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A note on estimating network dependence in a
discrete choice model
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Discrete choice model is probably one of the most popu-
larly used statistical methods in practice. The common fea-
ture of this model is that it considers the behavioral factors
of a person and the assumption of independent individuals.
However, this widely accepted assumption seems problem-
atic because human beings do not live in isolation. They
interact with each other and form complex networks. Then
the application of discrete choice model to network data will
allow for network dependence in a general framework. In this
paper, we focus on a discrete choice model with probit error
which is specified as a latent spatial autoregressive model
(SAR). This model could be viewed as a natural extension
of the classical SAR model. The key difference is that the
network dependence is latent and unobservable. Instead, it
could be measured by a binary response variable. Parame-
ter estimation then becomes a challenging task due to the
complicated objective function. Following the idea of com-
posite likelihood, an approximated paired maximum likeli-
hood estimator (APMLE) is developed. Numerical studies
are carried out to assess the finite sample performance of the
proposed estimator. Finally a real dataset of Sina Weibo is
analyzed for illustration purpose.
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1. INTRODUCTION

Discrete choice model has been extensively studied in the
past few decades [10, 13, 17, 6, 14, 9]. In general, choice
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model is derived in a random utility framework in which de-
cision makers are assumed to be utility maximizers. The util-
ity is usually decomposed into a determinative part which is
observable and a stochastic component that cannot be ob-
served by analysts [10]. Then the specification of a choice
model depends on how the distribution is defined about the
stochastic term. For example, we have the popularly used
logit and probit models. The common feature of a discrete
choice model is that it considers the behavioral factors of a
person and the assumption of independent human beings.
However, this widely accepted assumption seems problem-
atic because human beings do not live in isolation. People
in the society interact with each other and form complex
networks. Their behaviors are easily influenced by the con-
nected neighbors. Then the application of discrete choice
models to network data should allow for network depen-
dence.

By network dependence, we refer to the fact that individ-
uals living in the same social network should be correlated
with each other. One typical example about network depen-
dence could be peer-effects or social interaction. There has
been a large body of recent researches considering the role
of social interaction in economic behavior. For example, [5]
generalize the logistic models by incorporating determinis-
tic social utility in the utility function, which reflects the
desire of individuals to conform to the behavior of others.
[16] empirically test the discrete choice model with social
interaction, using U.S. presidential election data to analyze
voters’ voting behavior. [12] use physician‘s self-reported re-
lational data to investigate the impact of social network on
the prescription of a new drug. They find that adoption is
affected by peers’ usage volume. [19] first explore the role of
social interaction in customer defection behavior with a cel-
lular company. The results show that a customer will have
a higher defection rate if he is exposed to a majority of de-
fected neighbors. A recent paper by [25] claim that network-
based credit scoring primarily depends on first-order rela-
tionship information. Although these researches did not di-
rectly model network dependence, they state that individ-
ual’s decision is socially affected by others’ actions.

Modeling the network dependence for socially connected
continuous variables has been considered in existing litera-
tures. Two classical models have been popularly used. One
is the spatial autoregressive model (SAR) and the other
one is spatial error model (SEM). More sophisticated exten-
sions do exist, such as spatial autoregressive moving average

http://www.intlpress.com/SII/


model, matrix exponential spatial specification model, spa-
tial Durbin Model and others [15]. Excellent overviews can
be found in the handbook edited by [1], [15] and [8]. The
focus of these models is to estimate the so-called spatial au-
tocorrelation coefficient, which in our case quantifies the net-
work dependence between connected individuals. To apply
these models, we need to have the continuous responses to be
directly observed. However, in a discrete choice model, the
network dependence is modeled by a latent variable, which
is not directly observed by the researcher [22]. Instead, the
researcher observes a binary response of individual choice.
This specification in the discrete choice model brings com-
putational difficulty for estimation.

