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Robust model-free feature screening based on
modified Hoeffding measure for ultra-high
dimensional data
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Sure independence screening (SIS) has become a cutting-
edge dimension reduction technique to extract important
features from ultrahigh-dimensional data in statistical learn-
ing. Many of the screening methods are developed to be
suitable for special models that follow certain assumptions.
With the availability of more data types and complicated
models, a robust model-free procedure with less restrictive
conditions of data is required. In this paper, we propose
a modified Hoeffding measure which efficiently characterize
the dependence between two random variables. The mod-
ified Hoeffding measure is between 0 and 1, and zero if
and only if the two variables are independent under some
mild conditions. This property enables us to propose a novel
feature screening procedure based on it without specify-
ing the regression structure. The proposed method is ro-
bust for both the predictors and response with the heavy-
tailed data and outliers, and suitable for complex data in-
cluding discrete and multivariate variables. In addition, it
can extract important features even when the underlying
model is complicated. We further establish the sure screen-
ing property and ranking consistency property even when
the dimensionality is an exponential order of the sample
size without assuming any moment condition on the pre-
dictors and response. Simulations and an analysis of real
data demonstrate the versatility and practicability of the
proposed method in comparison with other state-of-the-art
approaches.
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1. INTRODUCTION

The ultrahigh dimensional data have been frequently en-
countered in contemporary scientific research, where the di-
mension p can grow exponentially with the sample size n.
[8] pointed out that analyzing such data poses simultaneous
challenges of computational expediency, statistical accuracy,
and algorithmic stability to modern statistical inference. To
overcome the issues associated with ultra-high dimensional-
ity, many marginal screening techniques, such as the sure in-
dependence screening (SIS) procedure [6], have been shown
to filter out many uninformative variables in many scenarios.
The key idea of the SIS procedure is to rank all predictors
by using a utility measure between the response and each
predictors and then to retain the top variables for further
investigation. A desired marginal screening procedure pos-
sesses the sure screening property; that is, with probability
close to one, all the important variables would survive after
variable screening.

This seminal idea has motivated many methods in the
recent literature. [12] used the generalized Pearson corre-
lation as the ranking index to identify influential but not
explicit features of a predictive model. [8] and [9] developed
feature screening procedures for generalized linear models,
which used the maximum marginal likelihood. [5] developed
nonparametric SIS procedure for ultrahigh dimensional ad-
ditive models. [31] proposed a screening method based on
standardized marginal maximum likelihood estimator for
the Cox model. [7] and [22] considered nonparametric fea-
ture screening for sparse ultrahigh dimensional varying co-
efficient models. By using the inverse weighted probability
method, [27] proposed a robust feature screening procedure
for the censored ultrahigh dimensional data for the transfor-
mation models. For the varying coefficient model about the
longitudinal data, [28] developed a nonparametric feature
screening.

The aforementioned feature screening procedures are all
for some specified models. However, it would be very difficult
to identify a correct model initially in the process of analy-
sis for the ultrahigh dimensional data. To avoid the model
misspecification problem, [33] advocated a model-free fea-
ture screening procedure using the expectation of the square
of the correlation between the predictor and an indicator
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function of the response. For the model-free feature screen-
ing method, there is some work done using more sophisti-
cated dependence measures in recent years. [20] suggested
to use the distance correlation as the ranking index for fea-
ture screening. [19] proposed to use the Kendall’s tau to do
the feature screening for generalized transformation model.
[23] proposed the Kolmogorov filter for variable screening
in high-dimensional binary classification. [13] proposed a
quantile-adaptive model-free SIS for ultrahigh dimensional
heterogeneous data. Similar to distance correlation, [26] pro-
posed martingale difference divergence as a new measure
for correlation and used it as the marginal utility for fea-
ture screening. For the ultrahigh dimensional data with cat-
egorical predictors and categorical responses, [17] proposed
to use Pearson’s chi-square statistic to screening variables.
By proposing a mean-variance index, [2] developed a model-
free feature screening for ultrahigh dimensional discriminant
analysis where the categorical response can have a diverging
number of classes.

Although the innovative model-free sure screening meth-
ods can be applied to more general parametric or semi-
parametric models, it requires some restrictive conditions for
predictor variables such as moment and linearity conditions.
Moreover, [21] noted that the index used by [33] maybe zero
even if there are some relationships between response and
predictor variables. As for distance correlation used by [20],
it is zero if and only if there no relationship between vari-
ables, but it requires moment conditions for both response
and predictor variables, which is not robust for variables
with heavy tails or extreme values. The rank correlation
screening proposed by [19] can be robust and invariant for
monotonic transformation; however, its implement is based
on Kendall’s tau, which can be zero even if there is an asso-
ciation between variables and can be applied only to mea-
sure the monotonic association. Furthermore, this method
requires many restrictive conditions. Based on the above
discussion, our work aims to develop a new robust model-
free feature screening procedure for ultrahigh dimensional
reduction problem.

In this paper, we propose a new robust model-free feature
screening based on modified Hoeffding measure. Hoeffding’s
D measure proposed by [14] is to test the independence of
the data sets by calculating the distance between the joint
distribution and the product of the marginal distributions. It
is a nonparametric measure of association that may identify
more general types of dependence.

[10] and [3] made comparisons between the Hoeffding’s
measure and other dependence measures in the study of gene
identification. They found that the Hoeffding’s measure can
effectively identify non-functional associations. More useful
details of Hoeffding measure can be found in [16]. However,
the Hoeffding measure has a severe drawback, that it may be
zero even if there is an association between variables. Due to
this reason, we introduce a new measure by modifying the
Hoeffding’s measure and give its some appealing properties,

of which most important is that this new measure equals
zero if and only if the two variables are independent un-
der some mild condition. Based on this modified Hoeffding
measure, the feature screening procedure does not require
any restrictive conditions such as the moment condition for
both response and predictor variables. So it is robust for
both of them with the heavy-tailed data and extreme val-
ues. Also, we do not need to pre-specify a regression model
to implement this procedure, which leads to the model-free
properties of our method. On the other hand, our method
can be applied to any random variables without knowing
the distribution of the response and predictor variables in
advance. Therefore, our method is also suitable for discrete
random variables. Thus, our method extends the method of
[2] greatly. In addition, we can also use our method to handle
the grouped predictors or multivariate responses. Further-
more, we prove that the proposed method possesses both
the sure screening property and ranking consistency prop-
erty theoretically under weak conditions.

The remainder of this article is organized as follows: In
section 2, we give some reviews of the Hoeffding measure
and introduce our new modified Hoeffding measure and its
properties, and then we propose our new robust model-free
feature screening procedure. In section 3, we establish the
theoretical properties of our proposed procedure. In section
4, we examine the finite sample performance of the proposed
procedure through comprehensive Monte Carlo simulation
studies and empirical analyses of real data examples. All
technical proofs are relegated to the Appendix.

2. THE ROBUST MODEL-FREE FEATURE
SCREENING

Most popular measures of dependence such as Pearson
correlation coefficient, Kendall’s tau and Spearman coeffi-
cient, may be zero even if there is an association between
X and Y , so screening methods based on them may fail to
identify a generalized association between the response and
predictors. Although the distance correlation [29] has the
required merits, i.e. dcorr(X,Y ) = 0 ⇔ X⊥Y , [20] have
shown that its implementation requires some moment con-
ditions for both predictors and response, which will lead to
its sensitivity to the non-normal data. Next, we will intro-
duce another consistent dependence measure for our new
correlation screening procedure.

2.1 Modified Hoeffding measure

Feature screening procedures intend to rank the impor-
tance of each predictor through its corresponding marginal
correlation with the response, and select the predictors
highly correlated with the response. Hence, SIS procedures
are equivalent to implement test of independence step by
step. For this reason, we attempt to use the consistent test
statistics of independence to construct our feature screening
index. The best known of these are those introduced by [14]
and [1].
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Definition 2.1. With FX,Y (x, y) the joint distribution
function of (X,Y ), and FX(x) and FY (y) the marginal dis-
tribution functions of X and Y , respectively, Hoeffding mea-
sure is given as
(2.1)

D(X,Y ) =

∫
[FX,Y (x, y)− FX(x)FY (y)]

2dFX,Y (x, y).

Apparently, Hoeffding’s coefficient is non-negative with
equality to zero under independence. [14] gave its nonpara-
metric U-statistics estimation as below:

(2.2) Dn =
Q− 2(n− 2)R+ (n− 2)(n− 3)S

n(n− 1)(n− 2)(n− 3)(n− 4)
,

where Q =
∑n

i=1(Ri − 1)(Ri − 2)(Si − 1)(Si − 2), R =∑n
i=1(Ri−2)(Si−2)ci, S =

∑n
i=1(ci−1)ci, Ri and Si being

the respective ranks ofXi amongX’s and Yi among Y ’s, and
ci is the number of bivariate observations (Xj , Yj) for which
Xj ≤ Xi and Yj ≤ Yi. This statistics can be computed by
R function hoeffd (package Hmisc).

[1] used the empirical distribution functions to estimate
the Hoeffdimg coefficient as:

(2.3) Bn =

∫ [
F̂X,Y (x, y)− F̂X(x)F̂Y (y)

]2
dF̂X,Y (x, y),

where, F̂X,Y (x, y), F̂X(x), F̂Y (y) are the empirical distribu-
tion functions of FX,Y (x, y), FX(x), FY (y) respectively.

However, the Hoeffding measure has a severe drawback,
that it may be zero even if there is an association between X
and Y . A counter-example is given by [14]. The reason be-
hind this is the problem caused by the definition of Hoeffding
measure itself. From its definition, even if random variables
X and Y are dependent, that is FX,Y (x, y)−FX(x)FY (y) �=
0 for some x, y, the probability density or mass function
dFX,Y (x, y) can still be zero for these x, y. This will cause
the Hoeffiding measure to be zero. Due to this reason, we
modify this measure as follows.

Definition 2.2. The modified Hoeffding measure is defined
as:
(2.4)

ω(X,Y ) =

∫
[FX,Y (x, y)− FX(x)FY (y)]

2dFX(x)dFY (y).

This new coefficient can be thought as the Cramér-von
Mises distances between the joint distribution function and
the product of marginal distribution functions. The follow-
ing proposition provides a appealing property of the modi-
fied Hoeffding measure.

