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Response-adaptive randomization using power
function of hypothesis testing
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Response-adaptive randomization (RAR) procedures
have received extensive attention in clinical trials due to
their considerations of ethics and efficiency. In the frame-
work of RAR procedures, various target allocation propor-
tions have been proposed and studied in literature. In this
paper, we develop a family of RAR procedures using power
function of corresponding hypothesis testing (RAR-P), and
obtain the asymptotic properties under widely satisfied con-
ditions. The proposed procedures are: (i) easy to understand
and implement; (ii) applicable in more situations (continu-
ous and discrete responses); (iii) more ethical than classical
RAR procedures under some situations; and (iv) capable of
monitoring efficiency and re-estimating sample size in clin-
ical trials. Finally, we investigate performance of the pro-
posed procedures through simulation studies.
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ficiency and ethics.

1. INTRODUCTION

In clinical trials, it is extensively accepted to use
response-adaptive randomization based on updated re-
sponse outcomes of patients. The purpose is not only to
efficiently identify clinical benefits of treatments under in-
vestigation, but also to increase the success probability of
the treatments. During the conduct of clinical trials, to pre-
liminarily identify clinical effectiveness of treatments under
study, an intuitive and natural idea is to consider the power
function of hypothesis testing.

Motivated by efficiency and ethical concerns, many
response-adaptive randomization procedures have been in-
troduced and studied in literature [8]. In the development
of response-adaptive randomization, to achieve the desired
allocation proportion, Eisele [4] proposed the “doubly adap-
tive biased coin design (DBCD)”. After that, Eisele and
Woodroofe [5] studied the asymptotic properties of DBCDs
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under somewhat restrictive conditions on allocation func-
tions. The strong consistency, a law of the iterated logarithm
and asymptotic normality of the DBCDs are derived under
some widely satisfied conditions by Hu and Zhang [9]. To
obtain asymptotically best randomization procedures, Hu
et al. [7] derived a lower bound on the asymptotic variance
of the allocation proportions for general response-adaptive
randomization procedures.

It is well-known that Neyman allocation can maximize
the power of tests while comparing two treatments, how-
ever, it may be inappropriate for ethical constraints. In or-
der to reduce the number of patients who are assigned to
the inferior treatment without loss of power, in the case of
binary outcomes, Rosenberger et al. [13] proposed an opti-
mal allocation, which can minimize the expected number of
treatment failures under fixed power. To evaluate the per-
formance of randomization procedures with continuous out-
comes, Zhang and Rosenberger [17] proposed an allocation
proportion as the counterpart of the optimal allocation of
binary outcomes. However, due to specific assumptions, ap-
plication of the above two designs has certain limitations.

In clinical trials, when new patients’ response outcomes
are available, an intuitive idea is to test whether there is
significant difference between two treatment effects. Since
power function can be thought of as the probability of ac-
cepting the difference between two treatment effects, we con-
sider using power function to identify the better performing
treatment.

Response-adaptive randomization procedures have a dual
goal of estimating the treatment effect and randomizing pa-
tients with a higher probability of receiving the superior
treatment. These are competing objectives, and no proce-
dure in the literature is “perfect” with respect to both ob-
jectives [6]. Since the value of power function is a compos-
ite indicator which reflects how strongly response outcomes
are in accordance with the alternative hypothesis, to achieve
the competing objectives, we try to construct allocation pro-
portion function by using power function. Obviously, power
functions are available under both parametric and nonpara-
metric tests, therefore, the proposed RAR procedures are
applicable in most clinical trials.

The paper is organized as follows. Section 2 introduces
the design scheme of the RAR procedures using power func-
tion of hypothesis testing (RAR-P). Theoretical results of
the proposed procedures are presented in Section 3. To val-
idate theoretical results and investigate the performance of
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the proposed procedures, Some simulation studies are car-
ried out in Section 4. An illustration of redesigning a real
clinical trial is shown in Section 5. Section 6 ends with some
concluding remarks.