To overcome the computation challenge in spatial probit
models, many methods have been proposed. Among them,
the composite marginal likelihood (CML) is a popular tech-
nique. It was first introduced by [11] in the analysis of bi-
nary data in the field of geostatistics. This method is based
on pairwise likelihood and can be applied to large datasets.
Theoretical properties of the estimators are also investigated
by the authors. [3] then proposes a maximum approximate
CML in the estimation of multinomial probit (MNP) choice
models. His method sheds light on the estimation for a vari-
ety of MNP models. An alternative equivalent approach to
CML is the partial maximum likelihood method proposed
by [24]. The CML method is effective in solving the high-
dimensional numerical integration problem. However, it is
infeasible in large datasets due to the inverting of high-
dimensional precision matrix. The partial maximum like-
lihood method assumes that observations can be divided by
pairwise groups and within each group, a bivariate normal
distribution is specified. More methods about computational
issues can be found in recent reviews of [4] and [18].

In this work, we focus on a discrete choice model with
a probit error, which is specified as a latent SAR model.
By doing so, we are capable of considering network de-
pendence between individuals under a principled binary re-
gression framework. To estimate the unknown parameter
(e.g. spatial autocorrelation), we propose a pseudo maxi-
mum likelihood approach. Specifically, for a total of n sub-
jects, we form them into different pairs and each pair only
contains two nodes denoted by i and j. This leads to a to-
tal pair of n(n − 1)/2. For a specific pair {i, j}, we can
obtain an approximated log likelihood function by Taylor’s
expansion. By treating different pairs as independent sam-
ples, we can sum together the paired objective functions
for selected pairs. However, there exists two comparatively
natural choices of pairs. One way is to consider all pairs,
which is computationally too expensive and cannot be used
in practice. The other one is to consider connected pairs,
for they are most likely to be correlated and thus provide
best information. Therefore, we sum together all connected
paired objective functions according to the idea of composite
likelihood [21, 24] and then maximize the summation with
respect to spatial autocorrelation. The resulting estimator is
then referred to as an approximated paired maximum like-

lihood estimator (APMLE). It should be noted that instead
of the SEM specification, which was employed in [24], our
specification follows an SAR framework. We show the con-
sistency of APMLE using extensive numeric studies and a
real dataset analysis about Sina Weibo is also presented for
illustration purpose.

The rest of the article is organized as follows. Section 2
presents the model setup and the difficulties associated with
true likelihood function. This motivates us to develop the
APMLE. To demonstrate its finite sample performance, ex-
tensive numerical studies based on various network typolo-
gies are conducted in Section 3. We then use a real dataset to
examine the spatial autocorrelation in Section 4. Lastly, the
article is concluded with a brief discussion and suggestions
for further studies in Section 5.

2. THE METHODOLOGY

2.1 Model setup

We consider a network with n nodes (i.e., consumers) in-
dexed by 1 ≤ i ≤ n. Its network structure is captured by an
adjacency matrix A = (aij) ∈ R

n×n where aij = 1 if node
i follows node j and aij = 0 otherwise. For an undirected
network we have aij = aji. However, throughout the rest of
this article, we consider a directed network structure, which
allows aij �= aji. Because self loop is not allowed for most
social network applications, we require aii = 0 for every
1 ≤ i ≤ n. Let Yi ∈ {0, 1} be the binary response vari-
able collected from the ith (1 ≤ i ≤ n) subject. Then to
establish a linear regression model to the binary response,
we usually suppose there is a latent continuous variable Zi

which satisfies

Yi =

{
1 if the latent Zi ≥ μ,

0 if the latent Zi < μ,
(1)

where μ is an unknown threshold that needs to be estimated.
Next, we assume Zi follows a SAR process, which could be
modeled as

(2) Z = ρWZ+ ε,

where Z = (Z1, · · · , Zn)
� ∈ R

n is the latent continuous re-
sponse vector. It should be noted that various models may
be applied for probit error specification. The adoption of a
specific setting depends on the nature of problem. In this pa-
per, we focus on spatial autoregressive framework. Without
any doubt, other specifications are also extremely useful and
should be considered for future studies. W = (wij) ∈ R

n×n

with wij = aij/di, where di is the out-degree for each node
and di =

∑n
j=1 aij . So W is the row normalized adjacency

matrix. Finally ε = (ε1, · · · , εn)� ∈ R
n is the residual vec-

tor with mean 0 and covariance I ∈ R
n×n. Here I stands for

a n×n identity matrix. The parameter ρ ∈ R
1 captures the

strength of spatial autocorrelation. By (2), we know that
Z = (I − ρW )−1ε. This implies Z follows a normal distribu-
tion with mean 0 and covariance
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(3) Σ = (I − ρW )−1(I − ρW�)−1,

subsequently, we need to estimate the unknown parameter
μ and ρ based on the observed Yi. Rigorous mathematical
calculation implies the joint probability distribution of Yi is∫

