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Discovering stock chart patterns by statistical
estimation and inference

Hoang Tran and Yiyuan She
∗

Statistical modeling of stock price data is challenging
due to heteroskedasticity, heavy-tails and outliers. These
issues can be particularly relevant to the technical anal-
ysis practitioner who extracts trading signals from geo-
metric patterns in prices. In this work, we propose a new
method called Non-Parametric Outlier Identification and
Smoothing (NOIS), which robustly smooths stock prices,
automatically detects outliers and constructs pointwise con-
fidence bands around the resulting curves. In real-world ex-
amples of high-frequency data, NOIS successfully detects
erroneous prices as outliers and uncovers borderline cases
for further study. NOIS can also highlight notable features
and reveal new insights in inter-day chart patterns.
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1. INTRODUCTION

Technical analysis or “charting” is a financial discipline
that attempts to extract information from the stock market
through the use of heuristic rules and geometric patterns.
Practitioners have traditionally performed technical analysis
by examining stock charts, identifying patterns in the price
trend that have historically yielded positive returns, then
placing a market order [12]. Figure 1 is an example of a
continuation pattern, which the trader uses as a signal for a
continuing upward price trend.

A crucial aspect of identifying a pattern such as the cup
and handle is that the trader uses the shape of a stock price
series as the basis for his or her decisions. The inherent noise
and non-linearity in stock price data can make it difficult to
determine the salient features of a series. Thus, it could be
preferable for the practitioner to instead use a curve with
the noise “smoothed out”. [15] described a statistical ap-
proach to this problem in which the non-parametric ker-
nel smoothing method was used to estimate the underly-
ing curve. If outliers are present in a stock chart, a curve
fitted by the usual non-robust kernel smoother would be
pulled away from the majority of the data in the direction
of the anomalous points. The decisions of a technical anal-
ysis trader could then become unduly influenced. In addi-
tion, the outliers themselves can be informative and it can
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Figure 1. Cup and handle chart pattern.

be time consuming to manually identify them. Therefore, we
wish to systematically construct a robust function estimate
while automatically detecting outliers.

One generally accepted definition of outliers is that they
are data points appearing to deviate markedly from other
members of the sample in which they occur [1]. In applying
this definition to stock price data, we characterize outliers
as uncharacteristic deviations in the price level that are sep-
arate from the majority of the data. These outliers are a
pervasive problem, as financial data is often littered with
individual observations that have seemingly been affected
by unknown or external events [20]. This can be especially
problematic in high-frequency or intra-day price data, where
it is estimated that as many as 2%− 3% of the observations
are outliers [4].

Figure 2 is an example of what might be considered a
cup and handle pattern with one outlier in high-frequency
trading prices of McDonald’s (MCD). The solid line is a
non-robust kernel smoothing estimate. There is a peak in
the fitted curve due to the outlier which occurs about $0.25
off the prevailing price level. Although it seems trivial to
manually identify the outlier in this figure, due to the sheer
volume of high-frequency data we require a method that can
parse big data and automatically identify anomalies.

The contributions of this work are three-fold. First,
our method robustly estimates the curve underlying stock
price data and automatically detects outliers. We refer to
our method as Non-Parametric Outlier Identification and
Smoothing (NOIS). In contrast to some previous techniques
that require multiple tuning parameters dependent on the
market type and instrument [20], NOIS uses only two pa-
rameters with straightforward interpretations that can be
intuitively set by a practitioner. Additionally, NOIS not
only identifies outliers but also produces a smoothed curve
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Figure 2. McDonald’s trading prices on Jan. 3rd, 2012 from
10:18:18 to 10:20:00 am.

Figure 3. Flag chart pattern.

to be used for further applications such as stock chart pat-
tern detection. Second, we use non-parametric techniques to
construct pointwise confidence bands around the curve esti-
mated by NOIS. These bands address the heteroskedasticity
of financial data by providing a visual measure of the uncer-
tainty in the smoothed curve. Taken together, we refer to a
NOIS curve and its confidence bands as a NOIS bundle.
Finally, we use real-world examples and simulation studies
to demonstrate the efficacy of the outlier detection compo-
nent of NOIS. We also reveal how NOIS bundles can assist
the technical analysis practitioner in extracting additional
information from previously identified patterns. In this work
we focus on applications to stock price data, but NOIS can
be used to analyze time series data of nearly any financial
instrument, including derivatives and volatility.

It is perhaps best to illustrate the proposed method on
a real-world example. The flag (cf. Figure 3) is a continu-
ation pattern that can be used to confirm a prior upward
or downward trend. It is typically characterized by accel-
erating prices (sometimes referred to as the flagpoles) on
either side of price movement within two downward sloping
trendlines. [26] identified a flag pattern on daily prices of
Hewlett-Packard (HPQ) between April and August of 1999.
Figure 4 presents a NOIS bundle fit to this data; the solid
line is the NOIS function estimate, confidence intervals are
shaded and detected outliers are marked by a triangle. The
NOIS bundle allows us to clearly identify the prominent

Figure 4. NOIS bundle for HPQ from 04/12/1999 to
07/26/1999.

features of a bullish flag pattern: upward acceleration, price
movement between downward sloping trendlines and then
upward acceleration out of the flag. An interesting trait is
that the bundle seems to become thicker when the stock
price is within the flag. This is perhaps unsurprising because
in these regions, there is a greater amount of movement and
consecutive prices are farther apart. NOIS also detects two
outliers near the left flagpole that warrant further investiga-
tion, as it seems that they cause the bundle width to increase
in this region.

In Section 2 we elucidate the various components of our
method and describe how it can tackle the non-linearity,
heavy-tails, outliers and heteroskedasticity of stock price
data. Then, in Section 3 we conduct experiments on syn-
thetic and real-world data to demonstrate the potency of
NOIS. Finally, we conclude with a discussion in Section 4
and provide additional computational details in Section 5.
The methods described in this paper are implemented in an
R package [21] at https://github.com/hoangtt1989/NOIS.

2. CHALLENGES AND METHODOLOGY

2.1 Non-linearity of stock prices

It is clear from Figures 2 and 4 that a non-linear trend
underlies this price series, which renders conventional para-
metric approaches such as linear regression inappropriate.
Therefore, we need a non-parametric method that can
capture the non-linear trend in price. Two common non-
parametric methods for tackling non-linearity are basis ap-
proaches such as splines and kernel smoothing. Representing
the underlying function with a basis expansion is often suc-
cessful at capturing global effects, but it is perhaps not as
applicable to the detection of local features in stock chart
patterns. On the other hand, because it is a locally weighted
average, kernel smoothing can extract these features with
more granularity and thus adapts well to the rapid changes
in stock prices.

