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A new copula model-based method for regression
analysis of dependent current status data
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This paper discusses regression analysis of current status
data, which arise when the occurrence of the failure event
of interest is observed only once or the occurrence time is
either left- or right-censored [5, 11]. Many authors have in-
vestigated the problem, however, most of the existing meth-
ods are parametric or apply only to limited situations such
that the failure time and the observation time have to be
independent. In particular, Ma et al. [7] recently proposed
a copula-based procedure for the situation where the failure
time and the observation time are allowed to be dependent
but their association needs to be known. To address this re-
striction, we present a new two-step estimation procedure
that allows one to estimate the association parameter in
addition to estimation of other unknown parameters. The
asymptotic properties of the resulting estimators are estab-
lished and a simulation study is conducted and suggests that
the proposed method performs well for practical situations.
Also an illustrative example is provided.

Keywords and phrases: Copula model, Current status
data, Informative censoring, Proportional hazards model.

1. INTRODUCTION

Current status data often arise in many fields including
epidemiological studies, social studies and tumorigenicity
experiments. In this situation, the failure time T of interest
is observed only once at a censoring or observation time C.
In other words, the failure time of interest is not exactly
observed and either left- or right-censored. In addition, the
failure time and the observation time may often be corre-
lated and we usually refer such data as dependent current
status data. One example of this latter case naturally occurs
in the tumorigenicity experiments where the failure time of
interest is the time to tumor onset. In these situations, cur-
rent status data occur because the study animals are usu-
ally only observed at their death or sacrifice and one only
knows the presence or absence of the tumor at the time.
It is well-known that most of the tumors are between lethal
and non-lethal and thus the tumor onset time and the death
time tend to be correlated. In other words, one only observes
dependent current status data for the tumor onset time.
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There exists an extensive literature on regression analy-
sis of current status data but most of the existing methods
are parametric or apply only to limited situations. It is well-
known that parametric approaches are usually questionable
unless the assumed model can be confirmed, and one situa-
tion that has been discussed by many authors is when the
failure time and the observation time are independent com-
pletely or given covariates. As mentioned above, the inde-
pendence assumption may not be valid in many situations.
Several authors have recently considered regression analy-
sis of dependent current status data, including Ma et al. [7]
and Zhao et al. [14] who proposed some copula model-based
estimation procedures. The former studied the case where
the failure time of interest marginally follows the propor-
tional hazards model, while the latter discussed the case
where the failure time marginally follows the additive haz-
ards model. However, both methods assumed that the asso-
ciation parameter between the failure time of interest and
the observation time is known, which is clearly not realistic
in general.

As pointed out by [7] and others, the resulting estima-
tors of regression parameters can be sensitive to the as-
sumed association parameter or be biased and yield mis-
leading results if the assumed association is misspecified. In
the following, we will present a copula model-based estima-
tion procedure that does not require the assumption. Some
discussion on why this is possible will be given below. The
copula model-based approach is a commonly used method
for modeling correlated random variables or the association.
For example, Shih and Louis [10] developed such estimation
procedures for estimation of the association parameter based
on bivariate right-censored data, and Wang et al. [13] gen-
eralized the method to the case of bivariate current status
data. For the proposed method given below, as all authors
mentioned above, we will assume that the copula model is
known and some discussion on this will be given below.

The remainder of this paper is organized as follows. In
Section 2, we will first introduce some notation and models
to be used and present the resulting likelihood function. In
particular, the copula model will be used to describe the as-
sociation between the failure time and the observation time.
Section 3 will describe the proposed sieve maximum likeli-
hood estimation approach, a two-step estimation procedure.
In addition, the resulting estimators of regression parame-
ters will be shown to be consistent and asymptotically follow
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a normal distribution. In Section 4, we will present some re-
sults obtained from an extensive simulation study conducted
to assess the finite sample performance of the proposed ap-
proach, which indicate that the method seems to work well
for practical situations. Section 5 applies it to a tumorigenic-
ity study that motivated this study and Section 6 contains
some discussions and concluding remarks.

2. NOTATION, ASSUMPTIONS AND THE
LIKELIHOOD FUNCTION

Consider a failure time study that involves n indepen-
dent subjects and in which each subject is observed only
once. For subject i, let Ti denote the failure time of inter-
est and Zi a p-dimensional vector of covariates, and suppose
that there exist two potential observation or censoring times
denoted by Ci and ζi, i = 1, ..., n. Here we assume that Ci

may be related to Ti but ζi is independent of Ti such as
the administrative stop time. In the tumor example, Ci de-
notes the death time and ζi represents the sacrifice or study
stopping time. Define C̃i = min(Ci, ζi), Δi = I(Ci ≤ ζi)
and δi = I(Ti ≤ C̃i). Then the observed data have the form
{Xi = (Δi, δi, C̃i, Zi), i = 1, . . . , n }.