Rn

1√
2π

n|Σ| 12
exp{−1

2
zTΣ−1z}

∏
i≤n

I
(
sgn(Yi − 0.5) = sgn(zi)− μ

)
dz1dz2 · · · dzn,

where sgn(x) denotes the sign of x and I(a = b) = 1 (0)
iff a = b (a �= b). It is remarkable that maximizing this
objective function with respect to μ and ρ will take a lot
of efforts due to the integration. The form is complicated
and corresponding computation is infeasible in practice. An
alternative estimator, which is more computationally feasi-
ble, is desired. This leads to the idea of paired maximum
likelihood estimator in the following subsection.

2.2 Approximated paired maximum
likelihood

To propose the new method, we consider the likelihood of
two arbitrary selected nodes, denoted by i and j. The joint
probability of {Yi, Yj} can only have the following four cases:

P (Yi = 0, Yj = 0) = P (Zi < μ,Zj < μ)

=

∫ μ

−∞

∫ μ

−∞
f(zi, zj)dzidzj ,

P (Yi = 0, Yj = 1) = P (Zi < μ,Zj ≥ μ)

=

∫ μ

−∞

∫ ∞

μ

f(zi, zj)dzidzj ,

P (Yi = 1, Yj = 0) = P (Zi ≥ μ,Zj < μ)

=

∫ ∞

μ

∫ μ

−∞
f(zi, zj)dzidzj ,

P (Yi = 1, Yj = 1) = P (Zi ≥ μ,Zj ≥ μ)

=

∫ ∞

μ

∫ ∞

μ

f(zi, zj)dzidzj ,

where fij(zi, zj) is the joint probability density function
(p.d.f) of (Zi, Zj). Recall that Z = (Z1, · · · , Zn)

� ∈ R
n

follows a normal distribution with zero mean and co-
variance matrix Σ = (I − ρW )−1(I − ρW�)−1. Write
Σ = (σij), we then define Σij = (σii, σij ;σji, σjj) ∈ R

2×2.
By definition, Σij = cov(Zij), where Zij =
(Zi, Zj)

� ∈ R
2. Next, by Taylor’s expansion, we have

Σ = (
∑∞

k=0 ρ
kW k){

∑∞
k=0 ρ

k(W�)k)}. This suggests

that we can approximate Σ by Σ ≈ Σ(K) = (σ
(K)
ij ) =

(
∑K

k=0 ρ
kW k)(

∑K
k=0 ρ

kW k)�, where K is some pre-
specified approximation order. Accordingly, Σij can be

approximated by Σ
(K)
ij = (σ

(K)
ii , σ

(K)
ij ;σ

(K)
ji , σ

(K)
jj ) ∈ R

2×2.
This leads to an approximated paired likelihood function as

(4) f
(K)
ij (zi, zj) =

1

2π
|ΣK

ij |−
1
2 exp{−1

2
Z�
ij (Σ

K
ij )

−1Zij},

then the paired likelihood for each case can be approximated
as

P (Yi = 0, Yj = 0) ≈
∫ μ

−∞

∫ μ

−∞
f
(K)
ij (zi, zj)dzidzj

≡ π
(K)
00 (θ),

P (Yi = 0, Yj = 1) ≈
∫ μ

−∞

∫ ∞

μ

f
(K)
ij (zi, zj)dzidzj

≡ π
(K)
01 (θ),

P (Yi = 1, Yj = 0) ≈
∫ ∞

μ

∫ μ

−∞
f
(K)
ij (zi, zj)dzidzj

≡ π
(K)
10 (θ),

P (Yi = 1, Yj = 1) ≈
∫ ∞

μ

∫ ∞

μ

f
(K)
ij (zi, zj)dzidzj

≡ π
(K)
11 (θ),

where θ = (μ, ρ)� ∈ R
2 is the unknown parameter vector.