Proposition 2.1. When (X,Y ) belongs to Ω, it holds true
that ω(X,Y ) � 0, with equality if and only if X and Y
are independent. Where Ω is the class of bivariate random
vector, whose marginal distribution is discrete or continu-
ous, or a mixture of the two, that is, assume there exists

probability density function fX(x), fY (y) and mass func-

tion f̃X(x), f̃Y (y) such that P (X < x) =
∑

ui<x f̃X(ui) +∫
u<x

fX(u)du, P (Y < y) =
∑

vi<y f̃Y (vi) +
∫
v<y

fY (v)dv.

Remark 2.1. Although we restrict (X,Y ) to the class Ω in
the proposition, we conjecture that the condition can expand
to more general situation, that is, for most of bivariate ran-
dom vector the conclusion also holds. This remarkable prop-
erty motivates us to use the modified Hoeffding measure as
a marginal utility for SIS.

Definition 2.3. Assume {(Xi, Yi), i = 1, · · · , n} is a simple
random sample of size n of the random vector (X,Y ). Then,
the empirical distribution functions(e.d.f) of FX(x), FY (y)

and FX,Y (x, y) are defined as F̂X(x) = 1
n

∑n
i=1 I(Xi ≤

x), F̂Y (y) = 1
n

∑n
i=1 I(Yi ≤ y) and F̂X,Y (x, y) =

1
n

∑n
i=1 I(Xi ≤ x, Yi ≤ y), respectively, where I(·) is the

indicator function. The empirical modified Hoeffding mea-
sure ω is defined as follows:

ω̂(X,Y ) =

∫ [
F̂X,Y (x, y)− F̂X(x)F̂Y (y)

]2
dF̂X(x)dF̂Y (y)

=
1

n2

n∑
i=1

n∑
j=1

[
F̂X,Y (Xi, Yj)− F̂X(Xi)F̂Y (Yj)

]2
.(2.5)

Remark 2.2. In the definition of ω̂, we only use the em-
pirical distribution function to estimate ω without any tun-
ing parameter, so it is easy to compute and robust to the
presence of heavy tails and extreme values for both the two
variables. On the other hand, the e.d.f can estimate any dis-
tribution functions, so ω̂ can be applied to estimate ω(X,Y )
for most type variables. Moreover, the c.d.f and e.d.f are
also suitable for multi-variate case, we can therefore use ω
and ω̂ to measure the dependence between multi-variables.

Here, we use a simple simulation example to have an in-
sight into the modified Hoeffding measure ω. Suppose (X,Y )
follows a standard bivariate normal distribution with cor-
relation coefficient ρ. For every ρ equally spaced by 0.2
in [−1, 1], we generate a sample of size 50 and calculate
ω̂(X,Y ). We run the simulation 200 times. Panel (a) and
(b) in Figure 1 are boxplot and average plot of ω̂(X,Y )
against ρ, respectively. It is shown that ω(X,Y ) is a strictly
increasing function of |ρ| in the sample level.

Similar to the Pearson or Distance correlation coefficient,
we may need to standardize the modified Hoeffding measure.
However, the following proposition implies that we don’t
need to standardize it by using this measure to the screening.

Proposition 2.2. For any random variable X, ω(X,X) =
1
90 , which means that the modified Hoeffding measure be-
tween the same random variables is a constant.

2.2 Screening procedure using modified
Hoeffding measure

Now, we propose a new robust model-free screening pro-
cedure using modified Hoeffding measure for ultra-high di-
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Figure 1. The plot of ω̂ against ρ under the bivariate normal distribution: (a) boxplot of ω̂ against ρ, (b) plot of average ω̂
against ρ.

mensional analysis. Let Y be the response variable with sup-
port Ψy, and x = (X1, · · · , Xp)

T be the p dimensional pre-
dictors, where, p can be much larger than the sample size
n, and Y can be both discrete and continuous. Since our
method can be applied to more general cases without speci-
fying a concrete regression model, hence, we define the index
set of active and inactive predictor set in the terminology of
[2] as follows:

A = {k : F (y|x) functionally depends on Xk

for some y ∈ Ψy},
I = {k : F (y|x) does not functionally depends on Xk

for any y ∈ Ψy}.

We write xA = {Xk : k ∈ A} and xI = {Xk : k ∈ I}, and
refer xA to an active predictor vector and its complement xI
to an inactive predictor vector. Under the sparsity condition,
it implies that

F (y|x) = F (y|xA), for y ∈ Ψy and x ∈ R
p.

The definition of A and I also indicates that x and Y are
statistically independent when xA is given, that is the in-
active predictors are needless for response when the active
predictors are given.

The primary goal of SIS, first proposed by [6], is to use a
marginal utility to rank the importance of predictors in the
ultra-high dimensional analysis, which can reduce the model

to a moderate scale and the shrunken model should almost
contain A. Following the literature of SIS, we will use the
modified Hoeffding measure

ωk = ω(Xk, Y ), k = 1, · · · , p

as a marginal utility to measure the dependence between Xk

and Y for each pair (Xk, Y ). In practice, if we get a random
sample {(xi, Yi), i = 1, · · · , n} of (x, Y ), we can estimate ωk

as (2.3), that is

ω̂k = ω̂(Xk, Y ), k = 1, · · · , p.

Then, we propose to rank the importance of Xk, k =
1, · · · , p, through the estimated value ω̂k. With a pre-
specified threshold τn, we define the selected submodel as:

Âτn = {1 ≤ k ≤ p : ω̂k ≥ τn}.

In practice, this is equivalent to selecting the first dn � n
predictors according to the ranked ω̂k, i.e. we will select the
submodel as:

Â∗
dn

= {k : ω̂k is among the first dn largest of all}.

We refer this new robust model-free feature screening as
ROM-SIS thereafter. From the appealing property of mod-
ified Hoeffding measure, we expect the ROM-SIS to have
the following attractive advantages in comparison to other
existing model-free SIS procedures:
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(A1) In the definition of ωk and ω̂k, we only use the c.d.f
and e.d.f for both response and predictors, so it is ro-
bust for both of them with the heavy-tailed data and
extreme values.

(A2) Similar to Hoeffding measure, the modified Hoeffding
measure ωk can also measure non-monotonic associa-
tions between Xk and Y . Hence, our method can iden-
tify most of the influential predictors for more flexible
models. To implement the ROM-SIS, we do not need
to pre-specify a regression model, which leads to the
model free property of our method.

(A3) As we mentioned in Remark 2.2, the computation of
ω̂k can be applied to any random variables without
knowing the distribution of them in advance. There-
fore, our method is also suitable for discrete random
variables. In addition, we can also use our method to
handle the grouped predictors or multivariate responses
like DC-SIS proposed by [20], see simulation example 5.

3. THEORETICAL PROPERTIES

In this section, we will establish the theoretical properties
of our proposed method for ultra-high dimensional feature
space. We mainly expound that in two aspects: one is the
sure screening property, the other is the ranking consistency
property.

3.1 Sure screening property

First of all, we establish the sure screening property of
the proposed ROM-SIS in the term of [6]. As our procedure
is based on ωk, which is estimated by e.d.f and their corre-
sponding sample counterparts, therefore, ω̂k is constructed
by the bounded elements so that we don’t need any mo-
ment conditions for both response variables and predictors.
As any other sure independent screening methods, we need
the following condition:

(C1) mink∈A ωk ≥ c0n
−κ, for some 0 ≤ κ < 1

2 and posi-
tive constant c0.

Condition (C1) is the requirement for the minimal signal
of the true active predictors. It supposes that the minimal
true signal should reach a certain level to guarantee the
effectiveness of sure independent screening. Specifically, we
need its order to be n−κ which allows the minimal predictor
signal to be very weak when the sample size is sufficient
large. This assumption is very common in the literature of
SIS such as [6] Condition 3, [9] Condition E, [5] Condition
C, [20] Condition C2, etc. Now we give the sure screening
property of ROM-SIS as the follows:

Theorem 3.1 (Sure screening property). For any positive
constant c and 0 < κ < 1

2 , there exist positive constants
c2 < c1 < c3, such that

P ( max
1≤k≤p

|ω̂k − ωk| ≥ cn−κ) ≤ p
{
2(n+ 1) exp{−c1n

1−2κ}

+ 4 exp{−c2n
1−2κ}+ 4 exp{−c3n

1−2κ}
}
.

In addition, if Condition (C1) holds and we set τn = c4n
−κ

with c4 ≤ c0
2 , we have

P (A ⊂ Âτn) ≥ 1− s
{
2(n+ 1) exp{−c1n

1−2κ}

+4 exp{−c2n
1−2κ}+ 4 exp{−c3n

1−2κ}
}
,

where s is the cardinality of A.

Theorem 3.1 implies that we can obtain the sure screening
property for ROM-SIS only under the minimal signal con-
dition, which is much weaker than those like SIS ([6]), SIRS
([33]), DC-SIS ([20]), and RRCS ([19]) in the sense that we
do not need any assumptions on the moments of both re-
sponse variables and predictors. In this respect, we can also
guarantee the advantages of (A1) theoretically. Moreover,
from Theorem 3.1 we can see that ROM-SIS can deal with
the ultra-high dimension when log p = o(n1−2κ), which is
the same order as SIS.

3.2 Ranking consistency property

In this subsection, we study the Ranking consistency
property in the terminology of [2]. To obtain this property,
we additionally suppose the following condition.

(C2) lim inf
p→∞

(
min
k∈A

ωk −max
k∈I

ωk

)
> 0.

Denote δ := min
k∈A

ωk − max
k∈I

ωk, we have δ > 0, under

the Condition (C2). To obtain the model selection consis-
tency, [18] proposed a sufficient condition called the partial
orthogonality condition, that is, {Xj}j∈A is independent of
{Xj}j∈I , which implies ωk = 0, for k ∈ I. It is easy to see
that Condition (C2) is itself weaker than partial orthogo-
nality condition. More specifically, Condition (C2) assumes
that the marginal utility should have a significant separation
between signal and noise variables in the population level.
To successfully select the active predictors, this condition
rules out some cases with strong correlation. The following
Theorem 3.2 presents the ranking consistency property of
our proposed screening method.

Theorem 3.2 (Ranking consistency property). Under con-
dition (C2), there exist positive constants c6 < c5 < c7, such
that

P
(
max
k∈I

ω̂k ≥ min
k∈A

ω̂k

)
≤ 2p

{
2(n+ 1) exp{−c5n}

+4 exp{−c6n}+ 4 exp{−c7n}
}
.

