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Discussion on “Double sparsity kernel learning
with automatic variable selection and data
extraction”
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DOSK proposed in [2] aims to perform both variable se-
lection and data extraction at the same time under the “fi-
nite sparsity” assumption. In this short note, we propose
two alternative approaches based on random projection and
importance sampling without such an assumption. Further-
more, we compare these two methods with DOSK empir-
ically in terms of statistical accuracy and computing effi-
ciency.
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We congratulate the authors on an inspiring piece of
work. The authors propose a compelling double sparsity con-
straint to perform variable selection and data extraction at
the same time. An interesting aspect of their method is to
automatically reduce the dimension of the kernel matrix by
penalizing the related coefficients. On the other hand, the
theoretical validity of the proposed DOSK method relies on
the “finite sparsity” assumption of the true function, i.e.,
Assumption 4. This discussion note presents two methods
not relying on such an assumption, and compares them with
DOSK in terms of statistical accuracy and computing time.

One dimension reduction method is through random pro-
jection; see [5], [8] and references therein. Random pro-
jection is a probabilistic data compression technique that
projects the original dataset to a smaller surrogate dataset
in a random manner. By introducing a random matrix
R ∈ R

n×s, we approximate the coefficients of kernel ma-
trix α ∈ R

n by Rα̃, where α̃ ∈ R
s. Specifically, equation (6)

in [2] can be written as

(1) min
α̃,b,ω

1

n
||y−KωRα̃− b||22 + λ2||ω||1 + λ3α̃

TRTKωRα̃.
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Commonly used random matrices include those with inde-
pendent sub-Gaussian entries and randomized orthogonal
system projections. Another way is to subsample s knots
from the span{Kω(x1, ·), · · · ,Kω(xn, ·)}, where {xi}ni=1 ∈
R

p; that is, R has columns of the form ri =
√

n
s pi.

A representative example is uniform subsampling, where
{p1, · · · , ps} are drawn uniformly at random without re-
placement from the n dimensional identity matrix, e.g., [4],
[7].

In the above method, R is chosen as data-independent.
Rather, we can choose to construct R in a data-dependent
way, such as “importance sampling”. Examples include sam-
pling via the statistical leverage score ([3]), the λ−ridge
leverage score ([1]), or adaptive basis selection ([6]). To be
more concrete, we take the λ−ridge leverage score1 as an
example. In this case, equation (6) in [2] can be written as

(2) min
α,b,ω

1

n
||y − K̃ωα− b||22 + λ2||ω||1 + λ3α

T K̃ωα,

where K̃ω
2 is the Nyström approximation of the kernel ma-

trix using the λ−ridge leverage score sampling; see [1] for
details. Then, to obtain the solution in equation (2), we only
need to simplify the α step in Algorithms 1 and 2 in [2], and

update α(t) by α(t) = ( 1nK̃w + λ3In)
−1y.

In the end, we empirically compare the DOSK, random
projection using Gaussian matrix (GP) and uniform sub-
sampling (US) in equation (1), and λ−leverage score (LS)
in equation (2), in terms of mean prediction error (MPE)
and computing time. Data were generated following Regres-
sion Example 1 in [2] with p0 = 2. In Figure 1 (a) and
(b), we set f0(xi1) = 10 sin(xi1)I(0<xi1<2π); in Figure 1
(c) and (d), the true function was generated with a finite

sparse structure such as f0(x) =
∑5

i=1 γiK(xi, x), where
γ1 = · · · = γ5 = 1/5. Note that the former function does
not satisfy the “sparsity” condition, while the latter does.
In the former case, the MPE of DOSK is still comparable
to the other three methods but with a large computational
cost, as shown in Figure 1 (a) – (b). In the latter case, it is

1The λ−ridge leverage score is defined as li(λ3) = diag(Kω(Kω +
nλ3In)−1)i for i ∈ {1, · · · , n}.
2K̃ω is constructed by choosing s columns randomly according to a
probability distribution (pi)1≤i≤n defined by the λ−ridge leverage
score.
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Figure 1. Consider the size of the training and testing data
sets to be 100 and 1000, respectively. We set the projection
dimension of GP and US to be 20, the number of basis in LS

to be 20, and replicated the experiments 50 times.

not surprising that DOSK performs better than the other
three methods but still with a large computational cost, as
shown in Figure 1 (c) – (d). The computational burden of
DOSK comes from cubic running time in n and an additional
tuning step related to λ1. A general direction of interest is
to study an optimal trade-off between statistical accuracy
and computation efficiency in these procedures.
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