2. RAR PROCEDURE USING POWER
FUNCTION OF HYPOTHESIS TESTING

Consider a clinical trial with two treatments 0 and 1.
Let Ii be an indicator variable denoting the assignment of
patient i, i = 1, · · · , N , where N is the total number of pa-
tients and there is no early stopping. If patient i is assigned
to treatment j, Ii = j, j = 0, 1. Let Yij be the response
of patient i under treatment j. For patient i, if Ii = j, we
observe Yij , j = 0, 1. Then we can denote the observed re-
sponse outcome as Yij = Yi0(1− Ii) + Yi1Ii.

Patients enter the trial sequentially, for different patients,
suppose Y i = (Yi0, Yi1), i = 1, · · · , N are independently and
identically distributed random vectors, with

Y1j ∼ fj(·, θj), j = 0, 1,

where θ0 and θ1 are the population parameters measuring
the effects of treatment 0 and 1, respectively. For example,
θ0 and θ1 are the expectations of two treated populations.
Similar to the assumptions in the theory of response adap-
tive randomization [8], we assume that Y i is independent
of Y 1, · · · ,Y i−1, I1, · · · , Ii−1, Ii, however, Ii depends on all
previous treatment assignments (I1, · · · , Ii−1) and responses
(Y 1, · · · ,Y i−1). Throughout this paper, we assume a larger
response value (Yij) indicates a favourable clinical situation,
if a smaller response value indicates a favourable situation,
we consider −Yij .

2.1 Power function

The power function of a hypothesis test with rejection
region R is the function of θ defined by β(θ) = Pθ(X ∈ R).

Since we assume a larger response value represents a
favourable clinical situation, i.e., the expected change is in
one direction, the hypothesis test should reflect this as being
one-sided, that is,

(1) H0 : θ1 = θ0 versus Ha : θ1 > θ0.

Let θ̂0 and θ̂1 be the maximum likelihood estimator of θ0
and θ1, respectively. Under regularity conditions in Theorem
6.7 [1], the Wald statistic for (1) has an asymptotic normal
distribution, that is, as n → ∞,

TW =
θ̂1 − θ̂0 − (θ1 − θ0)√
V ar(θ̂1) + V ar(θ̂0)

→ N(0, 1) in distribution.

Let Φ be the cumulative distribution function ofN(0, 1), and
let zτ be the τth quantile of N(0, 1). For given statistical

significance level α, the power function of the Wald test
under (1) is

β(θ0, θ1) = 1− Φ

(
z1−α − θ1 − θ0√

V ar(θ̂1) + V ar(θ̂0)

)
.

If we are interested in testing change in the other direc-
tion, that is,

H0 : θ1 = θ0 versus Ha : θ1 < θ0,

then the power function is

β(θ0, θ1) = Φ

(
zα − θ1 − θ0√

V ar(θ̂1) + V ar(θ̂0)

)
.

When there is no obvious direction to compare two treat-
ments, or considering the treatment difference in the op-
posite direction might turn up, two sided hypothesis test
should be used as follows

H0 : θ1 = θ0 versus Ha : θ1 �= θ0,

and the power function is

β(θ0, θ1) = Φ

(
zα/2 −

θ1 − θ0√
V ar(θ̂1) + V ar(θ̂0)

)

+ Φ

(
θ1 − θ0√

V ar(θ̂1) + V ar(θ̂0)
− z1−α/2

)
.

It is worth mentioning that, under two sided hypothesis
tests, given the same significance level, one may need to
pay for a considerable larger sample size to detect a similar
difference as that of one-sided tests.

In terms of quantification, power function gives an idea
of how strongly the response results accord with the alter-
native hypothesis, namely, power function can be viewed
as the degree of superiority of one treatment to the other
in comparative clinical trials. Based on the intrinsic char-
acteristics of power function, next we consider using power
function to construct allocation proportion function in the
allocation stage.

