ss and Sy) are almost the same,
the difference between the local periodograms at locations
zo and z4 may be due to the significance of the latitude
effect on the competition between trees.

4.1.2 Capillaries data

The stationary Strauss hard-core model was suggested
for the locations of capillaries in prostate tissues [17, 18].
It has been concluded that capillary profile patterns are
more clustered in healthy tissue than those of cancerous
tissue. The difference in the spatial model of healthy and
cancerous tissues has been also verified [13] by testing the
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Table 3. The Bonferroni post-hoc test for the trees data

Item df x*(= SS/o?) statistic p-value

Z1 VS Zo 1 1.38 0.24

Z1 VS Z3 1 0.12 0.73
Z1vszs 1 4.99 0.03

Zo VS Z3 1 0.69 0.41

zo vszg 1 11.64 < 0.05/6 = 0.008*
z3vsza 1 6.66 0.01

Table 4. Analysis of variance table for the Capillaries data

Healthy tissue

source of variation df SS x*(=SS/o%)
Between spatial locations 3 0.21 15.00
Between frequencies 8 2.77 200.03
Interaction + residual 24 0.39 27.84
Total 35 3.36 242.87
Cancerous tissue
source of variation df SS x*(=SS/0%)
Between spatial locations 3  0.53 38.20
Between frequencies 8 1.90 136.94
Interaction + residual 24 0.25 17.96
Total 35 2.67 193.09

corresponding empirical K functions. The intensities of two
point patterns are almost the same. According to the sta-
tionarity assumption of these point patterns considered by
[17, 18], the second order properties of healthy and can-
cerous tissues have been compared by [27] concluding that
cancer does not affect the first and second order properties
of the locations of capillaries on the prostate tissue. These
researches have assumed the corresponding point process to
be stationary. Here, we apply our proposed method to test
the zonal stationarity of both point patterns. The obser-
vation windows are rescaled to [0,70]° squares and all the
required values are assumed to be same as the previous set-
tings.

The results of the analysis of variance and post-hoc test
for this dataset are presented at Table 4 and 5, respectively.
The results show that the effect of location is significant for
both of the healthy and cancerous point patterns. According
to the new obtained evidence, the previous results can not
be invoked. Nevertheless, we can use the local periodograms
to extend the idea of [27] for comparing the spectral den-
sity functions of nonstationary point patterns. The asymp-
totic independence and the asymptotic distribution of local
periodograms are used to compute the density function of
the local periodograms and hence the likelihood function in
terms of the local periodograms similar to [27]. Let I;‘i (w;)
denotes to the local periodogram of healthy point pattern
at the location z; and frequency w; and there is similar no-
tation, i.e., I, (wj), for cancerous one. Thus, the likelihood
ratio for comparing the local spectral density functions of
two independent point patterns at the location z; is
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Table 5. The Bonferroni post-hoc test for the Capillaries
data. The significant differences in the location effects are
denoted by ‘*’

Healthy tissue

test df x*=85/0" p-value

Z1 VS Z2 1 4.65 0.03

z, vszz 1 13.94 < 0.05/6 = 0.008*

z1 vsz4 1 7.60 0.006*

Zo VS Z3 1 2.49 0.11

Zo VS Z4 1 0.36 0.55

Z3 VS Z4 1 0.95 0.33
Cancerous tissue

test df x*=8S5/0" p-value

z1 vs za 1 18.53 < 0.05/6 = 0.008*

z, vszz 1 32.45 < 0.008%*

Z1 VS Z4 1 22.35 < 0.008*

Zo VS Z3 1 1.94 0.16

Zo VS Z4 1 0.18 0.67

Z3 VS Z4 1 0.94 0.33

Finally, the resulting likelihood ratio is compared with 0.025
and 0.975 quintiles estimated using the simple Monte Carlo
simulation. The values of A,,,7 =1, ...,4 are 0.93,0.95,0.89
and 0.94, respectively, and the estimated quintiles are 1.07 x
1075 and 0.20. The results of likelihood ratio test show that
there are significant differences between the local spectral
density functions of healthy and cancerous point patterns
at the locations z;,7 = 1, ..., 4. Therefore, assuming the non-
stationarity of both point patterns, we can conclude that
cancer affects the second order structure of prostate tissue.
This means that although the number of capillaries and their
aggregation have not been affected by cancer, the interac-
tion of the location of capillaries is reflected on the changes
in the tissue structure.
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