[15] previously applied kernel smoothing to various stock
price series to develop a pattern recognition algorithm for
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automating technical analysis. Following their work, we use
the Nadaraya-Watson kernel smoother. In summary, kernel
smoothing or kernel regression reduces observational noise
by taking a weighted average of observations in a neighbor-
hood. The observations are weighted by a kernel function
and the size of this neighborhood is determined by an ac-
companying bandwidth h. Some popular kernel functions
include the Gaussian, Epanechnikov and Tri-cube kernels.
Because only neighboring observations are included in the
estimation of some function value f(x), kernel smoothing is
successful at capturing local behavior around a target point
x and it naturally handles the non-linearity of stock prices.

We could consider the following as a prototype model
(assuming that no observations are outlying): yt = f(xt) +
εt, t = 1, . . . , n where εt ∼ N(0, σ2(xt)) and f(xt) is an
unknown function. Here, yt represents the stock price and
xt is an index of time. Thus, this prototype assumes that
a stock price at some time t is the sum of an unknown,
possibly non-linear function and a Gaussian noise term. At
a target point x0, the Nadaraya-Watson estimating equation
for f(x0) in the above model is:

n∑
t=1

Kh(x0 − xt)[yt − f(x0)] = 0(1)

where Kh(·) is a kernel function with bandwidth h; for con-
venience we use the Gaussian kernel in this work, but the
method is easily generalizable to other choices of the kernel
function.

As seen in Figures 2 and 4, the trend of a stock price
can be quite “wiggly” in certain regions. This presents a
further challenge because the kernel smoothing estimator is
biased in areas of high curvature and at the boundaries [9].
Additionally, if one wishes to forecast or extrapolate the
model, the boundary bias can result in spurious predictions.

Some standard techniques for reducing the effect of the
bias include undersmoothing with a small bandwidth [2] and
estimating the second derivative, both of which are non-
trivial in practice [9]. We address the bias correction issue by
the method of [14], which uses a different estimating equa-
tion than (1):

n∑
t=1

Kh(x0 − xt)(yt − f̂(xt) + f̂(x0)− r(x0)) = 0(2)

where f̂(x0) is found by solving (1) for the Nadaraya-Watson
function estimate. By solving for r(x0) in (2), we can obtain
a bias-corrected kernel smoothing estimate. The idea is that
Kh(x0 − xt)(yt − f̂(xt) + f̂(x0) − r(x0)) will be close to
Kh(x0 − xt)(yt − f(xt) + f(x0)− r(x0)) = Kh(x0 − xt)(εt +
f(x0)− r(x0)) which is an unbiased estimating equation for
f(x0). Our method for outlier resistant kernel smoothing
first uses (1) for robust function estimates, then corrects for
the bias by solving for r(x0) in (2). Further details for bias
correction are given in Section 5.2.

Figure 5. Normal Q-Q plot of S&P 500 residuals from
08/16/1989 to 08/07/1991.

Another critical topic in smoothing stock price data is
bandwidth selection. If the chosen bandwidth h is too small,
the fitted curve will be too jagged and offer little improve-
ment over the raw stock price series for identifying chart pat-
terns. On the other hand, with a bandwidth that is too large
for the given data, the curve will be unnecessarily smooth
and we may miss features of technical analysis chart pat-
terns. Therefore, we require a data-dependent method to
determine a suitable value for h. The conventional approach
to tuning h is leave-one-out cross-validation (LOOCV), but
this can produce inappropriate bandwidths for dependent
data [3]. In our experience, the method from [28] (re-
ferred to as MCV for modified cross-validation), can pro-
duce more reasonable results than LOOCV for detecting
technical analysis chart patterns. Computational details of
cross-validation are left to Section 5.1.

2.2 Outlier-resistant kernel smoothing

Another statistical challenge of stock price data is its
heavy-tails and outliers. Figure 5 is a Q-Q plot of the resid-
uals from a kernel smoothing fit of 500 days of S&P 500
closing prices from August 16th, 1989 to August 7th, 1991.
The plot shows that the noise distribution of the data is
heavy-tailed. In other words, large residuals and extreme
price movements occur more often than would be expected
under a Gaussian distribution. The large deviations from
normality near the bottom of the plot are particularly prob-
lematic and could be outliers.

Anomalous prices in this data introduce an additional
challenge because the functional data techniques from Sec-
tion 2.1 are sensitive to outliers. Specifically, (1) results from
a non-robust squared error loss function

min
f(·)∈F

n∑
t=1

Kh(x0 − xt)[yt − f(x0)]
2(3)

where F is a functional family, e.g., F = {f(x) = α + βx :
a ∈ R, b ∈ R}. Unless otherwise specified, in this work we
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limit F to the constant term α. The squared error loss func-
tion penalizes large deviations too heavily and can become
dominated by only a small number of outliers. This can be
exacerbated in the presence of gross outliers, in which a sin-
gle severe anomaly can have a large effect on the curve esti-
mate, as seen in Figure 2. To rectify this problem, some pre-
vious approaches substitute an M -estimate of the regression
mean, where the estimate f̂(x0) solves an estimating equa-
tion with an appropriately chosen Ψ function (e.g. [6], [10]
and [11]). Other approaches substitute robust loss functions
such as the absolute value, leading to a least absolute devia-
tions type of estimator [5]. However, a loss function must be
non-convex and non-smooth to be robust to both gross and
moderate outliers, which introduces difficulties in computa-
tion [8]. Our proposed method is resistant to both moderate
and gross outliers because it explicitly identifies them by in-
troducing an outlier term and it requires no modification of
the squared error loss function.

In the spirit of [25], we propose a new functional form
with a mean-shift parameter γt to achieve our goals of outlier
detection and robust estimation:

yt = f(xt) + γt + εt t = 1, . . . , n(4)

where εt ∼ N(0, σ2(xt)). When an observation t is an out-
lier, γt �= 0. For a “clean” or non-outlying observation k,
γk = 0. Since outliers should not be the norm, we also
impose sparsity on γ = [γ1 . . . γt]. In the context of stock
prices, a sparsity assumption is reasonable considering the
2%− 3% estimate of outliers in high-frequency data.