2.2 Conceptual framework of RAR-P

The response-adaptive randomization procedure using
power function of hypothesis testing (RAR-P) is defined as
follows:

(i) To start, allocatem patients to both treatment 0 and 1
by some restricted randomization procedures. For example,
truncated binomial design or permuted block design [12].
When the responses of the first n (n ≥ 2m) patients are
observed, use n0 and n1 to denote the number of observa-
tions on treated populations Y0 and Y1, respectively, where
n0 + n1 = n.
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During the conduct of clinical trials, as the parameters
in power functions are unknown, they need to be replaced
by corresponding estimators. After the responses of the first
n patients are observed, compute the test statistic T and
denote it as

Tn =
Y 1 − Y 0√

V ar(Y 1) + V ar(Y 0)
,

where Y 1 and Y 0 are the sample means of Y1 and Y0, respec-
tively. For hypothesis testing H0 : θ1 = θ0 versus Ha :
θ1 > θ0 and given significance level α, calculate the power
function by the following formula

βn = 1− Φ

(
z1−α − Y 1 − Y 0√

V ar(Y 1) + V ar(Y 0)

)
.

(ii) Based on the above power function, define the allo-
cation proportion function as follows

(2) ρn =

⎧⎪⎨⎪⎩
0.5, if βn ≤ 2α,

φn(βn), if 2α < βn ≤ p0,

φn(p0), otherwise.

where {φn} is a sequence of monotonically increasing con-
tinuous functions on [0, 1] satisfying φn(0.5) = 0.5 and
limn→∞ φn = φ. p0 is a predetermined tuning parameter
and p0 > 0.5.

According to the definition of power function, for level
α test, when the null hypothesis is true, the value of power
function should be less than or equal to the significance level
α. Therefore, in the allocation proportion function, we let
the allocation proportion be 0.5 when the value of power
function is less than or equals 2α, namely, we implement
complete randomization when the null hypothesis tends to
be true.

When we use the allocation proportion function (2), note
that as βn becomes larger, more patients will be allocated
to the better performing treatment. To avoid extreme allo-
cation cases and ensure a certain number of patients in both
treatment groups, we set boundaries in the allocation pro-
portion function (2). By selecting different tuning parameter
p0, the upper bound of the allocation proportion function
can be adjusted, which will influence the targets of alloca-
tion proportions. In clinical trial practice, we shall choose an
appropriate tuning parameter p0 according to early studies
and experiences.

Note that we assume a larger response value indicates
a favourable clinical situation, power can be viewed as the
competing probability of comparing two treatments. There-
fore, we construct allocation functions as follows

(3) φn(βn) =
βτn
n

βτn
n + (1− βn)τn

,

where τn = n/2N , n is the current sample size when a new
patient is coming and N is the total sample size of the trial
set in advance. Under level 0.05 test, by choosing tuning
parameter p0 = 0.8, we can obtain a sequence of allocation
proportion functions as follows

(4) ρn =

⎧⎪⎨⎪⎩
0.5, if βn ≤ 0.1,

φn(βn), if 0.1 < βn ≤ 0.8,

φn(0.8), otherwise.

where functions φn(·) are defined in (3). The characteristics
of (4) are: i) when sample size n is small, the parameter τn
is close to 0, then the value of allocation proportion function
is close to 0.5, at this moment, the proposed procedure allo-
cates patients almost as complete randomization; ii) as the
sample size increases, power function will become accurate
and play a more significant role in the allocation procedure,
namely, the proposed procedure will allocate patients to the
better performing treatment with larger probability accord-
ing to power function.