Moreover, if we assume log(p) = o(n1−2κ), we can get

lim inf
n→∞

{
min
k∈A

ω̂k −max
k∈I

ω̂k

}
> 0, a.s..

Therefore, under Condition (C2), i.e. a condition on the
difference between signal and noise variables, Theorem 3.2
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demonstrates that the proposed ROM-SIS ensures to rank
the signal variables above the noise variables almost surely
in the ultra-high dimensional situations with dimensionality
p = o(n1−2κ). Then, ω̂k is a nature effective measure to
separate the active and inactive predictor subsets. Moreover,
this leads to model selection consistency.

4. NUMERICAL STUDIES

4.1 Simulations

In this subsection we assess the performance of our pro-
posed method by several numerical experiments. We com-
pare our proposed procedures ROM-SIS with SIS in [6],
SIRS in [33], RRCS in [19], DC-SIS in [20] and MV-SIS in [2].
For MV-SIS, following [2], we rank with the marginal screen-
ing utility MV (Y |Xj) when the response is continuous and
predictors are discrete, and discretize each predictor into a
4-categorical variable using its 1st, 2nd and 3rd quartiles
as knots when dealing with both continuous predictors and
responses. We also implement the screening method based
on statistics (2.2) and (2.3), and abbreviate them as Hoef
and BKR respectively in the following examples. We repeat
each experiment N times under the following three criteria
adopted by [20].

1. S: the minimum model size to include all active predic-
tors. We report the 5%, 25%, 50%, 75%, and 95% quantiles
of S out of N replications.

2. Ps: the proportion that an individual (active) predictor
is selected for a given model size d in the N replications.

3. Pa: the proportion that all active predictors are se-
lected for a given model size d in the N replications.

The S is used to measure the model complexity of the
resulting models based on the underlying screening proce-
dures. The closer to the true model size the S is, the better
the screening procedure is. The Ps and Pa allow us to ex-
amine the screening performance for an individual predictor
variable and all active predictors for a given model size d.

Example 1. (Linear model): Following [9], let {Xk}950k=1 be
iid standard normal random variables and

Xk =

s∑
j=1

Xj(−1)j+1/5 +

√
1− s

25
εk, k = 951, . . . , 1000,

where {εk}1000k=951 are standard normally distributed. We con-
sider the following linear model as a specific case of the
additive model: Y = βTX + ε, in which ε ∼ N(0, 3) and
β = (−1, 1,−1, 1, . . . )T has s (s = 3, 6, 12, 24) nonzero com-
ponents, taking values ±1 alternately. We take the sample
size n = 400 and repeat experiment N = 200 times.

Table 1 gives the median of minimum model size (MMS)
and its associated robust estimate of the standard deviation.
Note that the irrepresentable condition fails when s > 5
and LASSO no longer satisfies model selection consistency.
It is also worth noting that SIS performs best among all the

Table 1. Median of minimum model size and robust estimate
of standard deviations (RSD= IQR

1.34 ) in parentheses, where the
IQR is the interquartile range. And the SNR represents signal

noise ratio

Method
s = 3 s = 6 s = 12 s = 24

SNR≈1.01 SNR≈1.99 SNR≈4.07 SNR≈8.2

SIS 3(0) 56(0) 62(0.7) 126.5(56)
SIRS 3(0.7) 56(0) 62(2.2) 150(92.2)
RRCS 3(0.2) 56(0) 62(2.2) 149.5(82.6)
DC-SIS 3(0.7) 56(0) 63(2.2) 172.5(121.1)
MV-SIS 3(0.9) 56(0) 77(24.1) 410.5(231.7)
Hoef 3(0.7) 56(0) 63.5(5.2) 194(134.1)
BKR 3(0.7) 56(0) 64(4.5) 201.5(139.2)
ROM-SIS 3(0.7) 56(0) 63(4.5) 197(125.6)

methods, particularly for s = 24, where MV-SIS fails badly.
This is because the true model is indeed linear and the co-
variates are jointly normal which means marginal projection
is linear as well. And our method has medium effect for this
linear model among all of these methods.

Example 2. This example is adapted from [20]. We add
exponential transformation models illustrated by [32] to
study the performance of screening procedures on non-
normal and heavy tailed data. In this example, we generate
x = (X1, X2, . . . , Xp)

T from multivariate normal distribu-
tion with zero mean and covariance matrix Σ = (σij)p×p,
and the error term ε from standard normal distribution
N(0, 1). We consider two structures of covariance matrices:
(1) σij = 0.5|i−j| and (2) σij = 0.8|i−j|. Other setup is: sam-
ple size n = 200, the number of covariates p = 1000 and the
number of simulations N = 500. The response is generated
from the following five models:

Y = c1β1X1 + c2β2X2 + c3β3I(X12 < 0) + c4β4X22 + ε,

(4.1)

Y = exp
{
c1β1X1 + c2β2X2 + c3β3I(X12 < 0)

(4.2)

+ c4β4X22 − 5
}
+ ε,

Y = c1β1X1X2 + c3β2I(X12 < 0)X22 + ε,
(4.3)

Y = exp
{
c1β1X1X2 + c3β2I(X12 < 0)X22 − 5

}
+ ε,

(4.4)

Y = c1β1X1 + c2β2X2 + c3β3I(X12 < 0) + exp{c4|X22|}ε,
(4.5)

where I(X12 < 0) is an indicator function.
The regression functions E(Y |x) in models (4.1)–(4.5)

are all nonlinear in X12. Moreover, models (4.3) and (4.4)
contain interaction terms X1X2 and I(X12 < 0)X22, models
(4.2) and (4.4) possess high variance and large outliers, and
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Table 2. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S out of 500 replications in Example 2

σij = 0.5|i−j| σij = 0.8|i−j|

Model Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

(4.1) SIS 4.0 4.0 5.0 6.0 17.0 5.0 9.0 15.0 54.5 561.4
SIRS 4.0 4.0 5.0 7.0 18.0 5.0 9.0 15.0 64.5 504.3
RRCS 4.0 4.0 4.0 6.0 12.0 5.0 8.0 12.0 30.2 353.9
DC-SIS 4.0 4.0 4.0 6.0 12.0 4.0 7.0 11.0 24.0 269.8
MV-SIS 4.0 4.0 4.0 6.0 40.0 4.0 6.0 9.0 24.0 308.1
Hoef 4.0 4.0 4.0 6.0 15.0 4.0 7.0 11.0 22.0 218.8
BKR 4.0 4.0 4.0 6.0 15.0 4.0 7.0 11.0 25.0 252.2
ROM-SIS 4.0 4.0 4.0 6.0 14.0 4.0 7.0 10.0 21.0 240.2

(4.2) SIS 91.9 272.8 488.0 766.0 954.0 117.8 347.8 554.0 758.8 958.0
SIRS 4.0 5.0 18.0 115.2 488.6 6.0 16.0 74.0 296.8 719.1
RRCS 4.0 5.0 16.0 113.0 582.1 5.0 12.0 62.5 293.8 789.0
DC-SIS 46.0 199.5 409.0 641.5 891.6 71.0 262.8 491.5 705.0 907.2
MV-SIS 4.0 5.0 29.0 172.2 632.0 5.0 10.0 57.5 238.2 715.5
Hoef 4.0 5.0 13.0 91.2 453.4 5.0 10.0 44.0 190.5 659.2
BKR 4.0 5.0 14.0 94.2 428.4 5.0 11.0 50.0 202.2 654.3
ROM-SIS 4.0 5.0 12.5 82.2 399.1 5.0 10.0 38.5 184.0 640.2

(4.3) SIS 168.9 498.2 714.5 871.0 977.2 106.8 429.5 667.0 841.2 973.1
SIRS 108.9 392.0 644.0 872.8 978.0 64.0 305.0 598.5 838.2 979.0
RRCS 290.8 562.0 764.0 902.0 982.0 193.5 481.0 709.5 876.0 974.0
DC-SIS 5.0 7.0 14.0 32.0 164.2 7.0 10.0 14.0 26.0 139.0
MV-SIS 6.0 14.0 34.0 88.2 347.4 8.0 13.0 28.0 77.0 293.0
Hoef 9.0 18.0 32.5 70.0 202.1 8.0 12.0 19.0 37.2 149.2
BKR 8.0 16.0 30.0 63.0 173.4 8.0 12.0 18.0 35.0 130.2
ROM-SIS 10.0 19.0 34.5 71.0 179.1 8.0 12.8 18.0 38.0 137.0

(4.4) SIS 198.9 506.8 723.5 884.2 982.1 248.6 580.5 759.0 884.2 983.0
SIRS 159.9 465.5 688.0 858.0 984.0 163.5 447.8 660.0 861.5 977.0
RRCS 155.0 462.0 704.0 874.2 979.0 138.0 438.0 706.0 880.5 982.1
DC-SIS 168.8 472.8 701.0 870.0 974.0 219.9 559.5 736.0 881.0 971.0
MV-SIS 17.0 122.8 363.5 694.5 926.0 24.0 156.5 366.5 655.5 921.2
Hoef 18.0 100.5 305.5 650.2 904.1 26.0 123.8 342.5 650.0 919.0
BKR 22.9 105.0 317.0 659.5 906.0 26.0 139.8 350.5 655.2 930.1
ROM-SIS 17.0 89.8 283.5 657.0 926.0 24.9 113.8 340.5 648.0 932.1

(4.5) SIS 50.9 257.0 565.0 785.8 964.0 68.9 304.2 566.5 829.2 959.1
SIRS 21.0 174.2 411.0 726.2 947.0 30.0 181.8 429.5 716.5 960.0
RRCS 16.0 165.8 407.5 743.0 943.6 25.0 177.2 409.0 699.5 931.0
DC-SIS 4.0 4.0 6.0 16.2 167.1 4.0 6.0 12.5 54.2 346.0
MV-SIS 6.0 20.0 44.5 97.0 249.3 8.0 19.8 51.5 112.2 355.2
Hoeff 9.0 40.8 92.0 164.2 377.0 12.0 45.0 96.5 180.0 449.2
BKR 7.0 28.8 58.0 105.2 233.3 10.0 31.8 66.0 125.0 317.0
ROM-SIS 11.0 45.8 82.0 139.0 280.3 14.0 47.0 88.5 149.0 336.0

model (4.5) is heteroscedastic. Following Fan and Lv (2008),

we choose βj = (−1)U (a+ |Z|) for j = 1, 2, 3, and 4, where

a = 4 logn/
√
n, U ∼ Bernoulli(0.4) and Z ∼ N(0, 1). We

set(c1, c2, c3, c4) = (2, 0.5, 3, 2) in this example to challenge

the feature screening procedures under consideration.