The sparse mean-shift parameter γ in (4) leads to a pe-
nalized kernel smoothing objective function

min
f(x0),γ

n∑
t=1

Kh(x0 − xt)[yt − γt − f(x0)]
2 + λ

n∑
t=1

P (γt).

(5)

where P (·) is a sparsity-promoting penalty function with
tuning parameter λ and Kh(·) is a kernel with bandwidth
h. For example, P (·) can be a convex function such as the L1

penalty. An interesting fact is that with the L1 penalty, the
above regression problem amounts to using Huber’s loss [24],
which is not robust enough to multiple gross outliers.

In this work, we instead use the constrained form with
an L0 constraint on γ:

min
f(x0),γ

n∑
t=1

Kh,t(x0)[yt − γt − f(x0)]
2

s.t.
∑

t∈J (x0)

1γt �=0 ≤ q(x0)
(6)

where Kh,t(x0) ≡ Kh(x0 − xt), J (x0) =
{ t : Kh(x0 − xt) �= 0 } and J(x0) = |J (x0)|. It is easy
to argue that when optimizing (6) the constraint is equiva-

Algorithm 1Kernel smoothing with joint outlier detection.

Input: ϑ ∈ (0, 1), x, y, h (by cross-validation)
for k ≤ n do

j ← 0, γ(j) ← 0
while not converged do

yadj ← y − γ(j)

f̂(xk) ←
∑n

t=1 Kh,t(xk)y
adj
t /

∑n
t=1 Kh,t(xk)

J (xk) ← { t : Kh,t(xk) �= 0 }, J(xk) ← |J (xk)|,
q(xk) ← floor(ϑ× J(xk))

w(xk) ← Kh,t∈Jk (xk)/
∑n

t=1 Kh,t(xk)

r(j) ← diag{
√

w(xk)}(y − f̂(xk))

γ(j+1) ← (diag{
√

w(xk)})−1Θ#(r(j); q(xk))

p(j+1) ← ‖γ(j+1) − γ(j)‖∞
converged ← p(j+1) < ε
j ← j + 1

end while
Ω[:, k] ← γ(j), Y adj[:, k] ← yadj

end for
Output: f̂ , Ω̂, Y adj

lent to ‖γ‖0 ≤ q(x0). The discreteness, non-differentiability
and non-convexity of the L0 constraint introduce difficulties
in jointly optimizing over f(x0) and γ. On the other hand,
suppose that estimation of f(x0) by kernel smoothing
involves d free parameters. By including γ in the objective
function, this actually becomes a higher dimensional prob-
lem with n + d degrees of freedom, but the L0 constraint
effectively reduces the number of estimable parameters to
q(x0) + d. Another advantage of the constrained form is
that we set q(x0) which is simply the number of detected
outliers, rather than tuning λ for the penalized form, which
can be difficult in practice. For example, if J(x0) = 100
at some target point x0, we could set q(x0) = 5 to
identify 5% of the points with non-zero kernel weights as
outliers.

Due to the nature of the L0 constraint, Algorithm 1 will
classify the q(x0) largest estimates of γ0 as outliers, re-
gardless of their magnitude. It is arguable that information
about the magnitude of γ0 should be taken into account
when detecting outliers, but by using the L0 constraint our
method takes a conservative perspective. As long as q(x) is
reasonably large, the method removes “dangerous” points
lying far away from the majority to ensure robustness and
guard against outliers, which is one of the goals of this
work.

For γ given, the solution to (6) is the Nadayara-Watson

estimator with a shifted yt: f̂(x0) =
∑n

t=1 Kh,t(x0)(yt −
γt)/

∑n
t=1 Kh,t(x0). Of course, this estimator can only be

computed if γ is known. Therefore, we devise a scheme that
alternates between estimating f(x) through kernel smooth-
ing then detecting outliers by thresholding the resulting
weighted residuals. We first introduce some notation be-
fore outlining the procedure in Algorithm 1. The parameter
ϑ ∈ (0, 1) controls the percentage of points that will be de-
tected as outliers around some target point x0. The operator
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Figure 6. Pooled and unpooled NOIS estimates. Triangles
represent outliers detected by NOIS, which are also the true

outliers.

Θ# is quantile thresholding [23]:

Θ#(x; q) =

{
x(j) if j ≤ q

0 otherwise
.(7)

Here, x(1), . . . , x(n) are the order statistics of x =
[
x1 . . . xn

]
:

|x(1)| ≥ · · · ≥ |x(n)|. We use floor(x) to denote the largest
integer less than or equal to x and diag{x} to denote a
diagonal matrix with the vector x as its diagonal entries. For
a matrix X ∈ R

m×n, the notation X[:, k] is an abbreviation
for X[1 :m, k] (the kth column of X).

After running Algorithm 1 for a given dataset, we return
two matrices Ω̂ and Y adj. Each column in Ω̂ is a vector
γ̂ estimated at a target point x0 and each column in Y adj

is a vector of clean prices associated with a target point
x0. As shown in Figure 6, the resulting function estimate is
“bumpy” since a different set of prices is used to compute
each f̂(xt). In addition, it is difficult to interpret the raw
outlier detection results because Algorithm 1 returns n dif-
ferent γ̂’s. By accumulating the information in Ω̂, we can
construct a single “pooled” vector denoted by γ̂P that con-
tains the estimated values of the identified outliers across the
whole curve. Then, we generate a single clean data set for
which outlying prices have been removed and non-outlying
prices are undisturbed, as well as a pooled function estimate.
The entire pooled procedure is described below:

• Form the n× n matrix: Ω̂ = [γ̂1 . . . γ̂n] where a row i
contains each γ̂ at time i.

• Let ω̂i be the ith row in Ω̂. Apply the function m(x) =
sign(x) 	 max(|x|) to each ω̂i, where 	 is element-
wise multiplication and sign(x) and |x| are applied
element-wise. Combine these values into an n×1 vector
ν = [m(ω̂1) . . . m(ω̂n)]

T . Then, compute the pooled
outlier estimate

¯
γ̂ = Θ#(ν; floor(	× n)) where 	 is the

percentage of observations that will be detected as out-
liers.

