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Sparse Bayesian variable selection for classifying
high-dimensional data
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Identifying differentially expressed genes for classifying
experiment classes is an important application of microar-
rays. Methods for selecting important genes are of much sig-
nificance in accurate classification. Owing to the large num-
ber of genes and many of them are irrelevant, insignificant or
redundant, standard statistical methods do not work well.
The modification of existing methods is needed to achieve
better analysis of microarray data. We present a stochastic
variable selection approach for gene selection with different
two level hierarchical prior distributions for regression co-
efficients. These priors can be used as a sparsity-enforcing
mechanism to perform gene selection for classification. Us-
ing simulation-based MCMCmethods for simulating param-
eters from the posterior distribution, an efficient algorithm
is developed and implemented. This algorithm is robust to
the choices of initial values, and produces posterior probabil-
ities of related genes for biological interpretation. To high-
light the potential applications of the proposed approach,
we provide examples of the well-known colon cancer data
and leukemia data in microarray literature.

Keywords and phrases: Sparse priors, Stochastic vari-
able selection, Classification, High-dimensional data.

1. INTRODUCTION

With the development of microarray technology, re-
searchers can rapidly measure the levels of thousands of
genes expressed in a single experiment. One important ap-
plication of this microarray technology is to classify the sam-
ples into different diagnostic categories using their gene ex-
pression profiles. One current difficulty is that the microar-
ray data often consist of a large number of genes compared
to the number of samples. Some genes could be related to
a particular type of diagnostic category. However, many of
the genes are irrelevant or redundant and affect the accu-
racy of classification. Therefore, robust and accurate gene
selection methods are required because effective gene selec-
tion methods often lead to a compact classifier with better
interpretability and accuracy.

Gene selection problem basically can be treated as a vari-
able selection problem associated with a linear regression
models problem in statistics. Most of the proposed meth-
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ods in the literature are univariate methods and have fol-
lowing fundamental disadvantages: Firstly these methods do
not take the correlations between genes into account. Conse-
quently, some insignificant genes are selected while some use-
ful but weakly significant genes may be omitted. Secondly
these methods are not probabilistic models, thus can not
produce the inclusion probabilities for the selected genes,
which are helpful for achieving better biological interpreta-
tion. Thirdly, the classification procedure of these methods
consists of two steps. In the first step, standard techniques
such as t or F tests are used to select some significant genes.
In the second step, those selected genes are used to fit a
classification model for cancer classification. However, as the
classification models play no part in the initial gene selec-
tion, this classification procedure often results in accumu-
lated errors in the final class prediction (Dougherty, 2001).

Bayesian multivariate methods, which can take into ac-
count the correlations among genes, are proposed in the
literature for developing probabilistic models for the pur-
pose of gene selection and cancer classification. Recently
some Bayesian formulations of neural networks and support
vector machine (SVM) have been proposed (Chakraborty
et al., 2004; Mallick et al., 2005) for cancer classification.
However, these methods have some limitations, such as,
they cannot self sufficiently select the significant genes, and
their performance is often highly dependent on an efficient
gene selection prior to model fitting. By using the stochas-
tic search technique and SVM, Chakraborty et al. (2007)
and Chakraborty (2009) developed a Bayesian kernal logis-
tic model for multiclass data and a Bayesian kernal probit
model for binary data, respectively. These two methods both
try to conduct gene selection and class prediction simultane-
ously. However, nonlinear kernels (polynomial and Gaussian
kernel) are required in using such Bayesian SVM methods.
Therefore, it is not straightforward to interpret the direct
relationship between the genes and the cancer types.