To describe the effects of covariates, in the following, we
will assume that given the covariates Zi’s, Ti and Ci follow
the marginal proportional hazards models given by

(1) λ(T )(t | Zi) = λ1(t) exp(Z
T
i β)

and

(2) λ(C)(t | Zi) = λ2(c) exp(Z
T
i γ) ,

respectively. Let FT and FC denote the marginal distribu-
tions of the Ti’s and the Ci’s given covariates, respectively,
and F the joint distribution of Ti and Ci. Then there exists
a copula function Cα(u, v) defined on I2 = [0, 1]× [0, 1] such
that

(3) F (t, c) = Cα{FT (t), FC(c)}

[8]. Here α is often referred to as association parameter rep-
resenting the relationship between Ti and Ci, and Cα(u, 0) =
Cα(0, v) = 0, Cα(u, 1) = u and Cα(1, v) = v. It follows that

P (T ≤ t | C = c, Zi) =
∂Cα(u, v)

∂v
|u=FT (t),v=FC(c)

= mα{FT (t), FC(c)} .

Note that the copula model-based approach is one of the
most commonly used methods for modeling or dealing with
correlated random variables and this is especially the case
for correlated failure time variables in either bivariate or
multivariate failure time data analysis [2, 10, 13].

Define ΛT (t) =
∫ t

0
λ1(s)ds and ΛC(c) =

∫ t

0
λ2(s)ds, and

let fC denote the marginal density function of the Ci’s given

covariates. Then under the assumptions above, we have

FT (t) = 1− exp{−ΛT (t) e
ZT

i β},
FC(c) = 1− exp{−ΛC(c) e

ZT
i γ},

and

fC(c) = exp{−ΛC(c) e
ZT

i γ}λ2(c) exp(Z
T
i γ) .

Furthermore the resulting likelihood function can be written
as

L(θ, η) =

n∏
i=1

{(
[mα{FT (C̃i), FC(C̃i)}]δi

[1−mα{FT (C̃i), FC(C̃i)}]1−δifC(C̃i)
)Δi

×
(
[FT (C̃i)− Cα{FT (C̃i), FC(C̃i)}]δi

[1− FT (C̃i)− FC(C̃i)

+ Cα{FT (C̃i), FC(C̃i)}]1−δi
)1−Δi

}
,

where θ = {βT , α,ΛT (·)}T and η = {γT ,ΛC(·)}T . In the
next section, we will discuss estimation of regression pa-
rameters as well as other parameters.

3. INFERENCE PROCEDURE

Now we will discuss the estimation and inference about
models 1 and 2 with the focus on regression parameter β.
For this, we will present a two-step sieve estimation proce-
dure that first estimates model 2 and then model 1. More
specifically, for the first step, note that for the observation
time Ci’s, we have complete or right-censored data and thus
it is natural to estimate γ and ΛC by the maximum partial
likelihood estimator and Breslow estimator, respectively.

3.1 Two-step sieve estimation procedure

Let γ̂ and Λ̂C denote the estimators of γ and ΛC defined
above, respectively. Then one can estimate the marginal dis-
tribution of the Ci’s by F̂C(c) = 1−exp{−Λ̂C(c) exp(Z

T
i γ̂)}.

Given η̂ = (γ̂, Λ̂C), for the second step, to estimate θ, it is
apparent that one could maximize the conditional likelihood
function

L(θ|η̂) =
n∏

i=1

{(
[mα{FT (C̃i), F̂C(C̃i)}]δi

[1−mα{FT (C̃i), F̂C(C̃i)}]1−δi f̂C(C̃i)
)Δi

×
(
[FT (C̃i)− Cα{FT (C̃i), F̂C(C̃i)}]δi

[1− FT (C̃i)− F̂C(C̃i)

+ Cα{FT (C̃i), F̂C(C̃i)}]1−δi
)1−Δi

}
.
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On the other hand, it is easy to see that this maximization
can be difficult due to the dimension of ΛT (·). To address
this, by following Huang and Rossini [4] and others, we pro-
pose to approximate ΛT (·) with monotone cubic I-splines
first before the maximization [6, 9].