As noted by subscripts, the definition of π00, π01, π10 and
π11 should depend on the subscript (i, j). However, for
notation simplicity, they are omitted. Then following the
idea of composite likelihood [21, 24], we can sum up all the
paired objective functions. This leads to the K-th order
approximated log-likelihood function∑

ij

{
I(Yi = 0, Yj = 0) log π

(K)
00 (θ)

+I(Yi = 0, Yj = 1) log π
(K)
01 (θ)

+I(Yi = 1, Yj = 0) log π
(K)
10 (θ)

+I(Yi = 1, Yj = 1) log π
(K)
11 (θ)

}
,

however, considering all the pairs may take a tremendous
amount of computation resources and cannot be used
in practice. A compromised solution is to consider those
connected pairs, for they are most likely to be correlated
and thus provide relevant information. This leads to our
final objective function as

�(K)(θ) =
∑

(i,j)∈D

{
I(Yi = 0, Yj = 0) log π

(K)
00 (θ)

+I(Yi = 0, Yj = 1) log π
(K)
01 (θ)

+I(Yi = 1, Yj = 0) log π
(K)
10 (θ)

+I(Yi = 1, Yj = 1) log π
(K)
11 (θ)

}
,

where D = {(i, j) : aij + aji > 0} collects all the con-
nected pairs. The corresponding estimator is given by
θ̂ = argmaxθ�

(K)(θ). Because θ̂ is the estimator obtained
by optimizing the approximated paired likelihood function,
we refer to it as approximated paired maximum likelihood
estimators, APMLE. As one can see, larger K leads to bet-
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ter approximation. However, this also calls for substantial
computation efforts. We need to take a balance between
the accuracy and cost. According to our experience, K = 1
and 2 are sufficient for most scenarios.

3. NUMERIC STUDIES

3.1 Simulation models

To demonstrate the finite sample performance of
APMLE, we present in this subsection three simulation
studies. Each simulation setting corresponds to a typical
network topology, which is represented in the generation
of the adjacency matrix A as well as the specification of
θ = (μ, ρ)� ∈ R

2. Once A is simulated, W can be computed
by normalizing each row of A. Then the latent variable Z

is generated according to Z = (I − ρW )−1ε, where ε ∈ R
n

is simulated from a n-dimensional standard normal random
vector. The binary response variable Yi is simulated accord-
ing to model (1). We consider here three ubiquitous network
topologies and detail generation process is presented as fol-
lows.

Example 1. (Random Distributed Model) We first
present here a simple network structure called random dis-
tributed model for which the in-degree (i.e., qi =

∑N
j=1 aji)

follows a random distribution. In this way, no influential
nodes (i.e., with a relatively large in-degree) are allowed in
the network. To construct this network structure, we start
with n independent and identically distributed random vari-
ables which are generated according to a uniform distribu-
tion between 0 and 5. Denote these variables by Ui with
1 ≤ i ≤ n. For each node i, we randomly select a sample
size of [Ui] from SF = {1, 2, · · · , n} without replacement,
where [Ui] stands for the smallest integer no less than Ui.
Denote the sample by Si. Define aij = 1 if j ∈ Si and
aij = 0 otherwise. This leads to the adjacency matrix A.
Note [Ui] here is actually the out-degree of each node. Lastly,
set θ = (0.1, 0.1)�. To give a more realistic description about
this network structure, we visualize a network sample with
n = 50 nodes in one replication in Figure 11. From this figure
we can see that distribution of in-degree is almost random
and there are no influential nodes.