• The pooled clean data set is {(xt, y
adj
t = yt−

¯
γ̂t), 1 ≤ t ≤

n}. Perform cross-validation on the pooled clean data

set to find h. The pooled function estimates
¯
f̂(xt) are

found by computing the Nadaraya-Watson estimate for
each (xt, y

adj
t ). The bias corrected function estimate

is then:

¯
f̂b(x0) =

∑n
t=1 Kh,t(x0)(y

adj
t −

¯
f̂(xt) +

¯
f̂(x0))∑n

t=1 Kh,t(x0)
.(8)

Our method consists of a pipeline from Algorithm 1
which solves n objective functions, to the pooling technique
which accumulates the unpooled outlier and function esti-

mates into single vectors
¯
γ̂ and

¯
f̂ b =

[
¯
f̂b(x1) . . .

¯
f̂b(xn)

]
. We

call this entire procedure NOIS for Non-Parametric Outlier
Identification and Smoothing.

Figure 6 compares the unpooled and pooled estimated
curves for simulated data with outliers. We generated 300
points from yt = sin(xt)+et where xt is evenly spaced on the
interval [0, 2π] and et ∼ N(0, 1). Outliers were introduced
by shifting 30 of the yt points corresponding to xt ∈ [π, 2π]
up by a U(10, 12) random number; estimated outliers are
marked by a magenta triangle. In comparison to the un-
pooled function estimate, the pooled function estimate from
NOIS is smoother.

A reasonable question is how one should set the outlier
detection parameters ϑ and 	. For the previous example,
ϑ = 0.075 and thus q(x) = floor(0.075×J(x)). In general, if
severe outliers are believed to be a problem, a more conser-
vative or larger choice of ϑ is better so that more potential
outliers are available to the pooled component of NOIS. As
long as it is reasonably large, empirical studies suggest that
ϑ does not seem to have a significant effect on the detection
performance. Due to the ad-hoc nature of the pooling pro-
cedure, 	 is generally set by prior experience with the type
of data. For example, if we are working with high-frequency
data and want to detect 5% of the points as outliers, we can
set 	 = 0.05.

Another strategy for tuning 	 would be to vary
¯
q :=

floor(	 × n) on a grid from, say 1 to n/2 then pick
the value that minimizes an information criterion such as
BIC∗(

¯
q) [25]. There is theoretical support (details not re-

ported in this paper) for applying BIC∗ to each unpooled
γ̂; however, because we use the pooling procedure to pro-
duce the final outlier estimate

¯
γ̂, further theoretical work

is needed. Still, some preliminary empirical studies suggest
that BIC∗ performs well in selecting the correct

¯
q. Our rec-

ommendation is to use BIC∗ as a starting point when there
is little practical guidance for selecting

¯
q.

2.3 NOIS confidence bands

Even after removing outliers by NOIS, the amount of
noise in a given stock price series can still be large, which
introduces additional uncertainty in a point estimate. Addi-
tionally, previous empirical work has suggested that finan-
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Figure 7. Binned S&P 500 closing prices and mean-variance
plot.

cial data exhibits heteroskedasticity (e.g. [13] and [22]). Fig-
ure 7 illustrates the issue on the S&P 500 data from Figure 5,
with the data binned into groups of 10 days to emphasize
the distributional characteristics. It is clear that this data is
heteroskedastic and the relationship between the mean and
the variance would be difficult to model using conventional
parametric procedures such as the Box-Cox method.

We use pointwise confidence bands to account for stock
price data’s heteroskedasticity and the stochastic nature
of NOIS curve estimates. By examining their widths, we
can use these bands to identify pertinent features in the
smoothed curve. We will refer to a NOIS function estimate
along with its confidence bands as a NOIS bundle.

The standard approach to constructing confidence inter-
vals would be to use a normal approximation to the distribu-
tion of the bias corrected function estimate

¯
f̂b(xt). However,

this is based on asymptotics and may not be a satisfactory
approximation for finite samples, especially if the data ex-
hibits heavy-tails and skewness. Additionally, the normal
approximation intervals are symmetric, which means they
may not respect the shape of the data. Therefore, we require
a non-parametric method for confidence interval construc-
tion that can overcome these challenges.

We use empirical likelihood (EL) to construct pointwise

confidence bands around the
¯
f̂b(xt)’s obtained by NOIS;

computational details of EL are left to Section 5.2. Sup-
pose that we wish to test the following hypothesis at some
target point x0:

H0 : f(x0) = θ0 vs H1 : f(x0) �= θ0.

EL forms a non-parametric likelihood ratio test for the above
hypothesis and does not require stringent distributional as-
sumptions about the point estimate. Its data-adaptive na-
ture means that an EL confidence interval around a kernel
smoothing point estimate will not necessarily be symmet-
ric and will automatically reflect emphasis in the observed
data [7]. Another advantage of EL is that studentization is
carried out internally via the optimization procedure [2] so

Figure 8. Comparison of α = 0.01 BS and EL confidence
bands for HPQ.

Figure 9. Daily and monthly stock prices for LMT with
empirical likelihood NOIS bundles.

it requires no explicit estimate of the standard deviation and
is particularly applicable to heteroskedastic data.

The residual bootstrap is another popular non-
parametric method which resamples the residuals from

¯
f̂b(xt) to construct pointwise confidence bands around the
function estimates. This technique can also handle het-
eroskedasticity and non-Gaussinity, but it requires a stan-
dard deviation estimate, which can sometimes result in un-
stable confidence bands for stock price data. Figure 8 illus-
trates the issue on daily prices of Hewlett-Packard (HPQ)
during the period of April 12th, 1999 to July 26th, 1999. The
two outliers identified by NOIS are marked by a triangle and
the bootstrap (BS) and empirical likelihood (EL) confidence
bands (without bias correction) are the shaded areas. Due
to the instability of bootstrap confidence bands for stock
prices, we will use EL. However, in a situation where com-
putational speed is of the utmost importance, a practitioner
may prefer to use the bootstrap because in our experience it
requires less computation time for NOIS bundles than EL.
Further details of the bootstrap are in Section 5.3.

Figure 9 plots roughly three years of Lockheed Martin’s
(LMT) daily and monthly stock prices. Estimated outliers
are marked by a triangle, the bias corrected NOIS func-
tion estimate

¯
f̂ b is a solid line and the pointwise confidence
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Table 1. Outlier detection simulation results as O (the true
number of outliers) varies

O = 10 O = 20 O = 35

MSE 0.13 0.14 1.2
M (%) 0 0.07 19
S (%) 11 5.6 1.1
JD (%) 100 99 0

bands are shaded. Because the daily data is so dense, the
confidence bands are nearly indistinguishable from the func-
tion estimates and overall offer little additional information.
In comparison, the monthly NOIS bundle is computed on a
sparser data set which has more variation from point to
point, resulting in confidence bands with varying levels of
thickness. Thus, the pointwise confidence band component
of a NOIS bundle is most beneficial in the data-insufficient
case where the resolution is relatively low.