In some Bayesian literature, Bayesian probit/multinomial
probit regression models (Lee et al., 2003; Zhou et al., 2004a;
Zhou et al., 2004b; Sha et al., 2004) and Bayesian logistic
regression model (Zhou et al., 2004c) are proposed for clas-
sification purposes. In such models, the gene selection can
be automatically performed by indexing the genes of the
models. As a linear model is used by these approaches to
establish the relationship between the genes and the cancer
types, how the genes finally explain the tumor behavior can
be tracked down. However, they adopted the g-prior (Zell-
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ner, 1986) for unknown parameters of regression coefficients.
For situations with high-dimensional genes or even a small
set of genes, there exists a possibility of multicollinearity,
then the covariance matrix involved in the g-prior is nearly
singular (Gupta and Ibrahim, 2007). Taking such g-prior
may lead to the collapse of the MCMC algorithm and other
convergence problems (Yang and Song, 2010).

Alternatively, sparse methods have been proposed for
gene selection and classification. These methods assume that
only a subset (which is often considered small) of genes has
significant effect on the cancer types, and the other subset
of genes which have little or no effect can be eliminated so as
to better estimate the significant genes. Sparse methods are
preferable as they can lead to a better outcome of sample
prediction using fewer genes. Many such methods have been
developed to improve separation of significant genes from in-
significant genes. Sparse Bayesian methods that used heavy-
tailed priors for the regression coefficients encourage a large
proportion of those coefficients to be shrunk to a value close
to zero. The degree of sparseness of the methods can be
adjusted by changing the prior distribution of the regres-
sion coefficients. Many prior have been studied including:
the student t (Bae and Mallick, 2004), the double exponen-
tial (Park and Casella, 2008)(leading to Bayesian LASSO)
and the elastic net (Li and Lin, 2010)(leading to Bayesian
elastic net). However, these methods still have some disad-
vantages: (a) perform only shrinkage of the regression co-
efficients towards zero but do not automatically implement
variable selection; (b) just select a single model for classifi-
cation, but do not take into account the model uncertainty
which is especially important if prediction is the main objec-
tion. More recently, Chakraborty and Guo (2011) suggested
to use Bayesian hybrid Huberized SVM (BHHSVM) with
elastic net prior for the regression coefficients for gene se-
lection and classification simultaneously. But BHHSVM is
implementationally more complicated and computationally
slower than Bayesian probit regression (Mallick et al., 2011).

Currently some variable selection techniques, such as
Gibbs Variable Selection (GVS), Reversible Jump MCMC
(RJMCMC; Green, 1995) and Stochastic Search Variable
Selection (SSVS; George and McCulloch, 1993), can be in-
corporated into Bayesian sparse methods to do variable se-
lection. GVS has the advantage that the posterior distribu-
tion is not affected by pseudo-priors, but it needs pseudo-
priors on all regression coefficients of the model. The merit
of RJMCMC is that the specification for pseudo-priors is
not required, and the number of variables selected at each
iteration is assumed to be a random variable; whereas dif-
fuse priors will often lead to the fewest parameter model
being chosen. The advantage of SSVS is that it can be ap-
plied to a wide variety of models, and the users are allowed
to indicate which models they think are more likely.

In this paper, we propose an integrated sparse Bayesian
variable selection method for classification using sparse
Bayesian method and SSVS technique. The gene selection
is conducted by indexing the genes of the model under this

method. Compared with the methods discussed above, the
novelty of our method may be summarized as follows: (a)
sparse Bayesian variable selection is the big novelty of our
method. (b) our method can take model uncertainty into
account, and the importance of genes are measured by cal-
culating the relative frequency of each gene selected through
the MCMC method. (c) the relative frequencies of genes
are sparser than that in Bayesian probit/logistic regression
models, then it is helpful for us to select significant genes.
(d) by rewriting the heavy-tailed priors as a two level hier-
archical model, an efficient MCMC algorithm is designed to
visit models of any size.

