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Discussion on “Doubly sparsity kernel learning
with automatic variable selection and data
extraction”

Hao Helen Zhang
∗

Kernel methods provide powerful and flexible tools for
nonlinear learning in high dimensional data analysis, but
feature selection remains a challenge in kernel learning. The
proposed DOSK method provides a new unified framework
to implement kernel methods while automatically selecting
important variables and identifying a subset of parsimonious
knots at the same time. A double penalty is employed to
encourage sparsity in both feature weights and representer
coefficients. The authors have presented the computational
algorithm and as well as theoretical properties of the DOSK
method. In this discussion, we first highlight the DOSK’s
major contributions to the machine learning toolbox. Then
we discuss its connections to other nonparametric methods
in the literature and point out some possible future research
directions.

AMS 2000 subject classifications: Primary 62H20,
62F07; secondary 62J05.
Keywords and phrases: Reproducing kernel Hilbert
space (RKHS), Kernel methods, Variable selection, High di-
mensional data analysis, Penalty.

1. INTRODUCTION

When the data dimension is high and not all features
are informative to describe the authors are to be congrat-
ulated with their excellent contribution to kernel learning,
an important area in statistical machine learning for high
dimensional data analysis. Kernel machines provide a uni-
fied and powerful framework to achieve nonlinear learning
for various tasks such as support vector machines for classi-
fication, kernel logistic regression, Gaussian processes, spec-
tral clustering, and kernel principal component analysis for
dimension reduction ([23, 24, 18, 3]). Kernel methods can
be applied to various input domains, including real-valued
vectors, categorical data, sequence data, text, and images.
Due to their high flexibility, computational efficiency, and
the ability to discover complex patterns and extract non-
linear features from data, kernel methods are widely used
in many real applications such as medicine, climate studies,
imaging sciences, and deliver state-of-the-art performance.
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Considering the relationship between the input and the out-
put, it is vital to identify important features and perform
dimension reduction during the learning process in order to
improve interpretability and prediction accuracy of the de-
cision rule obtained from data. This is the called variable
selection, which plays a key role to facilitate computation
and statistical inferences in high dimensional data analysis.
However, standard kernel machines can not select important
variables automatically, due to the complex form of the es-
timated multivariate function. In this article, the authors
have proposed a novel learning method, DOSK, to achieve
sparse learning in kernel methods. By solving a regulariza-
tion problem with a double-penalty, the DOCK estimator
can achieve two types of sparsity simultaneously, i.e., the
solution has a sparse representation in terms of both vari-
ables and data points. Furthermore, the DOSK estimator
is shown to enjoy nice theoretical properties – consistent in
both variable selection and function estimation asymptoti-
cally, under certain regularity conditions.

We would like to supplement this article with three
points. First, we share our view on important contributions
of this work to the area of kernel learning. Second, we point
out the connection between the data extraction idea pro-
posed by the authors with the parsimonious knot selection
commonly used in splines. Third, we suggest some future
directions to improve the DOSK method.

2. MAIN CONTRIBUTIONS OF THIS WORK

Consider a supervised learning problem with the input
X ∈ X ⊂ R

p and an output Y , which can be real-valued
or take discrete values. The goal of machine learning is to
estimate the relationship between X and Y , denoted by a
function f , from the observations (xi, yi), i = 1, · · · , n. The
learned function f can be used to make future predictions
by ŷnew = f(xnew), when a new input xnew is given. The
function f can be linear or nonlinear in X, depending on the
complexity of the underlying true function. Kernel methods
provide is a unified way to achieve nonlinear learning. Define
a map φ : X → F , from X to the feature space F , where φ
is a linear or nonlinear feature map. A kernel function can
be defined as an inner product in the feature space F ,

K(x,x′) =< φ(x), φ(x′) >F , ∀x,x′ ∈ X .
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For example, if X = R
3 with x = (1, x1, x2), then

a nonlinear map φ : R
3 → R

5 defined as φ(x) =
(1,
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2x1,
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2x2, x

2
1, x

2
2,
√
2x1x2) defines a kernel K(x,x′) =

<φ(x), φ(x′)>F = (1+ < x,x′ >)2X , which is known as
the second-order polynomial kernel. One important prop-
erty of kernel functions is that they can be computed with-
out explicitly computing φ, which enables them to opera-
tion in a high-dimensional feature space; this is called “ker-
nel trick”. Kernel methods are widely used in nonlinear
classification and nonlinear function estimation problems.
For real-valued inputs in R

p, popular choices of kernels in-
clude linear kernel K(x,x′) =< x,x′ >, dth-order polyno-
mial kernel K(x,x′) = (1+ < x,x′ >)d, Gaussian kernel
K(x,x′) = exp{−γ‖x − x′‖2}, and the Laplacian kernel
K(x,x′) = exp{−γ