3. EXPERIMENTS

3.1 Synthetic data

We conducted two experiments to test the outlier detec-
tion capabilities of NOIS and the coverage probabilities of
NOIS bundles. We used the following simulation setup for
each experiment:

• 200 points were generated according to yt = sin(xt)+et
with the xt’s evenly spaced on [0, 2π] and et ∼ N(0, 1).

• Outliers were introduced by randomly sampling O ∈
{10, 20, 35} of the yt’s where xt ∈ [π, 2π], then shifting
them up by a U(10, 12) random number.

• For the outlier detection experiment we fixed the outlier
detection parameters at ϑ = 0.15 and 	 = 0.15. In
practice, a more conservative or larger choice of 	 can be
made. In the coverage probability experiment ϑ = 0.15
and 	 = O/200.

• The data was simulated 300 times.

We report four metrics for outlier detection:

• MSE: the mean squared error computed as MSE =
n−1

∑
(sin(xt)−

¯
f̂b(xt))

2 averaged across all runs.
• M: the mean masking probability (percentage of unde-

tected true outliers).
• S: the mean swamping probability (percentage of good

points labeled as outliers).
• JD: the joint outlier detection rate (percentage of sim-

ulations with 0 masking).

Ideally, both M and S will be low and JD ≈ 100%, but mask-
ing is more problematic than swamping because undetected
outliers can cause gross distortions in the estimated curve.
The results for outlier detection are presented in Table 1.

The outlier detection results demonstrate that NOIS is
successful at minimizing M when 	 > O. For both O = 10

Table 2. Confidence band simulation results at 1− α = 0.95
nominal coverage level. Numbers presented are the average

coverage probabilities and average interval lengths (in
parentheses) across all simulations

With bias correction
NOIS+EL NOIS+BS KS+EL KS+BS

O = 10 0.85 (0.6) 0.9 (0.75) 0.42 (1) 0.55 (1.3)
O = 20 0.82 (0.6) 0.88 (0.79) 0.37 (1.3) 0.49 (1.6)
O = 35 0.75 (0.83) 0.84 (1.2) 0.36 (1.9) 0.48 (2.5)

Without bias correction
NOIS+EL NOIS+BS KS+EL KS+BS

O = 10 0.85 (0.61) 0.87 (0.64) 0.4 (1) 0.5 (1.2)
O = 20 0.82 (0.62) 0.85 (0.68) 0.35 (1.3) 0.45 (1.4)
O = 35 0.76 (0.86) 0.81 (1.1) 0.35 (1.9) 0.44 (2.2)

and O = 20, the ideal result is M = 0. When O = 30, the
lowest possible M is 5/35 ≈ 14% so the masking probability
of 18% is not optimal but still acceptable. The low S rates
show that even when the tuning parameters are misspecified,
the loss in efficiency is not too problematic.

We compared four pointwise confidence bands for the cov-
erage probability experiment: NOIS with EL (NOIS+EL)
and the bootstrap (NOIS+BS) as well as non-robust kernel
smoothing with EL (KS+EL) and the bootstrap (KS+BS).
The average coverage probabilities along with the average
interval lengths (in parentheses) across all simulations are
reported in Table 2. For NOIS bundles, bias corrected con-
fidence bands are constructed by using EL or bootstrap on

¯
f̂ b. Non-bias corrected NOIS bundles are formed by using

EL or bootstrap on
¯
f̂ . Confidence bands with and without

bias correction are constructed around the non-robust kernel
smoothing estimates in a similar manner. The conclusions
are summarized below:

• Clearly, the non-robust kernel smoothing bundles are
inferior in terms of coverage probability and interval
widths.

• The coverage probabilities of the bias corrected NOIS
bundles are often superior to their non-bias corrected
counterparts, but the improvement is not very large.
The bias correction seems to offer no discernible benefit
for the NOIS+EL bundles and even seems to perform
worse for O = 35.

• The bootstrapped confidence bands are closer to the
nominal coverage level than empirical likelihood confi-
dence bands, but this is accompanied by larger interval
widths, especially in the bias corrected cases.

Overall, NOIS bundles for these simulated data do not
closely match the nominal coverage level. Figure 10 plots
the coverage probabilities at each xt along with one of the
simulated datasets. Clearly, most of the undercoverage is-
sues occur in regions with outliers and at the boundaries. It
is possible that the pooling component of NOIS introduces
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Figure 10. Coverage probabilities for bias corrected NOIS-EL and NOIS-BS (O = 35).

an additional source of bias in outlier detection and the re-
sulting function estimate. We still advocate the use of NOIS
bundles for stock price data because the undercoverage is
not so sizable that they become uninformative.

3.2 Real-world high-frequency data

In this section we demonstrate the efficacy of NOIS on
high-frequency (or tick) stock data retrieved from the New
York Stock Exchange (NYSE) Trades and Quotes (TAQ)
database. When fitting a curve to high-frequency data, out-
liers can create difficulties for chart pattern detection, as
seen in the distorted kernel smoothing estimate from Fig-
ure 2. Thus, a robust function estimate should be free from
the effects of these anomalous prices. Outliers in tick data
often occur due to errors in the price discovery and trad-
ing mechanism processes, such as price differences between
exchanges trading the same stock. There is no steadfast or
universal definition for “unclean” tick data, but in general
“you know it when you see it” [4]. In the following examples,
we will consider three types of outliers: bad ticks which are
so far from the prevailing price level that it is highly likely
they are erroneous, borderline cases that would be consid-
ered outliers by some but not all traders and misidentified
ticks which are identified as outliers by NOIS but are un-
likely to be of practical concern.