For gene selection and classification of diagnostic cate-
gory, we consider a multivariate Bayesian regression model
with two-level hierarchical (TH) Bayesian framework and a
stochastic search variable selection (SSVS) method. More-
over, unlike the method based on approximation, we per-
form full Bayesian analysis through the Markov chain Monte
Carlo (MCMC; Gilks et al., 1996) based stochastic search al-
gorithm. In developing our TH-SSVS algorithm, an efficient
sampling scheme is implemented. In addition, the TH-SSVS
approach produces the posterior probabilities for the se-
lected genes, which is helpful for achieving better biological
interpretation. We illustrate the advantage of our method
on two well-known microarray data sets: Colon cancer data
(Alon et al., 1999) and Acute leukemia data (Golub et al.,
1999), which have been extensively used in the literature to
demonstrate various classification procedures (Nguyen and
Rocke, 2002; Le Cao and Chabrier, 2008; among others).
Our results show that the proposed TH-SSVS approach re-
duced the number of genes selected and produced prediction
accuracy comparable to that of the existing variable selec-
tion and classification methods.

The remainder of the paper is structured as follows. In
Section 2, we briefly review the statistical model and de-
scribe hierarchical prior distributions for variable selection;
we also give details of the Bayesian analysis of the poste-
rior distribution, including a discussion of efficient sampling
scheme, and discuss the classification in this section. Section
3 illustrates the performance of the method for two publicly
available data sets. In section 4 we apply our method on
one simulated data set. Section 5 gives some discussions and
conclusions.

2. METHOD

2.1 Probit model

Suppose the data set has n observations with p predictors.
Let Y = (Y1, · · · , Yn) denote the observed binary responses.
For example, Yi=1 indicates that sample i is normal or one
type of cancer and Yi=0 indicates that sample i is cancer
or another type of cancer. For each sample i, let xij be the
measurement of the expression level of the j-th gene for the
i-th sample; hence we have the following data matrix X of
covariates:
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X =

⎛
⎜⎜⎜⎝

x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp

⎞
⎟⎟⎟⎠

We model the dependence of Yi on Xi as pi = P (Yi =
1) = Φ(α+Xiβ), where α represents the intercept, and β =
(β1, · · · , βp)

T is a p by 1 dimensional vector of regression
coefficients, Xi is the i-th row of X, and Φ is the standard
normal cumulative distribution function relating pi with α+
Xiβ. We follow Albert and Chib (1993) and augment Yi

with one latent variables Zi to convert the probit model to
a regression model with inequality constraints on the latent
variables. More specifically, we define

(1) Zi = α+Xiβ + εi,

where the disturbance or noise term εi are independently
and identically distributed as N(0, 1). The relationship be-
tween Yi and Zi is

(2) Yi =

{
1 if Zi > 0,

0 if Zi ≤ 0.

In order to index the possible subsets of genes for per-
forming gene selection, we introduce a latent binary vector
γ = (γ1, · · · , γp), such that
(3)

γi =

{
1 if the i-th gene is included in the model,

0 if the i-th gene is excluded from the model.

This indicator is used to induce a mixture prior on the re-
gression coefficients.

Given γ, let pγ =
∑p

i=1 γi, βγ be a pγ by 1 vector con-
sisting of all the nonzero elements of β, and Xγ be an n by
pγ matrix of covaraites consisting of all the columns of X
corresponding to those elements of γ that are equal to 1.
Adopting these notations, model (1) can be rewritten as

(4) Zi = α+Xi,γβγ + εi,

where Xi,γ is the i-th row of Xγ .

2.2 Prior specification

The choice of the prior distributions for the unknown pa-
rameters is very important in the Bayesian SSVS approach.
In this paper, prior distributions for α, βγ , and γ with the
structure p(α, βγ , γ) = p(α)p(βγ |γ)p(γ) is considered.

The prior distribution of α is taken as

(5) α ∼ N(0, h),

where h is a hyperparameter representing the variance of
the univariate normal distribution. Since α is not our focus,
a specified value is assigned to h. According to Lamnisos et
al. (2009), a large value of h is taken.