Example 2. (Power-Law Distributed Model) The power-
law distributed network structure [2, 7] is another popu-
larly studied network topology in literature. A very impor-
tant feature of this network structure is that the majority
of nodes have very few connections while a small amount
have a gigantic number of connections. To simulate this net-
work model, we follow [7] and generate A as follows. First,
we generate for each node its out-degree in the same way
as in example 1. Next, we generate another n independent
and identically distributed random variables (e.g., denoted
as ri, i = 1, · · · , n) according to the discrete power-law dis-

1For all the figures in this article, the dot stands for node and the line
stands for edge. The deeper the color and the larger the dot means a
larger in-degree.

Figure 1. Visualization of the random distributed model.

Figure 2. Visualization of the power-law distributed model.

tribution, i.e., P (ri) = ck−α for a normalizing constant c
and the exponent parameter α = 2.5. A smaller α value
implies a heavier distribution tail. We then normalize each
ri to its corresponding probability pi = ri/

∑N
i=1 ri. Re-

call that the out-degree for each node is represented by
[Ui] in example 1. Thereafter, for each node i, we select
a sample size of [Ui] according to the probability of pi from
SF = {1, 2, · · · , n} without replacement. Denote the sample
by Si. Define aij = 1 if j ∈ Si and aij = 0 otherwise. Lastly,
fix θ = (0.5, 0.2)�. Visualization of this network model with
a sample of n = 50 nodes in one replication is given in Figure
2. This network structure is very different from its counter-
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Table 1. Simulation results for example 1 with μ = 0.1 and ρ = 0.1. The RMSE and SD values for μ and ρ are reported

N K = 1 K = 2
RMSEμ RMSEρ SDμ SDρ RMSEμ RMSEρ SDμ SDρ

1000 0.0403 0.0744 0.0401 0.0747 0.0402 0.0756 0.0398 0.0760
2000 0.0296 0.0564 0.0282 0.0565 0.0292 0.0574 0.0276 0.0574
4000 0.0226 0.0352 0.0226 0.0353 0.0218 0.0343 0.0219 0.0345

Table 2. Simulation results for example 2 with μ = 0.5 and ρ = 0.2. The RMSE and SD values for μ and ρ are reported

N K = 1 K = 2
RMSEμ RMSEρ SDμ SDρ RMSEμ RMSEρ SDμ SDρ

1000 0.0669 0.0887 0.0582 0.0867 0.0651 0.0849 0.0574 0.0818
2000 0.0430 0.0620 0.0361 0.0615 0.0421 0.0622 0.0359 0.0603
4000 0.0356 0.0482 0.0333 0.0468 0.0358 0.0484 0.0334 0.0470

Figure 3. Visualization of the stochastic block model.

part in example 1. We can see that there is a node with very
large degree, which could be an influential node.

Example 3. (Stochastic Block Model) Finally, we con-
sider a stochastic block model [23, 20], which is also a
widely studied network topology in previous literature. For
example, it is of particular interest for community detec-
tion [26]. Following [20], we randomly assign a block la-
bel (k = 1, 2, · · · ,K) to each node with equal probability,
where K = n/20 is the total number of blocks. Next, set
P (aij = 1) = 0.5 if i and j belong to the same block and
P (aij = 1) = 0.001/n otherwise. This promises that nodes
from different blocks are less likely to connect with each
other compared with those in the same blocks. Lastly, as-
sign θ = (0,−0.1)�. Visualization of this network structure
with n = 100 and K = 5 is presented in Figure 3. From
Figure 3 we can clearly see there are 5 blocks in this sim-

ulated network structure. Nodes are connected with each
other within a block otherwise not.

3.2 Simulation results

For each simulation example, different network sizes are
considered (e.g. n = 1000, 2000, 4000) and the experiment
is randomly replicated M = 100 times. For illustration
purpose, we only examine the first order and second or-
der (e.g., K = 1 and K = 2) approximated paired likeli-

hood estimators. Let θ̂(m) = (μ̂(m), ρ̂(m))� be the estima-
tor obtained in the mth replication ( 1 ≤ m ≤ M). We
then consider the following measures to gauge their perfor-
mances. First, for a given parameter θj with 1 ≤ j ≤ 2,
the root mean square error is evaluated by RMSEj =

{M−1
∑M

m=1(θ̂
(m)
j − θj)