(iii) Conditional on the assignments and responses of the
first n patients, assign the (n+ 1)th patient to treatment 1
with probability

P (In+1 = 1|I1, · · · , In, Y10, · · · , Yn00, Y11, · · · , Yn11)

= g(n1/n, ρn),

where g(x, y) : [0, 1]×[0, 1] → [0, 1] is the allocation function
proposed by Hu and Zhang [9] as follows
(5)

g(x, y) =

{
y(y/x)γ

y(y/x)γ+(1−y)[(1−y)/(1−x)]γ , if 0 < x < 1,

1− x, if x = 0 or x = 1.

where γ ≥ 0, which can adjust the degree of randomness of
the randomization procedure.

To clarify the proposed randomization procedure under
the other direction of tests, we would like to introduce the
allocation proportion function under hypothesis testing H0 :
θ1 = θ0 versus Ha : θ1 < θ0.

Given significance level α, when responses of the first n
patients are observed, power function can be calculated by

βn = Φ

(
zα − Y 1 − Y 0√

V ar(Y 1) + V ar(Y 0)

)
.

Note that if the alternative hypothesis Ha is true, the value
of power function will become larger as the sample size in-
creases. From the perspective of ethics, we shall allocate less
patients to treatment 1, at this moment, the allocation pro-
portion functions should be defined as follows

(6) ρn =

⎧⎪⎨⎪⎩
0.5, if βn ≤ 2α,

1− φn(βn), if 2α < βn ≤ p0,

1− φn(p0), otherwise.
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where {φn} is a sequence of monotonically increasing con-
tinuous functions on [0, 1] satisfying φn(0.5) = 0.5 and
limn→∞ φn = φ. p0 is a predetermined tuning parameter
and p0 > 0.5.

When two-sided hypothesis tests are needed, although
the critical regions are different, by comparing sample mean
of two treated populations, we can still construct allocation
proportion functions the same as that for one-sided hypoth-
esis tests.

2.3 An illustrative example

To illustrate how the proposed design is implemented, we
give an example in the context of a real clinical trial.

In order to compare the efficacy of a fixed-dose triple com-
bination (FDTC) of antihypertensive drugs with that of a
free combination of three antihypertensives in patients with
uncontrolled hypertension, Mazza et al. [11] conducted a
clinical trial. A total of 184 eligible patients were enrolled be-
tween October 2015 and June 2016 in the Hypertension Cen-
tre of the Rovigo General Hospital. In this study, half of the
patients (n1 = 92) were treated with fixed-dose triple com-
bination antihypertensive therapy, and the other (n0 = 92)
were treated with a free combination of three antihyperten-
sives.

Continuous variable was expressed as mean and stan-
dard deviation in final statistical analyses. Finally, Mazza
et al. [11] reported their conclusion: FDTC of perindo-
pril/indapamide/amlodipine was more effective at reduc-
ing systolic blood pressure and pulse pressure in previously
treated patients with uncontrolled hypertension, and well
tolerated.

If the clinical goal is to control the blood pressure of hy-
pertensive patients only, we can focus on whether there is
significant reduction in systolic blood pressure during the
clinical trial. Assume reduction values of systolic blood pres-
sure in both treatment groups follow normal distribution,
i.e., Y1 ∼ N(15.3, 8), Y0 ∼ N(13.1, 8). To simulate alloca-
tion procedure, next we use Monte Carlo method to generate
random samples.

To accrue some data on patients’ responses to each treat-
ment, we begin the procedure with permuted block design
(block size is 4) for the first 20 patients (m = 10). Suppose
100 patients have been assigned to a treatment, record the
number of patients who are assigned to treatment 1 (FDTC)
and denote it as n1. When the first 100 patients’ responses
are available, for significance level 0.05, according to the
formula of power function, we can figure out the value of
power function β100 = 0.756. Note that n = 100, N = 184,
it is easy to know τn = 100/368. By using the allocation
proportion function in Eq. (4), we have

ρn = φn(0.756) =
0.756τn

0.756τn + 0.244τn
= 0.576.

Based on the above results, applying Hu and Zhang’s alloca-
tion function in (5) with γ = 2, we can obtain that the 101th

patient shall be assigned to treatment 1 with probability

g(n1/n, ρn) = g(54/100, 0.576) = 0.645.