For more crucial regression coefficient parameter β, we
consider sparse priors in this paper. Sparse priors play an im-

portant role in Bayesian regression modeling, and has been
shown to be useful in a more general problem of learning a
sparse model in high-dimensional space (Wainwright et al.,
2006). In contrast to a prior assumption of independently
and normally distributed coeficients sharing a common vari-
ance, sparse priors are heavy tailed and peaked at zero, and
can better accommodate large regression coefficients. Two
particular sparse priors are student t and Laplacian distri-
butions. In regression problems, study and use of the Lapla-
cian prior distribution have become popular in part due to
its connections to the Lasso procedure of Tibshirani (1996).
However, the variable selection property is ad hoc from a
Bayesian perspective. Under the absolutely continuous stu-
dent t or Laplacian prior distribution, the prior probability
of the event βi = 0 is zero, and so the posterior probability
of such an event must also be zero. In order for posterior
inferences about events such as βi = 0 to be coherent, prior
probability mass must be allocated to these events. By the
definition of γi, if γi = 0, the i-th gene is excluded from the
model, it is natural to force βi = 0, and if γi = 1, we assign a
student t or Laplacian prior for βi. Within the class of sparse
priors for βi, scale mixtures of normal distributions have re-
ceived extensive attention. Therefore, the student t prior or
Laplacian prior can be presented as a two level hierarchical
model. The complete hierarchical probability distribution
for βi given γi are given below.

At the first level, the prior distribution of regression co-
efficient βi given γi is assumed to be

(6) p(βi|γi) = (1− γi)δ(0) + γiN(0, λi),

where δ(0) is a point mass at 0, λi is the variance of βi when
γi is equal to one.

At the second level, we assume two different prior distri-
butions for λi

Model I: λi ∼ IG(a2 ,
2
b ), where IG(a2 ,

2
b ) denotes an inverse

gamma distribution, and a and b are hyperparameters with
the density function proportional to u−( a

2+1)exp(− b
2u ), u >

0.
Model II: λi ∼ Ga(1, τ

2 ), where Ga(1, τ
2 ) has the density

function τ
2 exp(−

τu
2 ), u > 0, where τ is a hyperparameter.

For the prior specification on γ, a widely used prior is

(7) p(γ) =

p∏
i=1

θγi

i (1− θi)
1−γi , 0 ≤ θi ≤ 1,

that is p(γi = 1) = θi, i = 1, · · · , p. This prior assumes that
the i-th gene is included in the model independently with a
prior probability θi.

2.3 Computation

Denote Z = (Z1, · · · , Zn)
T ,Λ = diag(λ1, · · · , λp). Under

the model and prior specifications in the above sections, the
joint posterior distribution under Model I or Model II is
given by

p(Z,α, βγ ,Λ, γ|Y,X)(8)
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∝ exp{−

n∑
i=1

(Zi − α−Xi,γβγ)
2

2
}

n∏
i=1

I(Ai)

× exp(−α2

2h
)×

∏
i∈m(γ)

λ
− 1

2
i exp(− (βi|γi)2

2λi
)

×
p∏

i=1

θγi

i (1− θi)
1−γi

×
p∏

i=1

λ
−( a

2+1)
i exp(− b

2λi
)
{
or exp(−τλi

2
)
}
,

where Ai is equal to either {Zi : Zi > 0} or {Zi : Zi ≤ 0}
corresponding to Yi = 1 or Yi = 0, respectively; I(·) is an
indicator function; and m(γ) is the subscript set of those
elements of γ that are equal to 1.