We first consider roughly eleven minutes of McDonald’s
high-frequency data. Here, we set ϑ = 0.05 and 	 = 0.03.
Figure 11 plots bias corrected non-robust and NOIS func-
tion estimates, with detected outliers marked by a magenta
triangle. We classify the three most extreme outliers as bad
ticks because they all occur at the same price level which
is far away from the rest of the data. Interestingly, there
are a number of detected outliers that are likely misiden-
tified ticks. Recall that when running the NOIS algorithm,

Figure 11. Function estimates for MCD on Jan. 3rd, 2012
from 3:00:37 to 3:08:55 pm.

outliers are identified within the neighborhood around each
target point x0 and then pooled to yield the final detection
result. It is possible that ϑ and 	 are too large for this data,
which causes NOIS to remove too many prices. However,
even after these more moderate outliers are removed, the
robust fitted curve does not seem to be altered too much.

Figure 12 is taken from three minutes of the MCD high-
frequency data; once again, the magenta triangles are iden-
tified as outliers by NOIS. There is a price that is about
$0.20 away from the curve and is likely a bad tick. The
plot highlights two detected outliers that could be border-
line cases. Because NOIS explicitly identifies these points,
they are marked for further review by a trader.

In the above examples, we found that NOIS was able
to detect gross outliers which were likely bad ticks occur-
ring due to errors in trading mechanisms. Although some
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Figure 12. Function estimates for MCD on Jan. 3rd, 2012
from 9:40:01 to 9:41:17 am.

prices were possibly misidentified as outliers for conserva-
tively large values of ϑ and 	, it is better to remove a small
number of non-outlying points than underscrub the data
and miss the bad ticks which can distort a fitted curve. In
practice, one can adjust ϑ and 	 to achieve a desired level of
outlier detection and removal. As long as these parameters
are not too prohibitive, the gross outliers or bad ticks will
still be detected. From a statistical viewpoint, the misiden-
tified ticks are not too alarming as the loss in efficiency is
usually small when 	 � 1.

3.3 NOIS bundles for technical analysis

In this section, we demonstrate applications of NOIS bun-
dles to daily stock price data for analyzing technical analy-
sis chart patterns previously identified by practitioners. The
outlier detection parameters are ϑ = 0.15 and 	 = 0.03, the
confidence level is α = 0.01 and empirical likelihood point-
wise confidence bands are formed around the bias corrected
function estimate. In each plot outliers detected by NOIS
are marked by a triangle.

3.3.1 Cup and handle

As previously shown in Figure 1, the cup and handle is
a continuation pattern with three distinguishing features: a
rounded “cup” shape and a “handle” that leads to a break-
out of upward price action. Sometimes after the breakout,
the price will return towards the handle in a throwback be-
fore continuing on its upward movement. Traders will often
look for a throwback as further confirmation of a buy signal.

[26] identified a cup and handle pattern in daily stock
price data of Jabil Circuit, Inc. (JBL) between May 3rd,
1999 to December 12, 1999. Figure 13 is a NOIS bundle
applied to JBL’s daily stock prices, with the curves and
outliers marked as in the previous section. We use dashed
lines to highlight two features: the horizontal line shows the
top of the “cup” and the intersection of the lines show the
end of the “handle” into the breakout. The breakout exhibits

Figure 13. NOIS bundle for JBL cup and handle pattern.

upward accelerating price movement with a gap between
prices. This causes the confidence bands to become quite
thick, which could perhaps be used as a confirmatory signal
for the breakout. Another interesting attribute is that the
confidence bands seem to exhibit a throwback towards the
dashed horizontal line. If a trader were only looking at the
raw stock prices or the fitted curve, it would be easy to miss
this feature.

3.3.2 Rectangle

A rectangle is a continuation pattern in which prices al-
ternate between touching resistance and support lines that
provide boundaries for movement. After exiting the rectan-
gle (the breakout), prices can sometimes return to the rect-
angle through a throwback before continuing on the previous
trend.

Figure 14. Rectangle chart pattern.

Figure 15 plots a NOIS bundle applied to daily stock
prices of Lockheed Martin (LMT) between May 1st, 1999
and October 29, 1999, during which a rectangle pattern was
identified by [26]. The NOIS bundle “bounces” between the
two horizontal dashed lines, forming the rectangle pattern.
The price takes a large jump into the rectangle pattern,
which causes the bundle to widen in this region. After the
throwback, the price accelerates downward and the bundle
once again becomes thicker. In comparison to the flag in
Figure 4, the confidence bands within the pattern are rel-
atively thin due to “tighter” price action. A trader could
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Figure 15. NOIS bundle for LMT rectangle pattern.

perhaps interpret this as a stronger signal that a rectangle
is forming.

4. DISCUSSION

The analysis of financial data can be challenging due to its
non-linearity, heteroskedasticity, and heavy tails. In combi-
nation with the prevalence of gross outliers in high-frequency
data, these issues can be problematic for the technical anal-
ysis practitioner who wishes to identify geometric patterns
in stock charts. We proposed a method that can overcome
these challenges by robustly estimating the function under-
lying a stock’s prices while automatically detecting outliers
(NOIS). Additionally, we demonstrated that pointwise con-
fidence bands around these robust estimates form a curve
bundle that can assist the technical analyst in identifying
notable features when the data resolution is relatively low.

The examples in this work suggested that gross outliers
are not as prevalent in daily inter-day data as they are in
high-frequency intra-day data. Indeed, by the time a daily
closing price is reported, ticks that appear as irregularities
or errors to the intra-day trader are unlikely to be visible
on the inter-day time scale [4]. Therefore, we advocate more
aggressive or smaller values for the outlier detection param-
eters of NOIS when analyzing inter-day data. On the other
hand, in empirical studies the prevalence of outliers in tick
data provided a compelling reason to use NOIS, but the
high resolution of this data makes the confidence bands less
revealing. Despite these characteristics, the proposed ap-
proach can adapt to these different situations without much
human intervention.

High-frequency prices introduce additional challenges to
practical data analysis such as asynchronous ticks, the dis-
crete sampling frequency and microstructure noise [27].
While our method does not directly address these issues,
as shown in our real data examples NOIS still has practical
utility in detecting high-frequency outliers. In a future work
we intend to investigate how NOIS can be modified to deal
with these challenges.

We applied our method to multiple examples of technical
analysis chart patterns that had previously been identified

by practitioners. The NOIS bundles were able to highlight
notable features in the patterns and the smoothed curve as-
sisted in identification. A further direction of research would
combine the robust estimation and outlier detection of NOIS
with techniques from machine learning and computer vision,
allowing for automated identification of technical analysis
chart patterns.