Repeat the above steps till the last patient is assigned to a
treatment.

3. THEORETICAL RESULTS

In this section, we present asymptotic properties of the
response-adaptive randomization using power function of
hypothesis testing. Intuitively, if one treatment is superior
to the other, the allocation function will skew the allocation
towards the superior treatment, the random skewing will be-
come more and more notable till the value of power function
is greater than the predetermined upper bound (p0). As a
result from Theorem 4.1 and Theorem 4.3 [9], we have the
following theorem.

Theorem 3.1. For some ε > 0, E‖Yij‖2+ε < ∞, j = 0, 1.
Consider hypothesis testing problem

H0 : θ1 = θ0 versus Ha : θ1 > θ0,

the allocation function g is given in (5), and the alloca-
tion proportion function based on power functions is given
in (2). If the alternative hypothesis Ha is true, then as
min(n0, n1) → ∞,

ρn → φ(p0) a.s.,
n1

n
→ φ(p0) a.s.

and

√
n

(
n1

n
− φ(p0)

)
→ N(0, v) in distribution,

where v = 1
2γ+1φ(p0)

(
1− φ(p0)

)
.

Proof. Under the alternative hypothesis Ha : θ1 > θ0, the
values of Y1 tend to be greater than the values of Y0, then
the corresponding power functions are

βn = 1− Φ

(
z1−α − Y 1 − Y 0√

V ar(Y 1) + V ar(Y 0)

)
.

Since the alternative hypothesis Ha is true, as
min(n0, n1) → ∞, βn have a distribution that is more
concentrated on 1, i.e., βn → 1 a.s. Note that we assume
limn→∞ φn = φ, and by the continuity of function (2) at
point p0, we have

ρn = φn(βn) → φ(p0) a.s.

Let Fn = σ(I1, · · · , In, Y10, · · · , Yn00, Y11, · · · , Yn11) be the
sigma-algebra generated by the first n treatment assign-
ments and responses. According to the intrinsic properties
of allocation function g(x, y), for each n > 2m, there exists
constant c > 0, such that
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P (In+1 = 1|Fn) = g(n1/n, ρn) > c,

then we have

∞∑
n=2m+1

P (In+1 = 1|Fn) ≥
∞∑

n=2m+1

c = +∞,

which implies {In = 1, i.o.} = {n1 → ∞} almost surely by
the generalized Borel-Cantelli lemma. Then, by Theorem 4.1
of Hu and Zhang [9], we can obtain

n1

n
→ φ(p0) a.s.

The asymptotic normality of n1/n is a direct result of The-
orem 4.3 of Hu and Zhang [9], and the asymptotic vari-
ance v can be easily derived by calculating Fisher’s infor-
mation.

Theorem 3.1 is the large sample properties of the pro-
posed randomization procedure. When Ha is true, i.e., one
treatment is better than the other, the proposed random-
ization procedure will assign about φ(p0) proportion to the
better treatment. Theorem 3.1 suggests, the parameter γ in
allocation function (5) directly affects the allocation vari-
ability of the randomization procedure, which will decrease
as γ increases. Given specific sequence of monotonically in-
creasing functions and fixed tuning parameter, the proposed
randomization procedure can target an explicit allocation
proportion.

4. SIMULATION STUDIES

In this section, simulations are conducted to study the
performance of the proposed randomization procedure. We
compare different randomization procedures from the fol-
lowing aspects: (1) type I error rate, which is the probability
of rejecting null hypothesis given that it is true; (2) the av-
erage proportion of patients assigned to treatment 1, which
reflects ethical gains; (3) the power, which is the probability
of rejecting null hypothesis when the alternative hypothesis
is true; (4) allocation variability (AVar), which is the vari-
ability of final allocation proportions; and (5) total expected
response (TER), which is the mean of all patients’ response
outcomes.