The posterior distribution in (8) cannot be expressed in
an explicit form; therefore, we use an MCMC technique,
namely the Gibbs sampler (Geman and Geman, 1984), to
generate observations from this posterior distribution. Be-
cause α is rarely of interest, we marginalize it out for the
purpose of simplicity and speed (Park and Casella, 2008).
To make the sampling scheme efficiently explore the space
of 2p variables, we jointly update correlated components to
improve the results.We can in turn update Z, βγ ,Λ and γ
based on p(Z,Λ|X, Y, β, γ) ∝ p(Z|X, Y,Λ, γ)p(Λ|β, γ) and
p(βγ , γ|X, Z,Λ) ∝ p(βγ |X, Z,Λ, γ)p(γ|X, Z,Λ).The condi-
tional distributions for implementing our sampling scheme
are given below:

(i)p(Z|X, Y,Λ, γ): It can be shown that

(9) p(Z|X, Y,Λ, γ) ∝ N(0,Σγ)

n∏
i=1

I(Ai),

with Σγ = h1n1
T
n +XγΛγX

T
γ + In, which is a multivariate

truncated normal distribution. In (9), β is marginalized out
from the posterior distribution p(Z|X, Y, β,Λ, γ) to reduce
autocorrelation between β and Z, thus to improve mixing
in the Markov chain. Direct sampling from (9) is known
to be difficult. We follow the method of Devroye (1986) to
simulate samples from the univariate truncated normal dis-
tribution p(Zi|Z(−i),X, Y,Λ, γ), where Z(−i) is the vector of
Z without the i-th element.

(ii)p(Λ|β, γ): The posterior distribution of the i-th diag-
onal element of Λ under Model I is

(10) λi|βi, γi ∼ IG(
a+ 1

2
,

2

b+ β2
i

).

The posterior distribution of λi under Model II is

(11) λ−1
i |βi, γi ∼ InvGauss(

√
τ

|βi|
, τ),

where InvGauss denotes the inverse Gaussian distribution
with the probability density function

(12) InvGauss(ι, κ) =

√
κ

2πu3
exp{−κ(u− ι)2

2ι2u
}, u > 0.

We use the algorithm given in Chhikara and Folks (1989) to
generate the random observations from the inverse Gaussian
distribution.

(iii)p(βγ |X, Z,Λ, γ): The full conditional distribution of
βγ is

(13) βγ |X, Z,Λ, γ ∼ N(ΩγX
T
γΦZ,Ωγ),

where Φ = (h1n1
T
n + In)

−1, and Ωγ = (XT
γΦXγ +Λ−1

γ )−1 =

Λγ − ΛγX
T
γΦ(ΦXγΛγX

T
γΦ + Φ)−1ΦXγΛγ . The matrix in-

version for calculating Ωγ is computed using the well-known
Sherman-Morrison-Woodbury formula, which can make the
computation much faster when data are high-dimensional
with small sample size.

(iv)p(γ|X, Z,Λ): This conditional distribution is pro-

portional to |Σγ |−
1
2 exp(−ZTΣ−1

γ Z

2 )
∏p

i=1 θ
γi

i (1 − θi)
1−γi .

We marginalize out β from the conditional distribution
p(γ|X, Z, β,Λ) so that the Markov chain would be nonre-
ducible (Panagiotelisa and Smith, 2008). For implementing
an efficient sampling scheme, we draw a component γi of γ
conditionally on γ(−i), where γ(−i) is the vector of γ without
the i-th element, and
(14)

p(γi|γ(−i),X, Z,Λ)∝ |Σγ |−
1
2 exp(−

ZTΣ−1
γ Z

2
)θγi

i (1−θi)
1−γi .

Because γi is binary, we can get the conditional probabili-
ties of p(γi = 1|γ(−i),X, Z,Λ) and p(γi = 0|γ(−i),X, Z,Λ).
Denote γ1 = (γi, · · · , γi−1, γi = 1, γi+1, · · · , γp) and γ0 =
(γi, · · · , γi−1, γi = 0, γi+1, · · · , γp), and similarly define Σγ1

and Σγ0 as Σγ in (9). It can be shown that:

(15) p(γi = 1|γ(−i),X, Z,Λ) = (1 +
1− θi
θi

ρ)−1,

where

(16) ρ = |Σγ1Σ−1
γ0 |

1
2 exp{−

ZT (Σ−1
γ1 − Σ−1

γ0 )Z

2
}.