More specifically, let M denote a positive constant and
{Ij(t)}m+kn

j=1 the I-spline base functions with order m and
kn interior knots, where kn = o(nv) with 0 < v < 0.5. The
selection of m and kn will be discussed below. Define

Θn = {θn = (βT , α,ΛTn)
T } = B ⊗Mn ,

where B = {(βT , α)T ∈ Rp+1, ‖ β ‖ + ‖ α ‖≤ M} with ‖ v ‖
denoting the Euclidean norm for a vector v, Mn = {ΛTn :

ΛTn(t) =
∑m+kn

j=1 ξjIj(t), ξj ≥ 0, j = 1, . . . ,m + kn, t ∈
[0, uc]}, with uc being the upper bound of all observation
times {C̃i : i = 1, . . . , n}. It follows from Lemma A1 of [6]
that Θn can be used as a sieve space of the original parame-
ter space Θ. Then we can estimate θ or θ = (βT , α, ξT )T

by the sieve maximum likelihood estimator, denoted by
(β̂, α̂, Λ̂T (·)), defined as the value of θ that maximize the
conditional log-likelihood function l(θ|η̂) =

∑n
i=1 l(i)(θ|η̂),

where ξT = (ξ1, . . . , ξm+kn) and

l(i)(θ|η̂) = Δi log f̂C(C̃i)

+ (1− δi)Δi log
[
1−mα{FT (C̃i), F̂C(C̃i)}

]
+ δiΔi log

[
mα{FT (C̃i), F̂C(C̃i)}

]
+ δi(1−Δi) log

[
FT (C̃i)− Cα{FT (C̃i), F̂C(C̃i)}

]
+ (1− δi)(1−Δi) log

[
1− FT (C̃i)− F̂C(C̃i)

+ Cα{FT (C̃i), F̂C(C̃i)}
]
.

As mentioned above, a main advantage of the estima-
tion procedure proposed above over that given in [7] is that
the former does not require that the association parame-
ter is known. Also as discussed above, in general, the cop-
ula model and association parameter cannot be estimated
without extra information. For the situation here, the ex-
tra information is given by the estimation of the marginal
distribution FC in the first step, which can then be treated
as being known. The estimators γ̂ and Λ̂C have been stud-
ied by many authors and in particular, they are consistent
[5]. In the next subsection, we will establish the asymptotic

properties of β̂ and discuss some implementation issues.

3.2 Asymptotic properties and
implementation

Now we will establish the asymptotic properties of β̂ and
then discuss the variance estimation and some implementa-
tion issues.

Theorem 3.1. Assume that the regularity conditions (C1)–
(C4) described in the Appendix A and the conditions required
in Lemma A.1 given in the Appendix A hold. Then as n →
∞, we have that β̂ is consistent and

√
n (β̂−β0) converges to

the multivariate normal distribution with mean zero, where
β0 denotes the true value of β.

The proof of the results given above is sketched in the
Appendix A. For the estimation of the covariance matrix
of β̂, one natural way would be to derive a consistent es-
timator but as can be seen in the Appendix A, such an
estimator would be too complicated to be useful. Thus in-
stead we suggest to employ the following bootstrap proce-
dure. Let B denote a prespecified positive integer and for

each b = 1, . . . , B, draw a simple random sample {X(b)
i =

(Δ
(b)
i , δ

(b)
i , C̃i

(b)
, Z

(b)
i ), i = 1, . . . , n} of size n with replace-

ment from the observed data {Xi, i = 1, . . . , n}. Let β̂(b)

denote the sieve maximum likelihood estimator of β de-

fined above based on the resampled data set {X(b)
i , i =

1, . . . , n, b = 1, . . . , B}. Then one can estimate the covari-

ance matrix of β̂ by

V̂ ar(β̂) =
1

B − 1

B∑
b=1

(
β̂(b) − 1

B

B∑
b=1

β̂(b)
)2

.

Similarly one can show that α̂ is consistent and asymptoti-
cally follows a normal distribution too and estimate its vari-
ance by using the same approach.

To implement the estimation procedure above, it is ap-
parent that one needs to specify m and kn. In general,
the degree m should be decided by the smoothness of the
true baseline cumulative hazard function, and usually either
quadratic or cubic spline functions work sufficiently well. Of
course, one could try different values of them and compare
the obtained results. As an alternative, one can apply the
Aic to choose m and kn that give the smallest Aic. Two
other choices that one needs to make for the implementation
of the estimation method proposed above are the interior
knots and the copula model. For the former, a common way
is to use the equally spaced quantiles for given m and kn
as discussed in the numerical studies below. For the latter,
one may want to try some commonly used copula models
and compare the obtained results, or also employ the Aic

to choose it along with m and kn together. The simulation
studies below indicate that the proposed estimators seem to
be relatively robust with respect to the copula model.