Tables 2 and 3 summarize the simulation results for S,
Ps and Pa. We can see that all the screening procedures are

equally good for model (4.1) since it does not deviate far

from linear model. However, when the true model is non-

linear in model (4.2), SIS fails as badly as DC-SIS. The

reason that DC-SIS cannot identify active predictors well

is because the finite exponential moment condition (C1) in

[20] does not hold in the presence of extreme values in the

response. In the case of model (4.3), SIS, SIRS and RRCS

cannot rank the truly important predictors in the top with

very high probability. This is due to the existence of inter-

action terms and the true model is no longer the traditional

single- or multi-index model, where Y depends on the pre-

dictors x through a number of linear combinations βTxA.
In all the above cases, our proposed method performs excel-

lently and uniformly, and surpass all the other methods with

slightly better results over MV-SIS in model (4.4). Even in

the heteroscedastic model (4.5), our procedures perform not

too bad.
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Table 3. The proportions of Ps and Pa in Example 2 with model size d = [n/logn]

σij = 0.5|i−j| σij = 0.8|i−j|

Ps Pa Ps Pa

Model Method X1 X2 X12 X20 All X1 X2 X12 X20 All

(4.1) SIS 1.00 1.00 0.99 1.00 0.99 1.00 1.00 0.69 1.00 0.69
SIRS 1.00 1.00 0.98 1.00 0.97 1.00 1.00 0.69 1.00 0.69
RRCS 1.00 1.00 0.99 1.00 0.99 1.00 1.00 0.77 1.00 0.77
DC-SIS 1.00 1.00 0.99 1.00 0.99 1.00 1.00 0.82 1.00 0.81
MV-SIS 1.00 0.98 0.97 1.00 0.95 1.00 1.00 0.81 1.00 0.81
Hoef 1.00 0.99 0.99 1.00 0.99 1.00 1.00 0.82 1.00 0.82
BKR 1.00 1.00 0.99 1.00 0.99 1.00 1.00 0.81 1.00 0.81
ROM-SIS 1.00 1.00 0.99 1.00 0.99 1.00 1.00 0.83 1.00 0.83

(4.2) SIS 0.67 0.32 0.09 0.59 0.01 0.69 0.52 0.03 0.49 0.01
SIRS 0.96 0.87 0.69 0.95 0.61 0.97 0.93 0.42 0.90 0.38
RRCS 0.94 0.84 0.73 0.93 0.63 0.95 0.91 0.49 0.89 0.44
DC-SIS 0.77 0.39 0.12 0.68 0.04 0.75 0.63 0.05 0.59 0.02
MV-SIS 0.92 0.75 0.69 0.89 0.53 0.92 0.86 0.52 0.83 0.45
Hoef 0.94 0.85 0.78 0.93 0.65 0.96 0.91 0.54 0.89 0.48
BKR 0.94 0.82 0.78 0.92 0.64 0.94 0.90 0.54 0.89 0.47
ROM-SIS 0.95 0.85 0.78 0.93 0.66 0.96 0.92 0.55 0.90 0.49

(4.3) SIS 0.16 0.17 0.03 1.00 0.00 0.21 0.19 0.07 0.99 0.01
SIRS 0.07 0.06 0.68 1.00 0.01 0.07 0.05 0.67 1.00 0.02
RRCS 0.08 0.07 0.04 1.00 0.00 0.09 0.10 0.07 1.00 0.00
DC-SIS 0.97 0.97 0.83 1.00 0.78 1.00 1.00 0.83 1.00 0.83
MV-SIS 0.94 0.95 0.60 1.00 0.52 1.00 1.00 0.58 1.00 0.57
Hoef 0.85 0.85 0.75 1.00 0.55 1.00 1.00 0.75 1.00 0.75
BKR 0.87 0.88 0.77 1.00 0.59 1.00 1.00 0.78 1.00 0.78
ROM-SIS 0.85 0.85 0.77 1.00 0.55 1.00 0.99 0.76 1.00 0.75

(4.4) SIS 0.40 0.41 0.06 0.44 0.00 0.48 0.47 0.08 0.47 0.00
SIRS 0.05 0.05 0.34 0.91 0.00 0.06 0.05 0.20 0.90 0.00
RRCS 0.06 0.07 0.37 0.87 0.00 0.07 0.06 0.25 0.87 0.00
DC-SIS 0.45 0.47 0.07 0.46 0.00 0.53 0.54 0.09 0.46 0.00
MV-SIS 0.53 0.53 0.30 0.84 0.11 0.62 0.63 0.21 0.82 0.08
Hoef 0.44 0.41 0.41 0.89 0.10 0.60 0.58 0.27 0.89 0.09
BKR 0.44 0.41 0.36 0.89 0.10 0.60 0.59 0.24 0.89 0.08
ROM-SIS 0.45 0.41 0.41 0.89 0.11 0.60 0.59 0.29 0.89 0.10

(4.5) SIS 0.54 0.34 0.22 0.51 0.04 0.55 0.48 0.17 0.48 0.02
SIRS 1.00 0.99 0.93 0.08 0.08 1.00 1.00 0.76 0.08 0.06
RRCS 1.00 0.99 0.95 0.10 0.09 1.00 1.00 0.80 0.11 0.08
DC-SIS 0.99 0.96 0.89 1.00 0.86 1.00 1.00 0.72 1.00 0.71
MV-SIS 1.00 0.95 0.94 0.50 0.45 1.00 1.00 0.82 0.51 0.41
Hoef 1.00 0.99 0.96 0.25 0.23 1.00 1.00 0.87 0.26 0.22
BKR 1.00 0.99 0.97 0.35 0.33 1.00 1.00 0.84 0.36 0.30
ROM-SIS 1.00 0.98 0.96 0.23 0.21 1.00 1.00 0.87 0.23 0.19

Example 3. (Transformation model): This example is
adopted from [19] to study the impact of monotone trans-
formation regression on the proposed methods. Consider the
following generalized Box-Cox transformation model:

H(Yi) = XT
i β + εi, i = 1, 2, · · · , n,

where the transformation functions are unknown. In the sim-
ulations, we consider the Box-Cox transformation:

f(x) =

{
|Y |λsign(Y )−1

λ , when λ = 0.25, 0.5, 0.75,

log Y, when λ = 0

The sample (X1, · · · , Xp) with size n is generated from a
multivariate normal distributionN(0,Σ), where Σ = CS(ρ),
and noise εi follows the standard normal distributions, β =
(3, 1.5, 2, 0, · · · , 0)T . The replication time is again N = 500,
and n = 50, p = 1000 and ρ = 0, 0.1, 0.5, 0.9, respectively.

Table 4 presents the median of the minimum model size
S and corresponding robust estimate of standard deviations
in parentheses. Table 5 presents the the proportions of Pa

with model size d = 2n. We can see clearly that, under
every scenario, our proposed methods are comparable with
the best one RRCS, which is also invariant under any strictly
monotone univariate transformations.
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Table 4. The median of the minimum model size S out of 200 replications in Example 3, and corresponding robust estimate
of standard deviations (RSD = IQR/1.34, where IQR is the interquartile range) in parentheses

λ Method ρ = 0 ρ = 0.1 ρ = 0.5 ρ = 0.9

0 SIS 383.0 ( 323.9 ) 326.0 ( 308.4 ) 474.0 ( 279.3 ) 665.0 ( 274.0 )
SIRS 21.0 ( 53.9 ) 19.0 ( 42.7 ) 55.0 ( 102.1 ) 214.0 ( 227.5 )
RRCS 22.0 ( 56.3 ) 22.0 ( 50.0 ) 54.0 ( 94.6 ) 139.5 ( 181.2 )
DC 296.5 ( 284.1 ) 255.0 ( 262.8 ) 423.0 ( 267.0 ) 625.5 ( 281.5 )
MV 112.0 ( 190.7 ) 67.5 ( 107.2 ) 100.0 ( 148.7 ) 277.0 ( 254.8 )
Hoef 36.0 ( 91.2 ) 35.0 ( 68.8 ) 70.0 ( 115.8 ) 168.0 ( 201.8 )
BKR 23.0 ( 51.6 ) 31.0 ( 60.6 ) 62.5 ( 111.8 ) 160.5 ( 196.1 )
ROM-SIS 31.0 ( 83.6 ) 30.0 ( 59.3 ) 73.0 ( 133.7 ) 168.0 ( 207.1 )

0.25 SIS 104.0 ( 168.8 ) 84.5 ( 129.0 ) 239.0 ( 213.0 ) 568.5 ( 281.7 )
SIRS 19.0 ( 57.1 ) 20.0 ( 42.7 ) 55.0 ( 101.8 ) 208.0 ( 225.7 )
RRCS 20.0 ( 55.2 ) 21.0 ( 47.0 ) 52.0 ( 93.4 ) 145.5 ( 190.4 )
DC 59.5 ( 135.2 ) 58.0 ( 107.1 ) 138.0 ( 179.7 ) 438.0 ( 294.4 )
MV 95.5 ( 174.3 ) 64.5 ( 104.1 ) 102.0 ( 134.5 ) 257.5 ( 264.2 )
Hoef 35.0 ( 85.4 ) 28.5 ( 65.7 ) 70.0 ( 122.5 ) 171.5 ( 208.0 )
BKR 20.0 ( 50.7 ) 25.0 ( 59.7 ) 66.0 ( 115.1 ) 164.0 ( 208.6 )
ROM-SIS 29.0 ( 75.5 ) 28.0 ( 58.4 ) 72.0 ( 123.1 ) 172.0 ( 219.0 )