∑p
j=1 |xj − x′

j |}.
Kernel methods are closely connected to nonparametric

function estimation in statistics through the reproducing
kernel Hilbert space (RKHS); see [22, 8, 26]. Based on [2],
if the kernel function K is positive definite on X × X , then
there exists a unique RKHS of real-valued functions on X ,
with K as its reproducing kernel. We denote the RKHS as-
sociated to K by HK . For the standard nonparametric re-
gression model yi = f(xi) + εi, i = 1, . . . , n, where εi is the
error term with mean zero and constant variance, the func-
tion f ∈ HK can be estimated by solving a regularization
problem

(1) min
f∈HK

1

n

n∑

i=1

L{yi, f(xi)}+ λ‖f‖2HK
,

where L is the loss function and J(f) is the penalty function
to control the complexity of f and avoid over-fitting. By
the representer theorem of [14], the solution to (1) can be
expressed as a finite combination of kernel representers

(2) f̂(x) = b+
∑

i=1

αiK(x,xi).

The form (2) suggests that the solution f̂ typically depends
on all the data points through α’s and as well as all the
inputs through the kernel functionK. This is not necessarily
desired for high dimensional data analysis, as some variables
may be uninformative. The DOSK method proposed in this
article is produce a sparse solution f̂ , which is sparse in
terms of both data points and variables. In the following,
we comment on two major contributions of the DOSK to
kernel learning and its novelty compared to other existing
methods.

Variable selection is a challenging issue for kernel learn-
ing due to the complex form of f̂ . If the true function f
is not additive, then the effects of individual variables can
not be easily separated and evaluated to determine their
importance. For example, when using the Gaussian kernel
K(x,x′), the estimated function is expressed as f̂(x) =

b +
∑p

j=1 αie
−γ

∑p
j=1(xj−xij)

2

, where effects of all the vari-
ables are tangled together in a nonlinear fashion, then it

would be difficult to separate them out and determine con-
tributions for individual variables to f̂ . This is mainly why
many nonparametric variable selection methods, including
COSSO ([15]), SpAM ([16]), and [12], conduct variable selec-
tion by assuming that f has an additive structure as in [11].
For example, the COSSO method assumes that the kernel
K has the structure K(x,x′) =

∑p
j=1 θjKj(xj , x

′
j), where

Kj(xj , x
′
j) is the kernel associated with variable Xj , and se-

lect variables by identifying nonzero θj ’s. The SpAMmethod
assumes the additive model f(x) = b+

∑p
j=1 fj(xj) and se-

lect important fj ’s by imposing shrinkage-type penalty onto
fj ’s. In contrast to these methods, the DOSK method does
not require the additive assumption on f to perform vari-
able selection automatically. This is done by adopting the
KNIFE technique suggested by [1], which associates each
variableXj with a weight parameter wj ∈ (0, 1) and uses the
“variable-weighted” kernel (called the “feature-weighted”
kernel in [1]) Kw(x,x′) = K(w�x,w�x′) in kernel learn-
ing, where w = (w1, . . . , wp)

T . The nice property of Kw is
that it controls the significance of the effect of Xj by a scalar
wj ∈ (0, 1); and if wj = 0, then the effect of Xj will vanish

in the function f̂ . In this way, the DOSK method converts
the problem of variable selection selection to the problem
of selecting nonzero wj ’s, which can be easily done by im-
posing a shrinkage penalty like the L1 penalty on wj ’s as in
[21]. With regard to this, the DOSK method is more flexible
than other methods by relaxing the additive assumption on
the underlying true function f .

The second contribution of this work is to the established
theory for the DOSK estimator. Under certain regularity
conditions, the DOSK estimator is shown to be consistent in
both variable selection and nonparametric function estima-
tion asymptotically. Interestingly, the authors have shown
that the convergence rate of the DOSK estimator is very
close to the parametric rate, which is quite different from
other nonparametric regression estimators. It would be great
if the authors can provide more explanations and share their
insight on the results in the article.

In summary, the DOSK method provides a theoretically-
justified, computationally efficient, and flexible tool for non-
parametric variable selection in the context of kernel learn-
ing. The numerical studies in the paper also show that the
empirical performance of the DOSK method is superior to
other methods in the settings considered by the authors.
Overall, the DOSK contribute a valuable and useful sparse
estimation tool for non-linear kernel learning.

3. DATA EXTRACTION VS PARSIMONIOUS
KNOT SELECTION

One main feature of the DOSK method is its ability to
extract data, which is done by imposing the L1 penalty on
the kernel coefficient α’s in f̂ . As a result, the DOSK es-
timator can be expressed by a combination of a subset of
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kernel representers as

f̂(x) = b+
∑

αi �=0

αiK(x,xi).