For continuous responses, we compare the RAR-P with
three available randomization procedures: (i) complete ran-
domization (CR); (ii) response-adaptive randomization tar-
geting the Neyman allocation (RAR I); (iii) response-
adaptive randomization targeting the optimal allocation
(RAR II) proposed by Zhang and Rosenberger [17].

It is worth mentioning that RAR II is designed for clin-
ical trials with continuous outcomes, hence, we do not
use it in the case of binary responses. Since we assume a
larger response value indicates a favourable clinical situ-
ation, the optimal allocation proportion of RAR II shall

Table 1. Type I error rate and allocation proportion

Procedure N Type I error N1/N

CR 100 0.0497 0.5005
200 0.0506 0.5000
500 0.0517 0.4997

RAR I 100 0.0575 0.4993
200 0.0550 0.4999
500 0.0525 0.5002

RAR II 100 0.0562 0.5000
200 0.0539 0.4995
500 0.0528 0.5000

RAR-P 100 0.0487 0.4691
200 0.0498 0.4684
500 0.0502 0.4673

be ρ = σ1
√
μ1

/
(σ1

√
μ1 + σ0

√
μ0), where Y0 ∼ N(μ0, σ

2
0),

Y1 ∼ N(μ1, σ
2
1).

In RAR I, RAR II and RAR-P, we apply Hu and Zhang’s
allocation function (5) with γ = 2. The first 20 patients
(m = 10) are assigned to treatment 0 or treatment 1 by
permuted block design (block size is 4). In particular, for
RAR-P, we choose the tuning parameter p0 = 0.8, and use
the allocation proportion functions (4) to allocate patients.

In the following simulations, total sample size N is 100,
200 and 500, respectively. The final number of patients in
treatment group 0 and 1 are denoted as N0 and N1, respec-
tively. All simulation results are based on 10,000 repetitions.

4.1 Case 1: normal responses

Firstly, we simulate four randomization procedures to
show Type I error rates. Assume that the responses of pa-
tients under two treatments follow the same distribution
N(1, 1). The simulated Type I error rates (under signifi-
cance level 0.05) and allocation proportions are reported in
Table 1. The results in Table 1 suggest, compared with the
other three randomization procedures, RAR-P have valid
Type I error rates (not inflated).

Secondly, suppose the responses of patients under treat-
ment 0 and treatment 1 follow distribution N(1, 1) and
N(1.5, 1), respectively. In the final tests, Student’s t-tests
are applied. Power, allocation proportion of patients under
treatment 1 and corresponding allocation variability (AVar),
total expected response (TER) are reported in Table 2.

The results in Table 2 show the power of RAR-P is rel-
atively small when the sample size is not large, however, as
the sample size increases, RAR-P performs better on power
compared with the other three procedures. From the per-
spective of ethics, RAR-P has a larger expected allocation
proportion and a larger expected response (desirable). The
results of allocation variability show the allocation propor-
tion of RAR-P converges as the sample size increases, which
confirms Theorem 3.1. Furthermore, by simulating different
symmetrically distributed responses, we get similar results
as that in Table 2.
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Table 2. Power, allocation proportion, allocation variability
and total expected normal responses

Procedure N Power N1/N AVar TER

CR 100 0.7932 0.4999 0.0500 1.2480
200 0.9690 0.5000 0.0352 1.2496
500 0.9999 0.5000 0.0228 1.2504

RAR I 100 0.7975 0.5000 0.0468 1.2505
200 0.9681 0.4992 0.0326 1.2496
500 0.9998 0.4998 0.0202 1.2502

RAR II 100 0.7976 0.5529 0.0535 1.2779
200 0.9656 0.5519 0.0370 1.2766
500 0.9999 0.5512 0.0231 1.2758

RAR-P 100 0.7931 0.5489 0.0776 1.2739
200 0.9693 0.5971 0.0486 1.2992
500 1.0000 0.6234 0.0114 1.3119

4.2 Case 2: binary responses

To simulate the most commonly used discrete re-
sponses, we consider that patients’ responses under treat-
ment 0 and treatment 1 follow distribution Bernoulli(0.3)
and Bernoulli(0.5), respectively. Here we still simulate
four randomization procedures: (i) complete randomiza-
tion (CR); (ii) response-adaptive randomization target-
ing the Neyman allocation (RAR I); (iii) optimal al-
location for binary responses proposed by Rosenberger
et al. [13], which will be denoted as “RSIHR” in the
simulated results; and (iv) response-adaptive randomiza-
tion using power function of hypothesis testing (RAR-
P).