0.5 SIS 24.5 ( 56.7 ) 26.0 ( 54.5 ) 61.5 ( 106.7 ) 297.5 ( 263.4 )
SIRS 20.0 ( 52.2 ) 20.0 ( 45.1 ) 55.5 ( 94.2 ) 198.5 ( 238.2 )
RRCS 19.0 ( 50.7 ) 22.0 ( 47.8 ) 55.5 ( 99.4 ) 141.5 ( 193.1 )
DC 24.0 ( 71.8 ) 28.0 ( 53.0 ) 49.5 ( 82.2 ) 197.0 ( 223.9 )
MV 97.5 ( 171.8 ) 71.5 ( 126.5 ) 92.0 ( 153.5 ) 270.0 ( 240.4 )
Hoef 32.5 ( 86.9 ) 33.0 ( 74.6 ) 74.0 ( 130.4 ) 164.0 ( 199.3 )
BKR 18.0 ( 47.0 ) 31.0 ( 66.6 ) 72.0 ( 123.1 ) 160.0 ( 199.4 )
ROM-SIS 31.0 ( 74.6 ) 33.0 ( 61.3 ) 73.0 ( 145.5 ) 174.0 ( 204.3 )

0.75 SIS 18.0 ( 40.3 ) 14.0 ( 35.1 ) 34.5 ( 71.8 ) 121.5 ( 175.7 )
SIRS 22.5 ( 47.4 ) 18.0 ( 42.9 ) 56.5 ( 103.0 ) 207.0 ( 212.8 )
RRCS 24.5 ( 50.0 ) 18.0 ( 43.4 ) 51.0 ( 106.3 ) 141.5 ( 217.3 )
DC 24.5 ( 59.0 ) 18.0 ( 49.3 ) 37.0 ( 86.0 ) 101.5 ( 149.6 )
MV 105.0 ( 196.9 ) 66.0 ( 112.1 ) 100.0 ( 152.2 ) 252.0 ( 228.5 )
Hoef 36.5 ( 89.9 ) 28.0 ( 62.1 ) 70.5 ( 141.4 ) 172.5 ( 233.6 )
BKR 20.5 ( 51.6 ) 25.0 ( 54.6 ) 67.0 ( 134.5 ) 170.5 ( 237.9 )
ROM-SIS 34.5 ( 73.1 ) 27.0 ( 59.3 ) 73.0 ( 138.8 ) 172.0 ( 218.8 )

1 SIS 15.0 ( 37.3 ) 13.0 ( 33.6 ) 31.0 ( 61.6 ) 80.0 ( 130.2 )
SIRS 21.0 ( 53.9 ) 21.0 ( 45.9 ) 48.5 ( 91.4 ) 233.0 ( 239.7 )
RRCS 22.0 ( 56.3 ) 20.5 ( 48.7 ) 48.0 ( 101.6 ) 156.5 ( 213.6 )
DC 23.0 ( 59.0 ) 19.5 ( 43.3 ) 45.0 ( 85.2 ) 110.0 ( 163.4 )
MV 112.0 ( 190.7 ) 66.5 ( 115.3 ) 98.5 ( 151.1 ) 285.0 ( 280.7 )
Hoef 36.0 ( 91.2 ) 31.0 ( 66.6 ) 66.0 ( 122.4 ) 174.5 ( 223.0 )
BKR 23.0 ( 51.6 ) 29.0 ( 58.4 ) 62.5 ( 114.6 ) 173.5 ( 224.0 )
ROM-SIS 31.0 ( 83.6 ) 27.5 ( 60.6 ) 64.0 ( 117.8 ) 175.0 ( 221.4 )

Example 4. (A highly nonlinear situation). Here we take
a look at a model with highly nonlinear structure studied
by [12] with adding a small modification. Let Wi1, . . . ,Wi6

and Xi5, . . . , Xi,1000 be independent standard normal ran-
dom variables, and put

Yi = 2 sin
{π

2
(Wi1 + 0.5Wi2)

}
+

5∑
j=3

W 2
ij + 0.4eWi6 + Zi0

and Xi1 = Wi1+Zi1, Xi2 = 2Wi2+Zi2, Xi3 = Wi3Wi4+Zi3,
and Xi4 = Wi6 + Zi4, with each of the Zij being normal
random variables with mean zero and standard deviation
0.1. We repeat the simulation N = 500 times with sample
size n = 200.

The results are presented in Tables 6 and 7 together
with computation time cost for 20 replicates. Notice that
the BKR and DC-SIS are the top two best methods in this
highly nonlinear situation, but BKR consumes much less
time than DC-SIS due to its low computation complexity.
However, SIRS and RRCS have little chance to identify the
important predictors Xi3, and SIS and MV-SIS weakly de-
tects Xi3 and Xi2 respectively.

Example 5. (Genome-Wide Association Studies) To study
the influence of discrete predictors on screening procedure
based on Modified Hoeffding coefficient, we adopt this ex-
ample from [2]. In the genomics-wide association study
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Table 5. The proportions of Pa in Example 3 with model size
d = 2n

λ Method ρ = 0 ρ = 0.1 ρ = 0.5 ρ = 0.9

0 SIS 0.08 0.11 0.03 0.00
SIRS 0.79 0.81 0.65 0.29
RRCS 0.79 0.81 0.67 0.44
DC 0.13 0.18 0.06 0.00
MV 0.49 0.60 0.50 0.21
Hoef 0.70 0.74 0.58 0.36
BKR 0.79 0.78 0.61 0.36
ROM-SIS 0.73 0.77 0.57 0.33

0.25 SIS 0.49 0.53 0.22 0.02
SIRS 0.79 0.83 0.66 0.27
RRCS 0.80 0.82 0.68 0.41
DC 0.61 0.64 0.41 0.07
MV 0.51 0.63 0.49 0.19
Hoef 0.71 0.75 0.61 0.34
BKR 0.79 0.78 0.64 0.34
ROM-SIS 0.74 0.78 0.58 0.33

0.5 SIS 0.78 0.80 0.62 0.18
SIRS 0.80 0.81 0.66 0.27
RRCS 0.80 0.82 0.67 0.45
DC 0.74 0.80 0.67 0.32
MV 0.51 0.58 0.52 0.19
Hoef 0.73 0.74 0.57 0.33
BKR 0.81 0.75 0.59 0.34
ROM-SIS 0.74 0.77 0.59 0.33

0.75 SIS 0.84 0.83 0.74 0.44
SIRS 0.80 0.81 0.64 0.28
RRCS 0.81 0.81 0.66 0.43
DC 0.80 0.80 0.71 0.50
MV 0.49 0.59 0.50 0.18
Hoef 0.71 0.77 0.57 0.35
BKR 0.79 0.79 0.60 0.36
ROM-SIS 0.74 0.77 0.56 0.34

1 SIS 0.84 0.86 0.76 0.55
SIRS 0.79 0.80 0.66 0.27
RRCS 0.79 0.82 0.69 0.40
DC 0.78 0.82 0.68 0.49
MV 0.49 0.61 0.51 0.19
Hoef 0.70 0.75 0.61 0.32
BKR 0.79 0.77 0.62 0.32
ROM-SIS 0.73 0.78 0.60 0.33

(GWAS), the response (i.e. the phenotypes) are continu-
ous whereas the predictors (i.e. the single-nucleotide poly-
morphisms or SNPs) are categorical. In general, the SNPs
as predictors are categorical with three classes, denoted by
{AA,Aa, aa}. To mimic SNPs with equal allele frequencies,
we denote Zij as the indicators of the dominant effect of the
jth SNP for ith subject and generate it in the following way

Zij =

⎧⎪⎨⎪⎩
1, if Xij < q1

0, if q1 ≤ Xij < q3

−1, if Xij ≥ q3

where Xi = (Xi1, . . . , Xip) ∼ N(0,Σ), where Σ = (ρij)p×p

Table 6. The 5%, 25%, 50%, 75%, and 95% quantiles of the
minimum model size S out of 500 replications in Example 4

with time cost of 20 replicates (in seconds)

5% 25% 50% 75% 95% Time

SIS 33.0 148.0 366.5 724.5 945.0 0.2
SIRS 63.0 285.2 570.0 828.0 980.1 0.9
RRCS 66.0 283.2 519.5 763.0 953.3 16.7
DC-SIS 6.0 20.0 87.5 277.5 754.2 220.7
MV-SIS 12.0 63.8 204.0 421.2 806.1 18.6
Hoef 7.0 26.0 99.0 268.0 743.7 14.1
BKR 6.0 21.0 71.5 205.2 672.8 19.5
ROM-SIS 7.0 24.8 93.5 256.2 763.3 203.6

Table 7. The proportions of Ps and Pa for Example 4 with
model sizes d1 = [n/logn], d2 = 2[n/logn], d3 = 3[n/logn]

Ps Pa

Size Method X1 X2 X3 X4 All

d1 SIS 0.85 0.34 0.23 0.83 0.06
SIRS 0.94 0.42 0.07 0.83 0.02
RRCS 0.99 0.44 0.05 0.81 0.03
DC-SIS 0.99 0.39 1.00 0.83 0.33
MV-SIS 0.99 0.27 1.00 0.59 0.16
Hoef 1.00 0.41 0.99 0.75 0.32
BKR 1.00 0.46 0.99 0.78 0.36
ROM-SIS 1.00 0.41 1.00 0.75 0.32

d2 SIS 0.90 0.45 0.31 0.89 0.13
SIRS 0.96 0.54 0.13 0.88 0.06
RRCS 0.99 0.56 0.10 0.86 0.05
DC-SIS 1.00 0.52 1.00 0.88 0.46
MV-SIS 1.00 0.37 1.00 0.72 0.27
Hoef 1.00 0.53 1.00 0.86 0.45
BKR 1.00 0.58 1.00 0.87 0.51
ROM-SIS 1.00 0.54 1.00 0.85 0.46

d3 SIS 0.95 0.54 0.39 0.91 0.20
SIRS 0.98 0.61 0.17 0.91 0.09
RRCS 1.00 0.63 0.13 0.90 0.08
DC-SIS 1.00 0.59 1.00 0.92 0.54
MV-SIS 1.00 0.45 1.00 0.78 0.35
Hoef 1.00 0.61 1.00 0.88 0.54
BKR 1.00 0.68 1.00 0.90 0.61
ROM-SIS 1.00 0.62 1.00 0.88 0.55

with ρij = 0.5|i−j|, and q1 and q3 are first and third quartiles
of a standard normal distribution, respectively. Then, we
generate the response (some trait or disease) by:

Y = β1Z1 + β2Z2 + 2β3Z10 + 2β4Z20 − 2β5|Z100|+ ε,

where βj = (−1)U (a + |Z|) for j = 1, . . . , 5, where a =
2 logn/

√
n, U ∼ Bernoulli(0.4) and Z ∼ N(0, 1), the error

term ε follows N(0, 1) or t(1). The first four active SNPs,
Z1, Z2, Z10, Z20 are linearly correlated with the response Y ,
while the SNP Z100 and Y are nonlinearly correlated. We set
n = 200 and p = 1000 and repeat each experiment N = 500
times.
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Table 8. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S out of 500 replications in Example 5

ε ∼ N(0, 1) ε ∼ t(1)
Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

SIS 49.9 264.0 501.5 731.0 958.2 232.0 526.0 698.0 861.5 975.0
SIRS 51.0 265.0 511.5 770.5 960.2 83.4 267.0 506.0 756.3 944.2
RRCS 150.8 644.0 1000.0 1000.0 1000.0 167.3 643.8 1000.0 1000.0 1000.0
DC-SIS 5.0 6.0 10.0 34.3 248.3 6.0 15.0 57.5 193.8 616.9
MV-SIS 5.0 6.0 8.0 29.3 265.3 5.0 8.0 21.0 82.0 485.5
Hoef 10.0 37.0 98.0 224.0 528.2 20.0 64.5 146.0 303.5 615.2
BKR 5.0 7.0 14.0 44.0 294.2 5.0 11.0 31.0 113.3 516.0
ROM-SIS 5.0 7.0 14.0 39.0 289.2 5.0 10.8 31.0 111.3 484.2

Table 9. The proportions of Ps and Pa for Example 5 with model sizes d1 = [n/logn], d2 = 2[n/logn], d3 = 3[n/logn]

ε ∼ N(0, 1) ε ∼ t(1)
Ps Pa Ps Pa

Size Method X1 X2 X10 X20 X100 All X1 X2 X10 X20 X100 All

d1 SIS 0.97 0.96 1.00 1.00 0.04 0.04 0.33 0.30 0.44 0.45 0.03 0.01
SIRS 0.95 0.96 1.00 1.00 0.03 0.02 0.92 0.90 0.98 0.97 0.02 0.02
RRCS 0.39 0.39 0.40 0.40 0.05 0.01 0.37 0.37 0.40 0.40 0.03 0.01
DC-SIS 0.95 0.95 0.99 1.00 0.83 0.77 0.83 0.81 0.93 0.92 0.64 0.40
MV-SIS 0.91 0.92 0.99 0.99 0.92 0.79 0.87 0.85 0.98 0.96 0.85 0.61
Hoef 0.95 0.95 1.00 1.00 0.27 0.26 0.91 0.90 0.99 0.97 0.17 0.12
BKR 0.94 0.94 0.99 0.99 0.81 0.74 0.88 0.88 0.98 0.96 0.72 0.53
ROM-SIS 0.93 0.95 0.99 0.99 0.82 0.74 0.88 0.88 0.98 0.96 0.72 0.53

d2 SIS 0.99 0.98 1.00 1.00 0.07 0.07 0.39 0.36 0.49 0.50 0.07 0.01
SIRS 0.97 0.97 1.00 1.00 0.07 0.07 0.95 0.93 0.99 0.98 0.05 0.05
RRCS 0.40 0.40 0.40 0.40 0.09 0.02 0.40 0.39 0.40 0.40 0.07 0.02
DC-SIS 0.97 0.97 1.00 1.00 0.90 0.86 0.88 0.86 0.96 0.95 0.73 0.55
MV-SIS 0.95 0.96 1.00 1.00 0.94 0.86 0.91 0.90 0.99 0.97 0.91 0.73
Hoef 0.97 0.97 1.00 1.00 0.43 0.41 0.94 0.93 0.99 0.98 0.33 0.28
BKR 0.97 0.96 1.00 0.99 0.89 0.83 0.93 0.92 0.99 0.98 0.81 0.67
ROM-SIS 0.96 0.97 1.00 0.99 0.89 0.83 0.92 0.92 0.99 0.98 0.81 0.67

d3 SIS 0.99 0.99 1.00 1.00 0.11 0.11 0.44 0.41 0.52 0.54 0.11 0.02
SIRS 0.98 0.98 1.00 1.00 0.10 0.10 0.96 0.95 0.99 0.99 0.08 0.08
RRCS 0.40 0.40 0.40 0.40 0.12 0.03 0.40 0.39 0.41 0.41 0.12 0.03
DC-SIS 0.98 0.98 1.00 1.00 0.93 0.89 0.90 0.88 0.96 0.96 0.78 0.62
MV-SIS 0.97 0.97 1.00 1.00 0.95 0.89 0.93 0.92 0.99 0.98 0.94 0.80
Hoef 0.98 0.98 1.00 1.00 0.55 0.54 0.96 0.94 0.99 0.99 0.43 0.40
BKR 0.97 0.97 1.00 0.99 0.92 0.87 0.94 0.93 0.99 0.98 0.86 0.75
ROM-SIS 0.97 0.97 1.00 1.00 0.92 0.87 0.94 0.93 0.99 0.98 0.87 0.75

We report the results in Tables 8 and 9. Surprisingly,
RRCS fails completely. This failure highlights a drawback in
RRCS that many ties occur in marginal utility vector when
the predictor is finitely discrete. Since we choose the most
conservative way to compute minimum model size during
all the simulations, that is, we get the last index of the
predictors which possess the same marginal utility with the
true predictor.

When the error follows a normal distribution, all the inde-
pendence screening except RRCS are able to select the first
four active SNPs effectively because they are linearly cor-
related with the response. However, only BKR, ROM-SIS,
DC-SIS and MV-SIS can choose Z100 which nonlinearly con-
tributed to Y . It is interesting to notice that Hoef no longer

performs as similarly as BKR and ROM-SIS in the previous
examples. When the error is generated from t(1) which is
largely heavy-tailed, BKR and ROM-SIS perform compara-
bly well with the best one MV-SIS.

Example 6. In this example, we consider multivariate re-
sponses data to analyze the performance of our proposed
method. The example has been investigated by [20]. We
compare with DC-SIS since other screening procedure can-
not be directly applied for such settings. We generate x =
(X1, X2, . . . , Xp)

T from multivariate normal distribution
with zero mean and covariance matrix Σ = (σij)p×p, where
two structures of covariance matrices: (1) σij = 0.5|i−j| and
(2) σij = 0.8|i−j| are taken into consideration. The response
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Table 10. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S out of 500 replications in Example 6

σij = 0.5|i−j| σij = 0.8|i−j|

Model Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

(4.6) DC 2.0 5.0 10.0 23.0 59.1 2.0 2.0 4.0 8.0 21.1
BKR 2.0 6.0 20.0 67.3 279.3 2.0 3.0 6.0 24.0 116.2
ROM-SIS 2.0 3.0 7.0 26.0 151.3 2.0 2.0 3.0 9.0 55.1

(4.7) DC 6.0 12.0 21.0 44.3 117.2 4.0 4.0 4.0 5.0 8.0
BKR 5.0 14.8 48.5 147.3 430.1 4.0 4.0 5.0 9.0 35.1
ROM-SIS 4.0 7.0 19.5 65.0 303.4 4.0 4.0 4.0 6.0 13.1

Table 11. The proportions of Ps and Pa for Example 6 with model sizes d1 = [n/logn], d2 = 2[n/logn], d3 = 3[n/logn]

σij = 0.5|i−j| σij = 0.8|i−j|

(4.6) (4.7) (4.6) (4.7)
Ps Pa Ps Pa Ps Pa Ps Pa

Size Method X1 X2 All X1 X2 X3 X4 All X1 X2 All X1 X2 X3 X4 All

d1 DC 0.98 0.88 0.87 0.83 0.99 0.99 0.86 0.71 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00
BKR 0.83 0.70 0.62 0.70 0.90 0.88 0.70 0.43 0.89 0.85 0.80 0.99 0.99 1.00 0.97 0.96
ROM-SIS 0.93 0.86 0.81 0.84 0.95 0.96 0.80 0.63 0.96 0.94 0.92 1.00 1.00 1.00 0.99 0.99

d2 DC 1.00 0.98 0.98 0.93 1.00 1.00 0.95 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BKR 0.91 0.83 0.77 0.82 0.95 0.95 0.78 0.60 0.95 0.92 0.89 0.99 1.00 1.00 0.99 0.98
ROM-SIS 0.97 0.92 0.90 0.91 0.98 0.98 0.87 0.78 0.99 0.98 0.97 1.00 1.00 1.00 1.00 0.99

d3 DC 1.00 0.99 0.99 0.96 1.00 1.00 0.98 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BKR 0.95 0.89 0.85 0.87 0.96 0.97 0.83 0.69 0.97 0.96 0.94 1.00 1.00 1.00 0.99 0.99
ROM-SIS 0.98 0.94 0.93 0.95 0.99 0.99 0.91 0.84 0.99 0.99 0.98 1.00 1.00 1.00 1.00 1.00

y = (Y1, Y2)
T are generated from normal distribution with

mean zero and covariance matrix Σy|x = (σx,ij)2×2, where
σx,11 = σx,22 = 1 and σx,12 = σx,21 = σ(x). We look into
two scenarios for the correlation function σ(x):

(4.6) σ(x) = sin(βT
1 x)

where β1 = (0.8, 0.6, 0, · · · , 0)T

(4.7) σ(x) =
{exp(βT

2 x)− 1}
{exp(βT

2 x) + 1}

where β2 = (2 − U1, 2 − U2, 2 − U3, 2 − U4, 0, · · · , 0)T with
Ui’s being independent and identically distributed (iid) ac-
cording to uniform distribution Uniform [0, 1].

Tables 10 and 11 present the simulation results. We can
see that ROM-SIS is comparable with DC-SIS and both of
them performs reasonably well for the two models in terms
of model complexity. Also, BKR is not that bad and it is
much more computational faster than both ROM-SIS and
DC-SIS. It implies that the both BKR and ROM-SIS can
identify the active predictors contained in correlations be-
tween multivariate responses, which is potentially useful in
gene coexpression analysis.

