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We would like to thank the editor Professor Heping Zhang
for organizing this discussion, and the discussants for their
thoughtful insights. These discussions help us to understand
DOSK further and inspire interesting connections with ex-
isting methods as well as future research directions.

The main goal of the proposed DOSK technique is to per-
form flexible high dimensional nonlinear learning. In partic-
ular, both variable selection and data extraction are built
in the regularization terms for DOSK to achieve the flexible
learning goal.

Meimei Liu and Guang Cheng point out that DOSK re-
lies on the finite sparsity assumption of the true underlying
function, i.e., Assumption 4. As a potential solution to re-
move this assumption, they propose two methods to achieve
the goal of sparsity, and compare them with DOSK using
simulation studies. Their first idea is to use a random ma-
trix to project the original data into a smaller surrogate
data matrix in a random manner. In general, we agree that
the computation can be more efficient by reducing the size
of data. Under supervised learning, however, we suspect it
may be difficult to justify which random matrix should be
the optimal one to use if the selection is not fully data de-
pendent. In contrast, DOSK makes use of the training data,
and automatically selects the most important observations
and variables through sparse regularization terms. This can
be a potential reason that DOSK can perform well in nu-
merical studies.

In contrast to the random projection in the first approach
suggested by Liu and Cheng, their second approach consid-
ers data-dependent projection matrices. We find this second
approach to be very appealing. It is analogous to the pre-
screening step in variable selection before applying sparse
regularization (Fan and Lv [3]). By performing the proposed
data reduction using sampling techniques (Ma et al. [9]),
the corresponding computation can be much more efficient
as shown by their numerical comparisons. One caution we
would like to make is the potential danger of losing some
useful data points by using two stages of data extraction.
It will be interesting to establish some theoretical guarantee
for the dimension reduction step of the kernel matrix.

Yuan Huang and Shuangge Ma discuss the concept of
data extraction and types of problems it may benefit. They
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focus on the setting of high dimensional data with possibly
very small sample sizes, commonly seen in bioinformatics.
They believe that with very limited data, it may not be a
good idea to remove part of data as the data source is very
scarce. We would like to clarify that although DOSK per-
forms data extraction, the observations being removed still
contribute to the final model. A simple analogy is the calcu-
lation of mean versus median for us to estimate the center
of a distribution. Although the mean uses all data points
while the median only uses the middle one or two numbers
for calculation, the mean is not necessarily always better
than median. Furthermore, although the final calculation of
the median only involves the middle one or two numbers, the
other observations help to decide which observations are the
middle ones. This relates to the issue of efficiency and ro-
bustness in estimation (Huber and Ronchetti [5]). Similarly,
DOSK automatically identifies the subset of observations for
the final model and all observations contribute to the model.
Another interesting analogy is the Support Vector Machine
(SVM). By design of the SVM algorithm, the final classifier
will only use the set of support vectors for calculation. The
non-support vector observations contribute to the classifier
in helping identify the support vectors. Despite the poten-
tial usage of a small subset of observations for the final SVM
classifier, SVM is one of the most competitive classifiers in
practice (Schölkopf and Smola [10], Blanchard et al. [2]).
Similarly, the data extraction property of DOSK helps to
provide a more accurate prediction.

Huang and Ma suggest that one of “the most appropriate
scenario for the proposed approach may be the one with a
large sample size and ultrahigh-dimensional covariates”. We
agree that this can be a very promising application field in
the era of big data. One potential direction is to use the “di-
vide and conquer” idea as briefly mentioned in the paper. In
particular, one can split the predictors and observations into
multiple chunks, and learn on each part with double spar-
sity to find a representative subset. Then we can combine
the selected predictors and observations to train a global
model. Such an approach can be computed efficiently. Some
recent developments along this line (Zhang et al. [15]) can
provide useful insights for these potential extensions.

Since data extraction may not be beneficial for all ap-
plications, Huang and Ma suggest developing some “diag-
nostic tools” to decide whether data extraction is necessary.
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Indeed, such diagnostic tools can potentially be very use-
ful. Based on our empirical observations, we find that the
amount of data extraction depends on the complexity of
the underlying function. In general, the more complicated
the nonlinear function, the more data observations needed
for model construction. Such a phenomenon exists for SVM
models. In particular, nonlinear SVM boundaries often use
more support vectors than simple linear boundaries (Wu and
Liu [12]). One possible diagnose tool is to examine the com-
plexity of the underlying function to decide how much data
extraction is needed. This is also related to tuning parameter
selection. The current DOSK controls variable selection and
data extraction by choosing appropriate tuning parameters.
With three tuning parameters, the computation cost can be
large as mentioned by Huang and Ma. Our current strat-
egy is somewhat ad hoc. One potential improvement is to
increase the computational efficiency using more recent op-
timization tools. For example, the idea of FISTA (Fast Iter-
ative Shrinkage-Thresholding Algorithm, Beck and Teboulle
[1]) may be introduced to increase the convergence rate of
our algorithm.

Hao Helen Zhang points out very interesting connections
between our proposed data extraction using regularization
with the literature on parsimonious knot selection. A similar
connection was also briefly mentioned by Zhang et al. [13].
Interestingly, although smoothing spline solutions involve
all data points as knots in the kernel representation of the
function, the effective dimension of the model space is shown
to be much less than n due to the use of regularization
(Kim and Gu [6]). Knot selection is a traditional problem
in nonparametric regression (Wahba [11]). This connection
can help to further justify the usefulness of our proposed
data extraction.

In terms of tuning parameter selection and computation
involved in DOSK, Zhang points out the possibility of de-
veloping a solution path algorithm for DOSK. The existing
literature on path algorithms such as Li et al. [7] can be
helpful. Zhang also mentions about the possible extension
of interaction selection on the KNIFE related formulation
in DOSK. In contrast to the additive form used in other
methods such as COSSO (Lin and Zhang [8]), the function
representation in DOSK is more flexible. However, how to
effectively identify interactions may require more detailed
structure identification (Zhang et al. [14], Hao and Zhang
[4]). More exploration is needed along this direction. Zhang
also points out the connection and differences of the conver-
gence rate in the paper with existing parametric and non-
parametric rates in the literature. In general, these results
heavily depend on the assumptions. As pointed out by Liu
and Cheng, the current assumptions used can be strong. It
will be interesting to systematically examine the theoretical
results and compare them with other existing ones in terms
of both assumptions and resulting rates.

Finally, our sincere thanks go to the editor and discus-
sants for their helpful comments and inspiring remarks.

These discussions will help lead fruitful research related to
DOSK, in particular, simultaneous variable selection and
data extraction in kernel learning.
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