In simulation studies the outlier detection capabilities of
NOIS were sound but the pointwise empirical likelihood con-
fidence bands sometimes showed undercoverage. We postu-
lated that the pooled procedure of NOIS introduced some
bias into the robust function estimate. In a future work we
will investigate simultaneous confidence bands, which typi-
cally have greater lengths and could therefore alleviate the
issue. Notwithstanding the undercoverage on these synthetic
data, our real-world examples showed that NOIS bundles
can still be useful for technical analysis practitioners.

In a future work we hope to explore volatility function es-
timation for a single stock price using NOIS. [29] utilized a
thresholded kernel smoother on squared logarithmic returns
to detect volatility anomalies. NOIS could be similarly ap-
plied to this task by using its robust smoothing component
on squared logarithmic returns. Of course, due to its ro-
bustness and non-parametric nature, NOIS can handle other
prospective transformations.

In principle, NOIS can be extended to the multivari-
ate setting by taking into account the correlations among
multiple time series. Specifically, suppose the goal is to
robustly estimate the underlying curves for m different
stock prices measured at the same n time indices. Let
W := Σ−1 (the m × m inverse covariance matrix of the
stocks); yt ∈ R

m be a vector of stock prices at time t;
Γ = [γ1 . . .γn] be an m × n matrix in which the ith col-
umn γi ∈ R

m is a vector of mean-shift parameters at
time i; and f(x0) ∈ R

m be a vector of unknown func-
tions evaluated at a target point x0. We intend to inves-
tigate the following optimization criterion in a future work:
minf(x0),Γ,W

∑n
t=1 Kh,t(x0){(yt−γt−f(x0))

TW (yt−γt−
f(x0))− log(det(W )) +P (W )} s.t. ‖Γ[k, :]‖0 ≤ qk(x0) ∀k ∈
1, . . . ,m, where P (·) is, say, a sparsity-promoting penalty.

5. FURTHER COMPUTATIONAL DETAILS

5.1 Kernel smoothing bandwidth selection

As stated before, the bandwidth h is typically chosen by
leave-one-out cross-validation (LOOCV). That is, we select
h to minimize the cross validation function:

CV (h) =
1

n

n∑
t=1

[
yt − f̂h,t(xt)

]2
w(xt)(9)

where

f̂h,t(xt) :=
1

n

∑n
j �=t Kh(xt − xj)yj∑n
j �=t Kh(xt − xj)

(10)
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Figure 16. Comparison of cross-validation methods for daily
prices of MSFT.

and w(·) is a weight function. For this paper, w(·) is an in-
dicator function corresponding to the inner estimated 95%
sample space of the xt’s. LOOCV requires n(n − 1) ker-
nel evaluations but these computations can be easily paral-
lelized if multiple cores are available. For independent data
such as those generated for Figure 6, LOOCV performs well.
However, because the purpose of this work is to extract pat-
terns from stock prices and analyze their shape characteris-
tics, we require a cross-validation method that can produce
bandwidths that are reasonably smooth for dependent data.
For example, Figure 16 plots a kernel smoothing estimate on
eighty days of Microsoft’s stock price. The bandwidth found
by LOOCV was 0.125, which results in a curve too sensitive
to the noise. This leads us to consider a procedure suitable
for dependent data from [28], which will be referred to as
modified cross-validation (MCV) and is summarized below:

• Split the data into two pieces {(xt, yt), 1 ≤ t ≤ s} and
{(xt, yt), s < t ≤ n}.

• Choose the bandwidth h such that f̂h,s(x) gives the best

prediction for yt for s < t ≤ n in the sense that h = ĥs

minimizes

ECVs(h) =
1

n− s

n∑
t=s+1

[
yt − f̂h,t(xt)

]2
w(xt)

over Hs =
[
as−1/5−ε0 , bs−1/5+ε0

]
where 0 < a < b < ∞

and ε0 ∈ (0, 1/150) are constants. Thus, f̂h,t(x) is the
estimator constructed using data in {(xt, yt), 1 ≤ t ≤ s}
and the cross validation function is then evaluated on
the remaining data with h defined in a reasonably small
interval.

• The bandwidth for the whole sample is ĥn =
ĥs(s/n)

1/5.

The adjustment of hs in the last step is motivated by the
theoretical optimal bandwidth of h ∝ n−1/5 that minimizes
the mean squared error of the kernel smoothing estima-
tor. Under certain conditions MCV is asymptotically opti-
mal. This method results in more reasonable bandwidths for

stock prices and is computationally faster than LOOCV. For
example, with s = floor(0.66n) the bandwidth of ĥn = 1.26
chosen by MCV in Figure 16 seems more reasonable than
LOOCV. For the real data applications in this paper, a
choice of s between floor(0.60n) and floor(0.70n) tends to
work well.

5.2 Empirical likelihood and bias correction

In this section we describe the steps to compute empirical
likelihood (EL) for NOIS function estimates. The empirical
likelihood for a candidate value μ(x0) for f(x0) is

Ln(μ(x0)) = max

{
n∏

t=1

pt

∣∣∣∣∣
n∑

t=1

pt = 1, pt ≥ 0,

n∑
t=1

ptKh,t(x0)(y
adj
t − μ(x0)) = 0

}
.

(11)

This is a multinomial likelihood with probability weights
placed on each observation yadjt . The first two constraints
in (11) specify that the pt’s are probability weights while
the third is known as the structural constraint, which is
specific to the parameter of interest. The above expres-
sion is maximized at pt = n−1, which corresponds to
μ(x0) =

¯
f̂(x0) in the structural constraint. Therefore,

the log empirical likelihood ratio is LRn(μ(x0)) =

log(Ln(μ(x0))/Ln(
¯
f̂(x0))) or

LRn(μ(x0)) = max

{
n∑

t=1

log(npt)

∣∣∣∣∣
n∑

t=1

pt = 1, pt ≥ 0,

n∑
t=1

ptKh,t(x0)(y
adj
t − μ(x0)) = 0

}
.

(12)

Since the objective function in (12) is strictly concave, a
unique global maximum exists. Using Lagrange multipliers,
we can find an expression for the optimal weights

pt =
1

n

1

1 + λKh,t(x0)(y
adj
t − μ(x0))

,(13)

and the log EL ratio evaluated at μ(x0) becomes

LRn(μ(x0)) = −
n∑

t=1

log
(
1 + λKh,t(x0)(y

adj
t − μ(x0))

)(14)

where λ is a Lagrange multiplier satisfying

G(λ) =

n∑
t=1

(yadjt − μ(x0))Kh,t(x0)

1 + λ(yadjt − μ(x0))Kh,t(x0)
= 0.(15)

A safe-guarded root finding algorithm such as Brent’s
method can be used to find a λ satisfying (15) [16]. An
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alternative approach is to use the dual form, which involves
minimizing

Q(λ) = −
n∑

t=1

log
(
1 + λKh,t(x0)(y

adj
t − μ(x0))

)
(16)

over the 1-dimensional Lagrange multiplier λ, subject to

1 + λKh,t(x0)(y
adj
t − μ(x0)) ≥

1

n
∀t.