4.2 Leukemia data analysis

In this subsection, we apply our method to implement fea-
ture screening for the leukemia microarray data set. These
data come from a study by [11] and also have been analysed

in [30], [4], [6], [12]. The data are available from http://www.
broad.mit.edu/cgi-bin/cancer/datasets.cgi, and the aim for
analyzing this data set is to use microarray evidence to dis-
tinguish between two types of acute leukemia. There are
7129 genes and 72 samples from two classes: 47 in class ALL
(acute lymphocytic leukaemia) and 25 in class AML (acute
mylogenous leukaemia). Among those 72 samples, 38 (27 in
class ALL and 11 in class AML) of them were set as the
training sample and the remaining 34 (20 in class ALL and
14 in class AML) of them were set to be the test sample.

To examine the performance of all the screening meth-
ods mentioned previously, we follow [4] to split the 72 sam-
ples into training and test sets randomly. Specifically, we set
approximately 100γ% of the observations from class ALL
and 100γ% of the observations from class AML as stan-
dardized training samples, and the rest as test samples. We
then apply screening methods to training sample to select
d = [2n/ log(n)] features for the classification as done in [6],
where n is the size of training sample. Furthermore, we use
selected features to carry out the classification in unstan-
dardized test sample by linear discriminant analysis and
calculate the test error. The above procedure is repeated
100 times for γ = 0.4, 0.5 and 0.6, respectively, and the
distributions of test errors of all the screening methods are
summarized in Figure 2. From these figures, we notice that
ROM-SIS, Hoef and MV-SIS are best among all the screen-
ing method. MV-SIS is born to solve classification problems
and our method has the same results as MV-SIS. This is not
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Figure 2. Boxplots of test errors of 100 random splits of 72 samples in leukemia data, where 100γ% of the samples from both
classes are set as training samples. The three plots from left to right correspond to γ = 0.4, 0.5 and 0.6, respectively.

surprising, because both the two methods are based on the
Cramér-von Mises distance.

As for the influential genes, we also use the the origi-
nal training sample to identify them by using the aforemen-
tioned screening methods. Surprisingly, we find that only the
three screening methods based on Hoeffding’s measure have
some similar identification to the method proposed by [12],
where the first four top ranked genes are labeled X95735 at,
M27891 at, M27783 s at and U50136 rna1 at. One reason
for this result may be that both the Hoeffding’s measure
and generalized correlation used by [12] can character im-
plicit relationship between variables. For the four genes, we
conduct an exploratory analysis in figure 3. The histograms
and boxplots of the four genes reveal that the distributions
of them are highly skewed and there exists some potential
outliers. So it is reasonable to use our proposed method
to implement feature screening for this data set, since our
method is robust to the outliers and we do not need pre-
specify the distributions.

APPENDIX A. APPENDIX SECTION

Proof of Proposition 2.1. The non-negativity of ω(X,Y ) is
obvious. We only need to prove the equivalency. If X and
Y are independent, it is easy to know ω(X,Y ) = 0 due
to FX,Y (x, y) = FX(x)FY (y), ∀x, y ∈ R. For any random
variables X and Y , we denote their support as BX and BY .
If X and Y are dependent, the binary function [FX,Y (x, y)−
FX(x)FY (y)]

2 �= 0, for some x ∈ BX , y ∈ BY . We argue that
ω(X,Y ) > 0 as follows.

When X and Y are both continuous ran-
dom variables, ω(X,Y ) =

∫
BX

∫
BY

[FX,Y (x, y) −
FX(x)FY (y)]

2fX(x)fY (y)dxdy, where fX(x) and fY (y) are
their density functions. From the continuity of integrand,
we can get ω(X,Y ) > 0.

When X and Y are both discrete random variables, the
modified Hoeffding measure can be rewritten as: ω(X,Y ) =∑

x∈BX

∑
y∈BY

[FX,Y (x, y)−FX(x)FY (y)]
2P (X = x)P (Y =

y). The positivity of ω(X,Y ) can be obtained by P (X =
x) > 0, ∀x ∈ BX and P (Y = y) > 0, ∀y ∈ BY .

If X is continuous and Y is discrete, we have: ω(X,Y ) =∑
y∈BY

P (Y = y)
∫
BX

[FX,Y (x, y) − FX(x)FY (y)]
2fX(x)dx.

The positivity of P (Y = y), y ∈ BY and the continuity of
[FX,Y (x, y)− FX(x)FY (y)]

2fX(x) will lead to ω(X,Y ) > 0.

It is similar to get the proof for the situation where the
marginal distribution is a mixture of continuous and discrete
distribution. This completes the proof.

Proof of Proposition 2.2. From the definition of distri-
bution function for binary random vector, we have
FX,Y (x, y) = P (X ≤ x, Y ≤ y), ∀x, y ∈ R. If X = Y , it
becomes FX,X(x, y) = P (X ≤ x,X ≤ y) = FX(min(x, y)).
So we can calculate ω(X,X) as follows,

ω(X,X)

=

∫
[FX(min(x, y))− FX(x)FX(y)]

2
dFX(x)dFX(y)

= 2

∫
x≤y

[FX(x)− FX(x)FX(y)]
2
dFX(x)dFX(y)
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Figure 3. Histograms and boxplots for the four top ranked genes.

= 2

∫ {
[1− FX(y)]2

∫ y

−∞
F 2
X(x)dFx(x)

}
dFX(y)

=
2

3

∫
F 3
X(y)[1− FX(y)]2dFX(y) =

1

90
.

This completes the proof.

To prove Theorems 3.1 and Theorems 3.2, we need the
following lemmas.

Lemma A.1 (Hoeffding’s inequality [15]). Let X1, · · · , Xn

be independent random variables. Assume that P (Xi ∈
[ai, bi]) = 1 for 1 ≤ i ≤ n, where ai and bi are constants.
Let X̄ = n−1

∑n
i=1 Xi. Then the following inequality holds

P (|X̄ − E(X̄)| ≥ t) ≤ 2exp

{
2n2t2∑n

i=1(bi − ai)2

}
where t is a positive constant and E(X̄) is the expected value
of X̄.

Lemma A.2 (Dvoretzky-Kiefer-Wolfowitz inequality [24]).

Let F̂n denote the empirical distribution function for a sam-
ple of n i.i.d. random variables with distribution function F .
Then for any ε > 0, the following inequality holds

P (sup
x∈R

|F̂n(x)− F (x)| ≥ ε) ≤ 2 exp{−2nε2}.

We need the following notations for the next lemma
to make these inequalities simple. Recall that F̂k,Y (x, y),

F̂k(x), F̂Y (y) are empirical functions of Fk,Y (x, y), Fk(x),
FY (y) respectively, for k = 1, · · · , p, x, y ∈ R,

where Fk,Y (x, y), Fk(x), FY (y) are distribution functions of
(Xk, Y ), Xk, and Y respectively. Denote

ξY =
1

n

n∑
j=1

EXk
[Fk,Y (Xk, Yj)− Fk(Xk)FY (Yj)]

2,

ηXk
=

1

n

n∑
i=1

⎧⎨⎩ 1

n

n∑
j=1

[Fk,Y (Xik, Yj)− Fk(Xik)FY (Yj)]
2

⎫⎬⎭ ,

where EXk
is to compute expectations about Xk given Yj .

Lemma A.3. For any ε > 0, the following inequalities are
valid

P

(∣∣∣ξY − EξY

∣∣∣ ≥ ε

)
≤ 2 exp{−2nε2};(A.1)

P

(∣∣∣ηXk
− EηXk

∣∣∣ ≥ ε

)
≤ 2 exp{−2nε2};(A.2)

P

(
sup
x,y∈R

∣∣∣F̂k,Y (x, y)− Fk,Y (x, y)
∣∣∣ ≥ ε

)
(A.3)

≤ 2(n+ 1) exp{−2nε2};

P

(
sup
x,y∈R

∣∣∣F̂k(x)F̂Y (y)− Fk(x)FY (y)
∣∣∣ ≥ ε

)
(A.4)

≤ 4 exp{−nε2

2
}.

Proof. For any x ∈ R, EXk
[Fk,Y (Xk, Yj) −

Fk(Xk)FY (Yj)]
2 ≤ 1, so we can apply Hoeffding in-
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equality to obtain inequality (A.1). Similarly, we can get
inequality (A.2).

Note that F̂k,Y (x, y) is the empirical distribution func-

tion of Fk,Y (x, y), and
∣∣∣F̂k,Y (x, y)− Fk,Y (x, y)

∣∣∣ ≤ 1, then

we can also use the Hoeffding inequality and the Maximal
Inequality of empirical process theory [25, p. 15] to obtain
inequality (A.3).

To prove the inequality (A.4), we first get the bound of

sup
x,y∈R

∣∣∣F̂k(x)F̂Y (y)− Fk(x)FY (Y )
∣∣∣ .

It is easy to show that

sup
x,y∈R

∣∣∣F̂k(x)F̂Y (y)− Fk(x)FY (Y )
∣∣∣

≤ sup
x,y∈R

F̂Y (y)
∣∣∣F̂k(x)− Fk(x)

∣∣∣+
sup
x,y∈R

F̂k(x)
∣∣∣F̂Y (y)− FY (y)

∣∣∣
≤ sup

x∈R

∣∣∣F̂k(x)− Fk(x)
∣∣∣+ sup

y∈R

∣∣∣F̂Y (y)− FY (y)
∣∣∣ ,

where the first inequality follows from triangular inequality,
and the second inequality holds by supx∈R

F̂k(x) ≤ 1 and

supy∈R
F̂Y (y) ≤ 1.

So we can obtain:

P

(
sup
x,y∈R

∣∣∣F̂k(x)F̂Y (y)− Fk(x)FY (Y )
∣∣∣ ≥ ε

)
≤ P

(
sup
x∈R

∣∣∣F̂k(x)− Fk(x)
∣∣∣ ≥ ε

2

)
+

P

(
sup
y∈R

∣∣∣F̂Y (y)− FY (y)
∣∣∣ ≥ ε

2

)
≤ 4exp{−nε2

2
},

where the last inequality follows from the Dvoretzky-
Kiefer-Wolfowitz inequality. This completes the proof of
Lemma A.3.

Lemma A.4. For any ε > 0 and k = 1, · · · , p, we have

P (|ω̂k − ωk| ≥ ε) ≤ 2(n+ 1) exp

{
−nε2

72

}
+

4 exp

{
−nε2

288

}
+ 4 exp

{
−2nε2

9

}
.