Also given m and kn, the computation of θ̂ is relatively
easy as one can simply employ some existing software such
as the R function nlminb. In this, one does need to pay at-
tention to the non-negativity constraint on the I-spline coef-
ficients or as an alternative, one can avoid it by applying the
logarithm transformation of the original coefficients before
applying nlminb. For the selection of B in the variance es-
timation, one may start with some reasonable number and
then increase it until the obtained results are stable. For
a simulation study with large replications, one may choose
small numbers such as B = 50 to save the computational
effort.
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Table 1. Estimation of the association and regression parameters under the Clayton model

Parameter True Bias SSE SEE CP True Bias SSE SEE CP

τ 0.2 0.036 0.237 0.240 0.961 0.2 0.040 0.219 0.221 0.960
β 0.4 -0.012 0.222 0.231 0.954 0.8 0.016 0.220 0.232 0.965
γ 0 0.003 0.142 0.145 0.943 0.4 -0.004 0.143 0.147 0.952

τ 0.2 0.050 0.248 0.238 0.931 0.2 0.050 0.222 0.223 0.948
β 0.4 0.023 0.212 0.220 0.960 0.8 0.029 0.242 0.249 0.954
γ 0.4 0.004 0.148 0.147 0.952 0.8 0.011 0.151 0.153 0.953

τ 0.4 -0.036 0.213 0.209 0.948 0.4 -0.039 0.194 0.197 0.967
β 0.4 0.018 0.208 0.221 0.965 0.8 0.003 0.205 0.217 0.964
γ 0 0.002 0.146 0.145 0.952 0.4 -0.006 0.147 0.147 0.955

τ 0.4 -0.047 0.221 0.210 0.956 0.4 -0.030 0.197 0.194 0.964
β 0.4 -0.011 0.210 0.207 0.958 0.8 -0.021 0.229 0.232 0.957
γ 0.4 -0.003 0.145 0.147 0.952 0.8 0.000 0.155 0.153 0.952

4. A SIMULATION STUDY

An extensive simulation study was conducted to evalu-
ate the finite sample performance of the two-step estima-
tion procedure proposed in the previous sections. In the
study, we considered two situations for covariates and one
is that there exists only one covariate generating from the
Bernoulli distribution with the success probability of 0.5.
The other is that there exist two covariates with one follow-
ing the Bernoulli distribution with the success probability
of 0.5 and the other following the uniform distribution over
(0, 1). To generate the failure times Ti’s and the observation
times Ci’s, we took λ1(t) = λ2(c) = 1 in models (1) and
(2) and first generated two independent random numbers ui

and wi from the uniform distribution over (0, 1). Then after
obtaining the random number vi by solving the equation

P (C ≤ ci | T = ti, Z) =
∂Cα(u, v)

∂u
|u=ui,v=vi= wi ,

we define Ti = ti and Ci = ci, where ti and ci denote the
solutions to the equations FT (ti) = ui and FC(ci) = vi,
respectively. The independent observation times ζi’s were
taken to be a constant.

For the generation of the Ti’s and Ci’s, we considered
several copula models including the Clayton and Gumbel
models given by

Cα(u, v) = (u−(α−1) + v−(α−1) − 1)−1/(α−1), α > 1 ,

and

Cα(u, v) = exp[−{(− log u)α + (− log v)α}1/α], α ≥ 1 .

Note that for different copula models, the spaces of the as-
sociation parameter α are quite different and their interpre-
tation also differs from case to case. Thus in the following,
as others, we instead used the Kendall’s τ , also a global
association parameter, defined as

τ = P{(Ti−Tj)(Ci−Cj) > 0}−P{(Ti−Tj)(Ci−Cj) < 0}

for i.i.d replicates (Ti, Ci) and (Tj , Cj) of (T,C). The
Kendall’s τ is always between -1 and 1 with 0 indicating
independent and it is usually more robust and invariant to
monotone transformation. The results below are based on
1,000 replications with the sample size n = 200.

Table 1 presents the results obtained on estimation of
regression parameters β and γ as well as the Kendall’s τ
based on the simulated data generated under the Clayton
model with one covariate and different true values for β,
γ and τ . The results include the estimated bias given by
the average of the proposed estimates minus the true value
(Bias), the sample standard deviation (SSE), the average
of estimated standard errors (SEE), and the 95% empirical
coverage probability (CP). Here for the approximation of
ΛT (·), we used quadratic splines with the 0.2, 0.4, 0.6 and
0.8 quantiles of the C̃i’s as four interior knots. The results
obtained under the Gumbel model are given in Table 2 with
two covariates and the other set-ups being the same as with
Table 1. One can see from Table 1 and Table 2 that on
the regression parameters, the proposed estimator seems to
be unbiased and the bootstrap variance estimation also ap-
pears to be reasonable. In addition, the empirical coverage
probabilities indicate that the normal approximation to the
distributions of the proposed estimators seems to be appro-
priate. On the association parameter or Kendall’s τ , it is
clear that the performance of the proposed method is not as
good as for the regression parameters and we believe that
this is mainly because the estimated association parameter
has a slower convergence than the estimated regression pa-
rameters.