In the case of binary responses, for the design RSIHR, the
optimal allocation proportion for treatment 1 is

√
p1/(

√
p0+√

p1), where p0 and p1 are the success probability of treat-
ment 0 and 1, respectively; for the proposed design RAR-
P, we still use the allocation proportion function (4). All
simulated results for binary responses are reported in Ta-
ble 3.

The results in Table 3 display when the sample size is
large, since power function of hypothesis testing is rela-
tively accurate at the moment, compared with the other
three randomization procedures, RAR-P can perform bet-
ter on power and total expected success rates. Of course,
RAR I and RSIHR can do better on power as expected
when the sample size is not large. Besides, for RAR-P, the
downward trend of allocation variability indicates that the
allocation proportion will converge as the sample size in-
creases.

5. REDESIGNING A REAL CLINICAL TRIAL

In this section, we consider redesigning a real clinical trial
conducted by Dworkin et al. [3]. The real trial was also used
for illustration by Zhang and Rosenberger [17], Biswas et
al. [2]. It was a randomized, placebo-controlled trial with an
objective to evaluate the efficacy and safety of pregabalin in

Table 3. Power, allocation proportion, allocation variability
and total expected binary responses

Procedure N Power N1/N AVar TER

CR 100 0.5770 0.4999 0.0501 0.3998
200 0.8733 0.4999 0.0356 0.3997
500 0.9976 0.5003 0.0223 0.4003

RAR I 100 0.5885 0.5310 0.0665 0.4069
200 0.8725 0.5302 0.0640 0.4055
500 0.9973 0.5269 0.0465 0.4052

RSIHR 100 0.5838 0.5759 0.0716 0.4157
200 0.8719 0.5764 0.0703 0.4155
500 0.9978 0.5776 0.0756 0.4154

RAR-P 100 0.5842 0.5367 0.0673 0.4076
200 0.8733 0.5778 0.0570 0.4156
500 0.9985 0.6190 0.0189 0.4241

the treatment of postherpetic neuralgia (PHN). In the trial,
173 patients were randomized to treatments: 89 to prega-
balin (treatment 1) and 84 to placebo (treatment 0). The
primary efficacy measure was pain reduction, as recorded by
patients in a daily diary using the 11-point numerical pain
rating scale (0= no pain, 10= worst possible pain). There-
fore, a lower score indicates a favorable situation. After an 8
week duration of the trial, it was observed that pregabalin-
treated patients experienced a higher decrease in pain score
than patients treated with placebo. In these patients, there
was still greater improvement in the endpoint mean pain
scores in the patients treated with pregabalin than patients
treated with placebo (endpoint mean scores 3.60 vs 5.29, p
= 0.0001).

Here we redesign the trial based on the endpoint mean
scores, i.e., 3.60 (with SD=2.25) for pregabalin and 5.29
(with SD=2.20) for placebo as the true ones. To investigate
the performances of four randomization procedures, we use
Normal and Double Exponential (DE) distributions to sim-
ulate the ordinal pain scores, respectively.