2}1/2. Next, for each 1 ≤ j ≤ 2,
the standard deviation of the corresponding estimator is

constructed as SDj = {M−1
∑M

m=1(θ̂
(m)
j − θ̄j)

2}1/2, where
θ̄j = M−1

∑M
m=1 θ̂

(m)
j . We then use these measures to evalu-

ate the finite sample performance of this proposed method.
Detailed results are summarized in Tables 1-3. For the first
example in Table 1, we find that the estimators are consis-
tent, with both RMSE and SD values decrease towards 0 as
n → ∞. Since higher order approximation is used in this
method, as a side effect, our method is computationally fea-
sible but not superior. Furthermore, we find the RMSE and
SD values are very similar to each other for both K = 1 and
K = 2. This means in practice, we can use the first order
approximation to save computational resources. Quantita-
tively similar results are obtained for example 2 in Table 2
and example 3 in Table 3. All these findings confirm a fact
that the proposed estimator θ̂ is indeed consistent.

4. REAL DATA ANALYSIS

We consider in this section a real network example about
Sina Weibo (www.weibo.com) which can be viewed as a
Twitter-type social media in China. Our goal is to inves-
tigate how the users of Sina Weibo interact with each other
in terms of their posting behavior. For illustration purpose,
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Table 3. Simulation results for example 3 with μ = 0 and ρ = −0.1. The RMSE and SD values for μ and ρ are reported

N K = 1 K = 2
RMSEμ RMSEρ SDμ SDρ RMSEμ RMSEρ SDμ SDρ

1000 0.0375 0.0825 0.0376 0.0663 0.0371 0.0834 0.0370 0.0666
2000 0.0236 0.0607 0.0228 0.0484 0.0246 0.0612 0.0235 0.0489
4000 0.0187 0.0442 0.0188 0.0349 0.0199 0.0431 0.0200 0.0341

Figure 4. Visualization of the sampled Sina Weibo network.

we start with an official Weibo account and randomly select
100 nodes from their followers. Subsequently, this node’s
followers are also collected. Because our model is better sat-
isfied with a sparse network structure, this motivates us to
keep those users who are with relatively small degree num-
ber. This leads to a final dataset of n = 673 nodes and
network density of 0.067%. Their follower-followee relation-
ships (i.e., A) are also recorded. We picture this sampled
real network structure in Figure 4. From this figure, we can
see that the network is very sparse, which is very similar to
the true world. For each node, we define the binary response
as whether it posts a tweet on a specific day. In our dataset,
58.25% of the users have posted a tweet on the observed
day. Then the interest is to examine whether the posting will
be influenced by the connected friends. Applying the pro-
posed method, we can calculate the spatial autocorrelation
ρ̂ = 0.314 and the threshold μ = 0. This means Sina Weibo
users’ posting activity does correlated with each other in a
nontrivial way.

5. CONCLUSION

We investigate here the spatial autocorrelation estima-
tion problem in a discrete choice model. Specifically, we

consider a discrete choice model with the probit error term
specifying in a latent SAR framework. In this model, the
network dependence is no longer observable, instead it is
treated as a latent variable and measured by a binary re-
sponse variable. Estimating spatial autocorrelation in this
new model is a challenging work because of the complicate
integration in the objective function. We then propose a
novel approximation method to solve the estimation prob-
lem, leading to the method of APMLE. Our findings are
confirmed by both numerical studies and a real dataset from
Sina Weibo.

To conclude with this article, we discuss here a few in-
teresting topics for further study. First, the spatial discrete
choice model only considers those directly connected friends
in the network. However, many empirical studies show that
higher order relationships (e.g., indirectly connected nodes)
can also have impact on consumers’ behavior. Then this
could be an extension of our proposed method and needs a
further study. Second, we assume the spatial autocorrelation
is same across different users. While this widely accepted as-
sumption will be violated if we take consumer heterogeneity
into consideration. This would be another useful extension of
the proposed model which deserves a separate study. Lastly,
to further understand individual choice, a more complicated
model which incorporates covariates should be considered.
However, due to the accessibility of real data, we leave this
work for a further investigation.
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