As a result, an explicit form of the conditional distribution
in (15) can be derived.

To implement the Gibbs sampler, we start with an initial

value (Z(0),Λ(0), β
(0)
γ , γ(0)), and continue as follows: at the

(k+1)-th iteration with the k-th value (Z(k),Λ(k), β
(k)
γ , γ(k)),

step (a): For i = 1, · · · , n, draw Z
(k+1)
i from the univari-

ate truncated normal distribution p(Z
(k)
i |Z(k)

(−i),X, Y,Λ(k),

γ(k)).

step (b): For i = 1, · · · , p, if γi = 1 draw λ
(k+1)
i from

the conditional distribution (10) and (11) for Model I and

Model II, respectively; if γi = 0, set λ
(k+1)
i = λ

(k)
i .

step (c): Draw β
(k+1)
γ from the conditional distribution

(13).
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step (d): For i = 1, · · · , p, generate a random number ui

from a uniform distribution U [0, 1], calculate the probability

p
(k+1)
i = p(γ

(k+1)
i = 1|γ(k)

(−i),X, Z(k+1),Λ(k+1)) via (15) and

(16), and update γi as follows:

γ
(k+1)
i =

{
1 if p

(k+1)
i ≤ ui,

0 otherwise.

Under mild regularity conditions and for sufficiently

large T , (Z(T ),Λ(T ), β
(T )
γ , γ(T )) simulated from the above

Gibbs sampler can be regarded as an observation from
the joint posterior distribution p(Z, βγ ,Λ, γ|Y,X), see Ge-
man and Geman (1984). We collect MCMC samplers

{(Z(k),Λ(k), β
(k)
γ , γ(k)), k = 1, · · · ,M} after a suitable burn-

in period. An initial value of γ(0) can be obtained by ran-
domly selecting a small number of genes and assigning 1
to the corresponding entries of γ(0). In contrast, Bae and
Mallick (2004) used two sample t statistic to identify a cer-
tain number of significant genes for getting γ(0). Our method
seems more reasonable as we usually have little prior infor-
mation about which genes are significant among the large
number of genes. The MCMC algorithm in our method is
robust to the choice of γ(0) and encounters no problem in
convergence. Note also that the MCMC algorithm focuses

on generating (Z(k),Λ(k), β
(k)
γ , γ(k)), which is important and

sufficient for gene selection and classification, while the less
important α is not simulated. The relative frequency of each
gene can be calculated as

(17) p̂(γi = 1|X, Y ) =
1

M

M∑
k=1

γ
(k)
i .

This gives an estimate of the posterior gene inclusion prob-
ability as a measure of the relative importance of the i-th
gene. Genes with high posterior inclusion probabilities are
relevant to classification.

2.4 Classification

The performance of a classification rule is best assessed
by applying the rule created on the training set to the test
set. If no test set is available, we use the sample based leave
one out cross-validation (LOOCV) method (Gelfand, 1996).
Let Y(−i) be the vector of Y without the i-th element. An
LOOCV predictive probability for Yi can be calculated as

p(Yi|Y(−i),X)(18)

=

∫
p(Yi|Y(−i),X, Z, β,Λ, γ)

× p(Z, β,Λ, γ|Y(−i),X)dZdβdΛdγ.

If a test set Ynew is available, the predictive posterior prob-
ability of Ynew given the new covariate Xnew is

p(Ynew|Y,Xnew)(19)

=

∫
p(Ynew|Y,Xnew, Z, β,Λ, γ)

× p(Z, β,Λ, γ|Y )dZdβdΛdγ.

This probability can be approximated by Monte Carlo inte-
gration as follows:

p̂(Ynew|Y,Xnew)(20)

=
1

M

M∑
k=1

p(Ynew|Y,Xnew, Z
(k), βk,Λ(k), γ(k)).