As mentioned above, Ma et al. [7] discussed the same
problem but their method assumes that the association pa-
rameter α or Kendall’s τ is known. Thus it would be inter-
esting to compare the proposed method to that given in [7].
For this, we repeated the studies above by applying both
methods to the simulated data and present the estimation
results in Table 3 with the true value of τ being 0.4. They
suggest that both approaches performed well and the pro-
posed method gave similar results to those given by [7]. The
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Table 2. Estimation of the association and regression parameters under the Gumbel model

Parameter True Bias SSE SEE CP True Bias SSE SEE CP

τ 0.3 0.083 0.248 0.233 0.903 0.3 0.084 0.249 0.236 0.902
β1 0.3 -0.004 0.194 0.207 0.968 0.3 -0.005 0.201 0.208 0.965
β2 -0.3 0.015 0.336 0.351 0.960 0.3 0.003 0.333 0.351 0.974
γ1 0.3 -0.000 0.140 0.147 0.960 0.3 0.005 0.151 0.147 0.950
γ2 -0.3 -0.000 0.268 0.255 0.936 0.3 -0.001 0.253 0.255 0.951

τ 0.3 0.073 0.233 0.221 0.904 0.3 0.077 0.229 0.225 0.927
β1 0.6 -0.010 0.223 0.226 0.961 0.6 -0.003 0.226 0.226 0.951
β2 -0.6 -0.001 0.335 0.360 0.962 0.6 0.007 0.341 0.359 0.958
γ1 0.6 0.004 0.149 0.150 0.955 0.6 0.007 0.153 0.150 0.949
γ2 -0.6 -0.009 0.258 0.258 0.952 0.6 0.008 0.255 0.257 0.952

τ 0.6 -0.055 0.201 0.192 0.922 0.6 -0.043 0.200 0.191 0.922
β1 0.3 -0.005 0.195 0.197 0.959 0.3 -0.008 0.183 0.194 0.958
β2 -0.3 -0.007 0.323 0.331 0.965 0.3 -0.014 0.306 0.330 0.969
γ1 0.3 0.012 0.151 0.147 0.943 0.3 0.007 0.150 0.147 0.946
γ2 -0.3 -0.015 0.261 0.255 0.949 0.3 0.003 0.257 0.255 0.952

τ 0.6 -0.050 0.199 0.185 0.898 0.6 -0.049 0.199 0.186 0.917
β1 0.6 -0.029 0.199 0.211 0.961 0.6 -0.023 0.203 0.210 0.939
β2 -0.6 0.011 0.323 0.337 0.964 0.6 -0.018 0.329 0.340 0.956
γ1 0.6 0.000 0.150 0.150 0.951 0.6 0.002 0.155 0.150 0.944
γ2 -0.6 -0.011 0.260 0.257 0.948 0.6 0.013 0.259 0.257 0.947

Table 3. Comparison of the proposed method and the method given in Ma et al. (2015)

Proposed method Ma et al. (2015)
Parameter True Bias SSE SEE CP Bias SSE SEE CP

Under Clayton model
β 0.4 0.018 0.208 0.221 0.965 0.013 0.183 0.190 0.952
γ 0 0.002 0.146 0.145 0.952 0.005 0.145 0.145 0.943
β 0.4 -0.011 0.210 0.207 0.958 0.015 0.193 0.188 0.941
γ 0.4 -0.003 0.145 0.147 0.952 0.003 0.143 0.145 0.945
β 0.8 0.003 0.205 0.217 0.964 0.021 0.193 0.197 0.958
γ 0.4 -0.006 0.147 0.147 0.955 0.001 0.145 0.146 0.952
β 0.8 -0.021 0.229 0.232 0.957 0.024 0.210 0.205 0.941
γ 0.8 0.000 0.155 0.153 0.952 0.013 0.151 0.152 0.944

Under Gumbel model
β1 0.4 -0.014 0.196 0.205 0.960 0.002 0.186 0.190 0.951
β2 0 0.003 0.327 0.341 0.953 0.011 0.324 0.325 0.951
γ1 0.4 -0.000 0.151 0.148 0.950 0.003 0.151 0.150 0.941
γ2 0 -0.002 0.257 0.254 0.942 -0.000 0.253 0.257 0.946
β1 0.4 -0.010 0.198 0.207 0.958 0.012 0.185 0.191 0.953
β2 0.4 -0.022 0.341 0.346 0.960 -0.002 0.332 0.329 0.941
γ1 0.4 0.005 0.150 0.148 0.946 0.008 0.148 0.149 0.952
γ2 0.4 -0.014 0.251 0.256 0.961 -0.011 0.247 0.258 0.959

only difference is that as expected, the method given by [7]
seems to be little more efficient than the proposed one on
estimation of β, but they had similar efficiency on estima-
tion of γ. We also considered other copula models including
the FGM and Frank models described in the next section
and obtained similar results.