The previous constraint stems from 0 ≤ pt ≤ 1 for all t.
Noting that −G is the derivative of Q with respect to λ,
we can see that a stationary point of Q satisfies (15). [17]
showed that with a modification of the log(·) function, the
dual form can be minimized without the constraint and EL
then becomes an unconstrained convex problem.

With an undersmoothed bandwidth, −2LRn(f(x0)) →
χ2
1 in distribution [2]. Thus, a 1 − α confidence interval is{
μ(x0) : −2LRn(μ(x0)) ≤ χ2

1,1−α

}
. To compute an EL con-

fidence interval at some point xt, one must conduct a search
for μ(xt) such that −2LRn(μ(xt)) equals the 1−α quantile
of the χ2 distribution.

Recall that because kernel smoothing is biased, without
an undersmoothed bandwidth the confidence interval is ac-
tually for E[

¯
f̂(x0)] instead of f(x0). In practice it may be

undesirable to use a small bandwidth, so [14] proposed a
bias corrected empirical likelihood which uses the following
estimating equation in the structural constraint:

n∑
t=1

Kh,t(x0)(y
adj
t −

¯
f̂(xt) +

¯
f̂(x0)− r(x0)) = 0(17)

where
¯
f̂(·) is the pooled NOIS function estimate. With the

above estimating equation, the log EL ratio at a candidate
value ψ(x0) for r(x0) is:

LR∗
n(ψ(x0)) = max

{
n∑

t=1

log(npt)

∣∣∣∣∣
n∑

t=1

pt = 1, pt ≥ 0,

n∑
t=1

ptKh,t(x0)(y
adj
t −

¯
f̂(xt) +

¯
f̂(x0)− ψ(x0)) = 0

}
.

(18)

The only difference between (18) and the log EL ratio in (12)
is the structural constraint. Therefore, the same convex op-
timization procedure applies and under certain conditions,
−2LR∗

n(f(x0)) → χ2
1 [14].

EL confidence intervals can be computed by a one-
dimensional root finding algorithm such as bisection or
Brent’s method. Each function evaluation in the root finding
algorithm solves the convex dual problem in (16), which can
be minimized using an optimization routine such as New-
ton’s method with backtracking line search. Computation
of EL was performed according to the methods and code
from [18]. A drawback is that this process must be repeated
n times to construct pointwise confidence bands across the

whole estimated curve, which causes EL to be relatively slow
compared to the bootstrap. However, these intervals can be
computed in parallel which can significantly decrease the
computation time.

5.3 Bootstrap

In this section we present the predictive residual boot-
strap [19] as an alternative to empirical likelihood. The
predictive residuals can reduce the under-coverage effect of
bootstrap confidence bands in finite samples and we out-
line the procedure below. First define the leave-one-out es-
timates

f̂h,t(xt) :=

∑n
j �=t Kh(xt − xj)y

adj
j∑n

j �=t Kh(xt − xj)
(19)

and

M̂h,t(xt) :=

∑n
j �=t Kh(xt − xj)(y

adj
j )2∑n

j �=t Kh(xt − xj)
.(20)

The steps to compute a predictive residual bootstrap confi-
dence interval for a NOIS function estimate are:

1. Using the clean data set {(xt, y
adj
t ), 1 ≤ t ≤ n}, con-

struct the leave-one-out function estimates f̂h,t(xt).
2. Estimate the leave one out standard deviations: sx =√

Mh,t(x)− (f̂h,t(x))2.

3. Compute the residuals: et = (yadjt − f̂h,t(xt))/sxt .
4. Compute the centered residuals: rt = et−n−1

∑
et. For

B bootstrap replicates, repeat the following procedure:

• Sample the residuals r1, . . . , rn with replacement
to create the bootstrap residuals r∗1 , . . . , r

∗
n.

• Create the bootstrap pseudo-data by setting y∗t =

¯
f̂(xt) + sxtr

∗
t .

• Use the pseudo-data set {(xt, y
∗
t ), 1 ≤ t ≤ n} to

compute new function estimates f̂(xt)
∗.

• Calculate the bootstrap confidence “roots”:

¯
f̂(xt)− f̂(xt)

∗.

5. After computing B replicates, for a desired confidence
level 1−α, calculate the quantiles of the bootstrap con-
fidence roots, given by q(α).

6. A (1− α)100% confidence interval for a point f(xt) is[
¯
f̂(xt) + q(α/2),

¯
f̂(xt) + q(1− α/2)

]
.

Thus, the bootstrap attempts to approximate the distri-
bution of f(xt) −

¯
f̂(xt) by

¯
f̂(xt) − f̂(xt)

∗. Bias corrected
confidence intervals can be constructed by computing the
residual bootstrap for

¯
f̂b(x) instead of

¯
f̂(x) and replacing

the leave-one-out estimates with

f̂ b
h,t(xt) :=

∑n
j �=t Kh(xt − xj)(y

adj
j − f̂h,j(xj) +

¯
f̂(xt))∑n

j �=t Kh(xt − xj)

(21)

452 H. Tran and Y. She



and

M̂ b
h,t(xt) :=

∑n
j �=t Kh(xt − xj)(y

adj
j − f̂h,j(xj) +

¯
f̂(xt))

2∑n
j �=t Kh(xt − xj)

.

(22)

As previously illustrated in Figure 8, the standard de-
viation estimation of the residual bootsrap can sometimes
result in unstable confidence bands for stock price data. In
the example, sx19 is up to 10 times smaller than many of
the other sxt ’s, causing r19 to be quite substantial. Thus, if
the residual at x19 is resampled and paired with a relatively
large sxt , the resulting y∗t and bootstrap confidence “root”
can be extreme. In these situations, a more reasonable con-
fidence band can be found by resampling the residuals with-
out scaling by sx, with the caveat that heteroskedasticity is
no longer accounted for.
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