Proof. According to the definition of ω̂k and ωk, we have

ω̂k − ωk

=

∫ [
F̂k,Y (x, y)− F̂k(x)F̂Y (Y )

]2
dF̂k(x)dF̂Y (y)

−
∫

[Fk,Y (x, y)− Fk(x)FY (Y )]
2
dFk(x)dFY (y)

=

∫ [
F̂k,Y (x, y)− F̂k(x)F̂Y (Y )

]2
dF̂k(x)dF̂Y (y)

− [Fk,Y (x, y)− Fk(x)FY (Y )]
2
dF̂k(x)dF̂Y (y)

+

∫
[Fk,Y (x, y)− Fk(x)FY (Y )]

2

×
[
dF̂k(x)− dFk(x)

]
dF̂Y (y)

+

∫
[Fk,Y (x, y)− Fk(x)FY (Y )]

2

×
[
dF̂Y (y)− dFY (y)

]
dF̂k(x)

=: Δk1 +Δk2 +Δk3.

Then, we consider the part Δk1 firstly,

|Δk1|

=

∣∣∣∣∣
∫ ( [

F̂k,Y (x, y)− F̂k(x)F̂Y (Y )
]2

− [Fk,Y (x, y)− Fk(x)FY (Y )]
2
)
dF̂k(x)dF̂Y (y)

∣∣∣∣∣
≤ 2

∫ ∣∣∣ [F̂k,Y (x, y)− Fk,Y (x, y)
]

−
[
F̂k(x)F̂Y (y)− Fk(x)FY (y)

] ∣∣∣dF̂k(x)dF̂Y (y)

≤ 2 sup
x,y∈R

|F̂k,Y (x, y)− Fk,Y (x, y)|

+2 sup
x,y∈R

|F̂k(x)F̂Y (y)− Fk(x)FY (y)|

where the first inequality comes from∣∣∣[F̂k,Y (x, y)− Fk,Y (x, y)
]

+
[
F̂k(x)F̂Y (y)− Fk(x)FY (y)

]∣∣∣
≤ 1 + 1 = 2,

and the second inequality follows from
∫
dF̂k(x)dF̂Y (y) =

1. From inequality (A.3) and (A.4) of Lemma A.3, we can
obtain that

P (|Δk1| ≥ ε) ≤ P ( sup
x,y∈R

|F̂k,Y (x, y)− Fk,Y (x, y)| ≥
ε

4
)

+ P ( sup
x,y∈R

|F̂k(x)F̂Y (y)− Fk(x)FY (y)| ≥
ε

4
)

≤ 2(n+ 1) exp{−nε2

8
}+ 4 exp{−nε2

32
}.(A.5)

For the part Δk2, it follows from simple calculation that,

Δk2 =

∫
[Fk,Y (x, y)− Fk(x)FY (Y )]

2
dF̂k(x)dF̂Y (y)

−
∫

[Fk,Y (x, y)− Fk(x)FY (Y )]
2
dFk(x)dF̂Y (y)
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=
1

n

n∑
i=1

{ 1

n

n∑
j=1

[Fk,Y (Xik, Yj)− Fk(Xik)FY (Yj)]
2
}

− EXk

{ 1

n

n∑
j=1

[Fk,Y (Xk, Yj)− Fk(Xk)FY (Yj)]
2
}

= ηXk
− EηXk

.

Then we can use the inequality (A.2) of Lemma A.3 to ob-
tain:

(A.6) P (|Δk2| ≥ ε) ≤ 2 exp{−2nε2}.

Lastly, we deal with Δk3, and we have

Δk3 =

∫
[Fk,Y (x, y)− Fk(x)FY (Y )]

2
dFk(x)dF̂Y (y)

−
∫

[Fk,Y (x, y)− Fk(x)FY (Y )]
2
dFk(x)dFY (y)

=
1

n

n∑
j=1

EXk
[Fk,Y (Xk, Yj)− Fk(Xk)FY (Yj)]

2

−EY EXk
[Fk,Y (Xk, Y )− Fk(Xk)FY (Y )]

2

= ξY − EξY .

So, by the inequality (A.1), we can obtain:

(A.7) P (|Δk3| ≥ ε) ≤ 2 exp{−2nε2}.

Inequalities (A.5)–(A.7) together imply that

P (|ω̂k − ωk| ≥ ε)

≤ P
(
|Δk1| ≥

ε

3

)
+ P

(
|Δk2| ≥

ε

3

)
+ P

(
|Δk3| ≥

ε

3

)
≤ 2(n+ 1) exp

{
−nε2

72

}
+4 exp

{
−nε2

288

}
+ 4 exp

{
−2nε2

9

}
.

This obtains the result of Lemma A.4.

Proof of Theorem 3.1. Firstly, we prove the first part of the
Theorem 3.1. By Lemma A.4, for any positive constant c,
we have

P ( max
1≤k≤p

|ω̂k − ωk| ≥ cn−κ)

≤ pP (|ω̂k − ωk| ≥ cn−κ)

≤ p
{
2(n+ 1) exp{−c1n

1−2κ}

+4 exp{−c2n
1−2κ}+ 4 exp{−c3n

1−2κ}
}
,

where c1 =
c

72
, c2 =

c

288
, c3 =

2c

9
.

Next, we show the second part of Theorem 3.1. Denote
the set

Γn =
{
max
k∈A

|ω̂k − ωk| ≤
c0n

−κ

2

}
,

on this set, by condition (C1): mink∈A ωk ≥ c0n
−κ, we have

ω̂k ≥ ωk − |ω̂k − ωk| ≥
c0n

−κ

2
.

Therefore, by the choice of τn = c4n
−κ, c4 ≤ c0

2 , and
Lemma A.4, we have

P (A ⊂ Âτn) ≥ P (Γn)

≥ 1− s
{
2(n+ 1) exp{−c1n

1−2κ}

+ 4 exp{−c2n
1−2κ}+ 4 exp{−c3n

1−2κ}
}
.

Proof of Theorem 3.2. Recall the assumption of condition
(C2), we know that δ = mink∈A ωk −maxk∈I > 0. Thus,

P
(
max
k∈I

ω̂k ≥ min
k∈A

ω̂k

)
≤ P

(
|max
k∈I

ω̂k −max
k∈I

ωk|+ |min
k∈A

ω̂k −min
k∈A

ωk| ≥ δ
)

≤ P
(
max
k∈I

|ω̂k − ωk| ≥
δ

2

)
+ P

(
min
k∈A

|ω̂k − ωk| ≥
δ

2

)
≤ 2P

(
max
1≤k≤p

|ω̂k − ωk| ≥
δ

2

)
,

by using Lemma A.4, we can obtain the first inequality of
Theorem 3.2. For the second statement,

P
(
min
k∈A

ω̂k −max
k∈I

ω̂k <
δ

2

)
≤ P

([
min
k∈A

ω̂k −max
k∈I

ω̂k

]
−
[
min
k∈A

ωk −max
k∈I

ωk

]
< −δ

2

)

≤ P

(∣∣∣∣[min
k∈A

ω̂k −max
k∈I

ω̂k

]
−
[
min
k∈A

ωk −max
k∈I

ωk

]∣∣∣∣ > δ

2

)

≤ P

(
2 max
1≤k≤p

|ω̂k − ωk| >
δ

2

)
≤ 2 exp{log(p) + log(n+ 1)− c∗1n}

+4 exp{log(p)− c∗2n}+ 4 exp{log(p)− c∗3n},
where the last inequality comes from Lemma A.4, and
c∗1, c

∗
2, c

∗
3 are some positive constants.

If log(p) = o(n1−2κ), we can obtain that max
(
log(p) +

log(n+1)− c∗1n, log(p)− c∗2n, log(p)− c∗3n
)
≤ −2 log(n), for

large n.
So, for some N ,

+∞∑
n=N

P
(
min
k∈A

ω̂k −max
k∈I

ω̂k <
δ

2

)
≤

+∞∑
n=N

10 exp{−2 log(n)} < +∞.

Then, the conclusion follows from the Borel Contelli Lemma.
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[29] Székely, G. J., Rizzo, M. L., Bakirov, N. K., et al. (2007).
Measuring and testing dependence by correlation of distances.
The Annals of Statistics, 35(6):2769–2794.

[30] Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G.

(2002). Diagnosis of multiple cancer types by shrunken centroids
of gene expression. Proceedings of the National Academy of Sci-
ences, 99(10):6567–6572.

[31] Zhao, S. D. and Li, Y. (2012). Principled sure independence
screening for cox models with ultra-high-dimensional covariates.
Journal of multivariate analysis, 105(1):397–411.

[32] Zhong, W. (2014). Robust sure independence screening for ul-
trahigh dimensional non-normal data. Acta Mathematica Sinica,
English Series, 30(11):1885–1896.

[33] Zhu, L.-P., Li, L., Li, R., and Zhu, L.-X. (2011). Model-free
feature screening for ultrahigh-dimensional data. Journal of the
American Statistical Association, 106(496). MR2896849

Yuan Yu
School of Statistics
Shandong University of Finance and Economics,
Jinan 250014, China
School of Statistics and Management
Shanghai University of Finance and Economics
Shanghai 200433, China
E-mail address: yuyuan mail@126.com

Di He
School of Statistics and Management
Shanghai University of Finance and Economics
200433 China
E-mail address: hedi8910@163.com

Yong Zhou
Institute of Statistics and Interdisciplinary Sciences
and School of Statistics
Faculty of Economics and Management
East China Normal University
Shanghai 200241, China
E-mail address: yzhou@amss.ac.cn

Robust model-free feature screening 489

http://www.ams.org/mathscinet-getitem?mr=0125690
http://www.ams.org/mathscinet-getitem?mr=3367253
http://www.ams.org/mathscinet-getitem?mr=3059421
http://www.ams.org/mathscinet-getitem?mr=3221959
http://www.ams.org/mathscinet-getitem?mr=3034336
http://www.ams.org/mathscinet-getitem?mr=1062069
http://www.ams.org/mathscinet-getitem?mr=2896849
mailto:yuyuan_mail@126.com
mailto:hedi8910@163.com
mailto:yzhou@amss.ac.cn

	Introduction
	The robust model-free feature screening
	Modified Hoeffding measure
	Screening procedure using modified Hoeffding measure

	Theoretical properties
	Sure screening property
	Ranking consistency property

	Numerical studies
	Simulations
	Leukemia data analysis

	Appendix section
	Acknowledgements
	References
	Authors' addresses