5. AN APPLICATION

Now we apply the estimation approach proposed in the
previous sections to a tumorigenicity study conducted by

the National Toxicology Program and discussed in [7] among
others. It is a 2-year study and consists of the groups of 50
male and 50 female F344/N rats and B6C3F1 mice exposed
to chloroprene at different concentrations. During the study,
some animals died naturally during the study, and those
who were alive at the end of study were sacrificed for the
examination. Since the tumor status was only examined at
the death or the end, we only have current status data for
the tumor onset time, and one major goal of the study is to
compare the tumor growth rates between the different dose
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groups. Following [7], in the analysis below, we will focus
on the specific type of lung tumor, the alveolar/bronchiolar
adenoma, for the B6C3F1 mice in the control group with no
chloroprene inhalation and the high dose group with 80 ppm
chloroprene inhalation with 100 in each of the two groups.

For the ith animal, let Ti denote the tumor onset time
and Ci the death time with ζi representing the end of the
study. Also define Zi = 1 if the ith mice was in the high
dose group and Zi = 0 otherwise. For the analysis, we first
considered the possible group effect on the death time and
the application of the first step of the proposed estimation
procedure yielded γ̂ = 1.384 with the estimated standard
error of 0.19. This suggests that the animals in the high
dose group had significantly a higher death rate than those
in the control group. For the second step of the proposed es-
timation procedure, in addition to the Clayton and Gumbel
models, we also considered a few other commonly used cop-
ula models including the FGM and Frank models defined,
respectively, by

Cα(u, v) = uv + αuv(1− u)(1− v), −1 ≤ α ≤ 1 ,

and

Cα(u, v) = − 1

α
log

{
1 +

(e−αu − 1)(e−αv − 1)

e−α − 1

}
, α 
= 0 .

Table 4 gives the obtained results on the estimation of the
Kendall’s τ and regression parameter β under the FGM and
Gumbel models and they include the estimated parameter,
the estimated standard errors and the p-values for testing
the parameter equal to zero. Note that the results obtained
under the Clayton and Frank models are similar to these
under the Gumbel model and thus were not presented. Ac-
tually for the analysis here, all of the copula models con-
sidered gave consistent results. Here for the approximation
to the baseline cumulative function ΛT (t), we employed the
quadratic splines with kn = 3, 4 or 5 and interior knots
chosen the same way as in the simulation study above. Also
we calculated and used the AIC for the selection of the ap-
propriate copula model and kn and found that the smallest
AIC was given by the FGM copula with kn = 3.

One can see from Table 4 that with respect to the dose
effect, all results indicated that there existed a significant
difference between the tumor growth rates of the animals in
the two groups. The animals in the high dose group seem
to have a significantly higher chance of developing the tu-
mor than in the control group. With respect to estimation of
the association between the tumor onset time and the death
time, under the FGM model, the results suggest that they
were significantly positively correlated. However, under the
Gumbel model, although they seem to be positively corre-
lated, the association level was not significant. In compari-
son, [7] also considered several copula models and employed
the AIC to select appropriate copula model and the degree
of the association. They also concluded that the FGM model
provided the best fit and there was some significant dose ef-
fect on the tumor growth rate.

Table 4. Analysis results of the tumorigenicity experiment
under FGM and Gumbel models

Parameter Estimate SEE p-value AIC

Under FGM model
kn = 3 τ 0.1680 0.0793 0.0342 721.1570

β 2.4459 0.3880 <0.0001
kn = 4 τ 0.2222 0.0797 0.0053 722.2194

β 2.5291 0.4069 <0.0001
kn = 5 τ 0.2222 0.0710 0.0017 724.8213

β 2.4835 0.4050 <0.0001

Under Gumbel model
kn = 3 τ 0.0864 0.1610 0.5912 722.5539

β 2.4514 0.4386 <0.0001
kn = 4 τ 0.0594 0.1766 0.7364 724.1031

β 2.4659 0.4651 <0.0001
kn = 5 τ 0.0252 0.1881 0.8930 726.1204

β 2.3306 0.4491 <0.0001

6. DISCUSSIONS AND CONCLUSION
REMARKS

This paper discussed regression analysis of current status
data in the presence of dependent censoring or observation
process and as mentioned above, such data occur quite often
in many fields. This is in particular the case in tumorigenic-
ity experiments where one has to deal with them almost
always and in which an extensive literature, mainly para-
metric approaches, has been developed. For the problem,
we presented a two-step copula model-based approach that
allows one to estimate the association parameter in addi-
tion to regression parameters. It can be regarded as a gen-
eralization of the method given in [7], which assumes that
the association level is known. The resulting estimators of
regression parameters are consistent and their distributions
can be asymptotically approximated by the normal distribu-
tion. Also the simulation study suggests that the proposed
method seems to work well for practical situations.