As pointed out by the authors, the DOSK method automat-
ically selects important data points from the entire training
set. In the following, we point out the close connection be-
tween data extraction to parsimonious knot selection, which
is commonly used in computing the spline function in non-
parametric multivariate regression. Both of them aim to
achieve the sparsity in α’s, but they use different techniques.

For smoothing splines, the solution f̂ resides in a finite-
dimensional model space

Hn = {1} ⊕ span{K(x,xi), i = 1, · · · , n},

where {1} is the constant space and K is the reproduc-
ing kernel. As pointed by [9], the effective dimension of the
model space Hn is actually much lower than n due to the
penalty term λJ(f). Therefore, it is not necessary to use all

1 + n dimensions to obtain f̂ , and instead one can approxi-
mate f̂ within a low-dimensional subspace of Hn,

HN = {1} ⊕ span{K(xi,x
∗), i = 1, · · · , N}

where {x∗
i , i = 1, . . . , N} are a random subset of {xi, i =

1, . . . , n}. It can be shown, as N → ∞ sufficiently fast (but
slower than n), the approximate solution has the same con-

vergence rate as the original solution f̂ ; see [13] for de-
tails. This is known as the parsimonious knot selection,
which is commonly employed in smoothing splines and re-
gression splines (for example, [4, 29, 17, 30]). To select
the knots, one can either randomly sample a subset of N
points {x∗

1, . . . ,x
∗
N} from the training data, or use selection

techniques such as stepwise regression and penalized least
squares (for example, [6, 5, 19, 20]), to select the knots. For

smoothing splines, the computation of f̂ is generally of the
order O(n3) in multivariate settings, while that for comput-
ing the approximate solution is O(nN2). Furthermore, [9]
showed that N be can be much smaller than n without de-
grading the function estimation. Generally speaking, when
N is chosen properly and much smaller than n, the compu-
tational saving can be substantial for large datasets,

Based on the above discussions, the DOSK method can
be also regarded as a new knot-selection technique for non-
parametric estimation. Here, we would like to point out
two main differences between the DOSK method and other
knot-selection techniques. The first difference is in their knot
selection mechanism: the DOSK selects knots by retaining
large |αi|’s with the help of a shrinkage penalty, while the
latter involves a random sub-sampling process. The second
key difference is on their choice of N and knot locations.
In theory, efficient approximation of the solution can be
achieved with a small N , but in practice, the selection of
knots can be delicate and data-dependent. Most existing

knot selection techniques select N in some ad hoc fashion,
or use some empirical formula like N = 10n2/9 as in cubic
splines suggested by [13]. By contrast, the DOSK procedure
does not need to specify N or the knot locations in advance,
and instead it lets data decide the number of knots and their
locations automatically by solving a penalization problem.
In this sense, the DOSK is more convenient for implementa-
tion. It would be interesting to make empirical comparisons
of them under some numerical studies.

4. SUGGESTIONS FOR FUTURE WORKS

The DOSK method involves three tuning parameters, λ1,
λ2, λ3, and possibly additional parameters in the kernel
(for example, γ in the Gaussian kernel). The performance
of the DOSK estimator hinges on the proper selection of
these smoothing parameters via some data-adaptive proce-
dures. In this article, λ3 = 0.5 is just used for convenience.
However, it is known that the tuning process can be expen-
sive for multiple tuning parameters. In order to speed up
the tuning process, the authors may explore the possibility
of building a solution-path or solution-surface over the tun-
ing parameters or some of them. It is observed that, when
w is fixed, the DOSK method essentially solves the elastic
net penalty problem for α’s, then it is possible to compute
the entire regularization solution path of α’s by adopting
the LARS-EN algorithm in [31]. If this can be done, it will
help to save the tuning cost for λ1 and λ2. In the context
of smoothing splines, a commonly used selection criterion
for λ3 is the generalized cross validation ([25, 26, 27, 28]),
which has been shown to perform well in practice. The au-
thors may consider deriving a GCV-type tuning criteria for
tuning λ3, as an alternative to the five-fold cross validation.

Interaction selection is another important yet challeng-
ing topic for nonlinear learning problems. Though there are
some recent developments for interaction selection in high-
dimensional linear models such as [10], the problem of se-
lecting nonlinear interactions is much less studied in the
literature. When the dimension p is smaller than the sample
size n, [15] employed the COSSO for interaction selection by
using the tensor product kernel. It would be interesting to
study interaction selection for nonparametric models with p
much larger than n. Since the DOSK method does not make
any special structure assumption on f̂ , it may be general-
ized to identify important two-way or multi-way nonlinear
interactions between variables for complex problems. The
authors intend to explore this in future research.
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