Since a lower score (response) indicates a favourable clin-
ical situation, the optimal allocation proportion of RAR
II shall be ρ = σ1

√
μ0/(σ1

√
μ0 + σ0

√
μ1), where Y0 ∼

N(μ0, σ
2
0), Y1 ∼ N(μ1, σ

2
1). To simulate RAR-P correctly,

we shall use allocation proportion function (6).
The responses of 173 treated patients are simulated

by distributions: (i) N(5.29, 2.202) under placebo and
N(3.60, 2.252) under pregabalin; and (ii)DE(5.29, 2.20/

√
2)

under placebo and DE(3.60, 2.25/
√
2) under pregabalin. All

simulation results in Table 4 are obtained on the basis of
10,000 repetitions.

We observe in Table 4 that whether two treated responses
are from normal distribution or double exponential distribu-
tion, the proposed procedure (RAR-P) can allocate more pa-
tients to the better treatment and has smaller TER, namely,
it outperforms the other three procedures from the perspec-
tive of ethics. Simultaneously, RAR-P has the smallest allo-
cation variability. As for power, there is no significant dif-
ference among the four procedures.
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Table 4. Power, allocation proportion, allocation variability
and total expected responses

Procedure N Power N1/N AVar TER

Normal CR 173 0.9997 0.5003 0.0375 4.4437
RAR I 173 0.9994 0.5060 0.0351 4.4344
RAR II 173 0.9997 0.5544 0.0365 4.3537
RAR-P 173 0.9994 0.6213 0.0200 4.2365

DE CR 173 0.9995 0.4997 0.0384 4.4467
RAR I 173 0.9995 0.5076 0.0503 4.4311
RAR II 173 0.9996 0.5555 0.0518 4.3513
RAR-P 173 0.9994 0.6206 0.0206 4.2420

6. CONCLUDING REMARKS

In this paper, we develop a family of RAR procedures us-
ing power function of hypothesis testing. Since power func-
tion indicates the evidence of hypothesis testing, the pro-
posed randomization procedures are intuitively attractive.
Note that we keep updating the values of power function
in the randomization procedures, when the values of power
function reach a certain level, we can concentrate on max-
imizing the total expected response which reflects ethical
gains. Hence, the proposed procedures can be fitted in the
framework of Zhang and Rosenberger [17] for parametric
models, namely, under parametric models, the new proce-
dures may be optimal when the sample size reaches a certain
level. Under nonparametric models, to implement the pro-
posed randomization procedures, we can apply the power
function proposed by Rosner and Glynn [15].

According to the basic idea of adaptive randomization,
we construct a family of allocation proportion functions to
make more patients be assigned to the better treatment.
As discussed by Tymofyeyev et al. [16], it is important to
have a boundary of the allocation proportion in practice. To
make the allocation not go to an extreme, we set a boundary
in the allocation proportion function. By adjusting tuning
parameter, the proposed randomization procedures can tar-
get different allocation proportions, therefore, the proposed
procedures have flexibility.

Clinical trials have multiple objectives, different trials
may emphasize on different objectives. Efficiency is critical
for demonstrating efficacy. Randomization mitigates certain
biases. Ethics is an essential component in any human ex-
perimentation, and dictates the treatment of patients in the
trial [14]. In the proposed randomization procedures, these
considerations can be compromised by adjusting the tuning
parameter. Since investigators understand the background
of a trial, they can choose an appropriate tuning parameter
beforehand. For example, when ethical concerns dominate
the trial, investigators shall choose a larger tuning parame-
ter p0 to allow more patients to be allocated to the better
treatment, this is especially important when the disease be-
ing combatted is life-threatening.

To make the design more tractable, we focus on com-
paring two treatments in this paper. However, comparing

multiple treatments are often encountered in clinical trial
practice. Generalizing the proposed procedures to multi-
treatments is an open question, we leave this for future re-
search.

In fact, we assume immediate availability of patients’ re-
sponse outcomes. However, it is not difficult to incorporate
delayed responses into the proposed procedures. In practice,
we can always update the values of power function when-
ever new patients’ responses become available. This issue
has been well-studied for classical response-adaptive designs
in literature [10]. Corresponding results can be extended to
the proposed procedures under similar conditions.
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