Note that in the proposed method, we have employed
I-spline functions to approximate the baseline cumulative
hazard function ΛT . As an alternative, one can use other
smooth functions such as kernel functions and the method
can be developed similarly. Also instead of using the sieve
approach or approximating ΛT by using smooth functions,
one may directly maximize the conditional likelihood func-
tion L(θ|η̂) or employ the nonparametric maximum likeli-
hood estimation. One main advantage of the sieve approach
over the latter is that the maximization and its implemen-
tation can be much simpler and in the meantime, the two
approaches can be asymptotically equivalent [4, 7].

One limitation of the proposed method is that it assumes
that the underlying copula model is known. However, as
many papers pointed out [7, 15], it is usually difficult or
impossible to estimate it without strong assumptions. Also
the simulation study suggested that the presented method
seems to be robust with respect to the underlying copula
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model. Another limitation is that it has been assumed that
both the failure time of interest and the informative cen-
soring or observation time follow the proportional hazards
model and it is apparent that this may not hold in practice.
For example, one of them or both may follow other models
such as the additive hazards model or linear transformation
model. It is straightforward to generalize the proposed esti-
mation procedure to these situations. Also in the preceding
sections, we have focused only on current status data, a spe-
cial case of interval-censored data, and the similar problem
can often occur for general interval-censored data too [11].
For the latter case, although the idea described above can
still be applied, the development would be much more com-
plicated and difficult partly as one may have to deal with
three dimensional copula models.

APPENDIX A. PROOF OF THE
ASYMPTOTIC PROPERTIES

For the proof and the completeness, we first describe the
asymptotic properties of γ̂ and Λ̂C in the Lemma A.1 below.

Lemma A.1. Let γ̂ and Λ̂C be the estimators of γ and ΛC

defined above, respectively, and assume that the regularity
conditions given at pages 174–176 of [5] hold. Then γ̂ and
Λ̂C are consistent and have the asymptotical normality.

For the proof of the results above, the readers are re-
ferred to Theorems 8.3.1, 8.3.2 and 8.3.3 of [1]. To show the

asymptotic properties of β̂, in addition to the conditions
needed in Lemma A.1, we also need the following regularity
conditions.

(C1) For the follow-up time τ , we have P (τ ≥ τ0) > 0;
(C2) The covariate Z has a bounded support in Rp.
(C3) (i) The copula function C(·, ·) has bounded first or-

der partial derivatives with ∂C(u, v)/∂u and ∂C(u, v)/∂v
being Lipschitz. (ii). Assume that μC(E) > 0 for any open
set E ∈ I2, where μC denotes the probability measure cor-
responding to the copula function C given Z.

(C4) The κth derivative of ΛT (·), denoted by Λ
(κ)
T (·), is

Holder continuous such that |Λ(κ)
T (t1)−Λ

(κ)
T (t2)| ≤ M0|t1 −

t2|η for some η ∈ (0, 1] and any t1, t2 ∈ (0, uc), where M0 is
a constant.

Proof of the consistency of θ̂. Let θ0 = (βT
0 , α0,ΛT0)

T

and η0 = (γT
0 ,ΛC0)

T denote the true values of θ and
η, respectively. For any ε > 0, based on the fact that
{|l(θ̂|η̂) − l(θ0|η0)| ≥ ε} ⊂ {|l(θ̂|η̂) − l(θ̂|η0)| ≥ ε/2} ∪
{|l(θ̂|η0)− l(θ0|η0)| ≥ ε/2}, we have

P{|l(θ̂|η̂)− l(θ0|η0)| ≥ ε} ≤ P{|l(θ̂|η̂)− l(θ̂|η0)| ≥ ε/2}
(A.1)

+ P{|l(θ̂|η0)− l(θ0|η0)| ≥ ε/2}.

On the first term of the right side of (A.1), based on
Lemma A.1, Markov’s inequality and continuous mapping

theorem, one can easily show that given the current value of
θ̂, l(θ̂|η̂) as a continuous function of η, converges to l(θ̂|η0) in
probability as n goes to infinity. For the second term, under
the regularity conditions (C1)–(C4), the log-likelihood func-
tion l(θ|η0) is concave as a function of θ at the true value η0.

Thus the maximum θ̂ exists and is unique and consistent.
Based on these two facts, P{| l(θ̂|η̂)− l(θ0|η0)| ≥ ε} → 0 as

n → ∞, which implies that β̂ is consistent.

Proof of the asymptotic normality of θ̂. According to the
Taylor expansion of l̇θ(θ̂|η̂) at the true value θ0, we have
(A.2)√

n(θ̂ − θ0) = −{n−1 l̈θ(θ0|η̂) }−1 n−1/2 l̇θ(θ0|η̂) + op(1),

where l̈θ(θ0|η̂) is the second-order partial derivative of l(θ|η̂)
at θ = θ0, and −E{l̈θ(θ0|η̂)} is a positive definite matrix.

Thus, to prove the asymptotic normality of β̂, it is sufficient
to prove that the working score function l̇θ(θ0|η̂) can be
written as the summation of n independent and identically
distributed mean zero random variables plus some negligible
errors. For this, note that we can rewrite l̇θ(θ0|η̂) as

(A.3) l̇θ(θ0|η̂) = I + II ,

where I = l̇θ(θ0|η0) and II = l̇θ(θ0|η̂)− l̇θ(θ0|η0).
By following [3, 4], one can easily show that the first

term I can be written as the summation of n independent
and identically distributed mean zero random variables plus
some negligible errors. Next, we prove that the second term
II can also be written as the summation of n independent
and identically distributed mean zero random variables plus
some negligible errors.

Let l̇
(i)
θ (θ|γ,ΛC(C̃i) denote the first-order partial deriva-

tive of l(i)(θ|γ,ΛC(C̃i)) about θ. Define

l̈
(i)
θγ (θ|γ,ΛC(C̃i)) =

∂

∂γ
l̇
(i)
θ (θ|γ,ΛC(C̃i)) ,

and

l̈
(i)
θΛC

(θ|γ,ΛC(C̃i)) =
∂

∂s
l̇
(i)
θ (θ|γ, s))|s=ΛC(C̃i)

.

Then by using the multivariate Taylor expansion, we can
obtain that

II =

n∑
i=1

[
l̇
(i)
θ (θ0|γ̂, Λ̂C(C̃i))− l̇

(i)
θ (θ0|γ0,ΛC0(C̃i))

]

=

n∑
i=1

[
l̈
(i)
θγ (θ0|γ0,ΛC0(C̃i)) (γ̂ − γ0)

+ l̈
(i)
θΛC

(θ0|γ0,ΛC0(C̃i)) (Λ̂C(C̃i)− ΛC0(C̃i))
]
+ op(1) .

To further investigate the equality above, based on [12]
and Theorems 8.1–8.3 of [1], we have

γ̂ − γ0 =
1

n

n∑
j=1

gj + op(n
−1/2),
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where

gj = Σ−1
γ0

∫ τ

0

(Zj − e(γ0, t))dMj(t),

e(γ0, t) = E{I(t ≤ ζj)Zje
γT
0 Zj}/E{I(t ≤ ζj)e

γT
0 Zj},

Mj(t) = I(Cj ≤ ζj , Cj ≤ t)−
∫ t

0

I(u ≤ ζj)e
γT
0 ZjdΛC0(u)

and Σ−1
γ0

is a positive definite matrix.
Also we have

Λ̂C(t)− ΛC0(t) =
1

n

n∑
j=1

bj(t) + op(n
−1/2)

for inf{t : ΛC(t) > 0} < t < τ , where

bj(t) =

∫ t

0

dMj(u)

E{I(t ≤ ζj)eγ
T
0 Zj}

− h(t)T gj ,

and

h(t) =

∫ t

0

e(γ0, u)dΛC0(u).

These yield that

II =

n∑
i=1

{
l̈
(i)
θγ

(
θ0|γ0,ΛC0(C̃i))

)
E(gj)

+ l̈
(i)
θΛC

(
θ0|γ0,ΛC0(C̃i))

)
E(bj(C̃i))

}
+Op(1)

=

n∑
i=1

di(θ0, η0) +Op(1) .

It thus follows from (A.3) that the working score function
can be written as the summation of n independent and iden-
tically distributed mean zero random variables plus some
negligible errors such as

l̇θ(θ0|η̂) =
n∑

i=1

{l̇(i)θ (θ0|η0) + di(θ0, η0)}+Op(1).

Therefore, based on (A.2),
√
n(θ̂ − θ0) converges in distribu-

tion to a mean zero normal random variable with the covari-
ance matrix Σ = Γ′φφ′Γ, where Γ = −{n−1E{l̈θ(θ0|η̂)}}−1

and φ = E{l̇(1)θ (θ0|η0) + d1(θ0, η0)}. This implies that β̂ has
the asymptotic normality and its asymptotic covariance ma-
trix is the leading p× p submatrix of Σ.
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