3. EMPIRICAL STUDIES

We now illustrate the practical utility of the proposed
TH-SSVS approach via two well-known data sets: the colon
cancer data analyzed initially by Alon et al. (1999), and the
leukemia data analyzed by Golub et al. (1999). The per-
formance in gene selection and prediction accuracy of the
TH-SSVS approach will be compared with the existing gene
selection and classification methods.

3.1 Colon cancer data

Alon et al. (1999) used Affymetrix Oligonucleotide Ar-
ray to measure expression levels of 40 tumor and 22
normal colon tissues for 6,500 human genes. These sam-
ples were collected from 40 different colon cancer pa-
tients, in which 22 patients supplied both normal and tu-
mor samples. A selection of 2,000 genes based on high-
est minimal intensity across the samples was conducted by
Alon et al. (1999), and the data are publicly available at
http://microarray.princeton.edu/oncology/affydata/. Alon
et al. (1999) discussed the application of clustering meth-
ods for analyzing expression patterns of different cell types.
One cluster consists of 5 tumors and 19 normal tissues, while
the second contains 35 tumors and 3 normal tissues. We an-
alyzed these data further by taking a base 10 logarithmic
of each expression level, and then standardized each tissue
sample to zero mean and unit variance across the genes.

In our Bayesian analysis based on the TH-SSVS ap-
proach, we set a = 6, b = 8, τ = 1, θi = 0.005, i = 1, · · · , p,
and h = 100. To check convergence, three chains with dif-
ferent initial values of Z and γ are run. The initial values
γ(0) were obtained based on randomly selecting different
25 genes for models I and II from a total of 2,000 genes,

and setting γ
(0)
i = 1 if the i-th gene is among the selected

genes and γ
(0)
i = 0 otherwise. Three diagnostic plots rec-

ommended by Smith and Kohn (1996) and Brown et al.
(1998) were used to check convergence. Fig.1(a) shows that
the most significant genes, which are determined by the pos-
terior gene inclusion probabilities. Fig.1(b) plots the number
of selected genes versus the iteration number, and Fig.1(c)
plots the log relative posterior probabilities of selected genes,
log(p(γ|Y,X, Z)), versus the iteration number. Fig.1(b) and
Fig.1(c) indicate that the the chain converged well enough
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Figure 1. Fig.1(a) shows the gene inclusion probabilities (in
percentages) versus the gene index, Fig.1(b) and Fig.1(c)
show the number of selected genes and the log relative

posterior probabilities of selected genes versus the first 10,000
iteration number, respectively.

within 10,000 iterations. We collected 50,000 observations
after 10,000 burn-in iterations to get the estimates of the
posterior gene inclusion probabilities (see (17)).

The 18 most significant genes ranked by the posterior
gene inclusion probabilities (see Fig. 1(a)) for models I and
II are presented in Table 1. At least seven of them were also
selected by Ben-Dor et al. (2000). One of the top-ranked
genes listed in Table 1 is uroguanylin precursor Z50753. Not-
terman et al. (2001) showed that a reduction of uroguanylin
might be an indication of colon tumors; and Shailubhai et
al. (2000) reported that treatment with uroguanylin has a
positive therapeutic significance to the reduction in precan-
cerous colon ploys. The second selected gene in Table 1 is
R87126 (myosin heavy chain, nonmuscle). The isoform B
of R87126 acts as a tumor supressor and is well-known as
a component of the cytoskeletal network (Yam et al. 2001,
among others). The discriminative power of gene J02854
also has a biological interpretation, because it is known to
be an intracellular target of integrins, affecting cell motility
(Keely et al., 1998).

Since there is no test set available, it is common to eval-
uate the performance of the classification methods for a se-
lected subset of genes by the LOOCV procedure (Lachen-
bruch and Mickey, 1968; McLachlan, 1992 and Gelfand,
1996). Some existing methods in the literature calculated
the LOOCV error within the gene selection process. How-
ever, as pointed out by the referees, this internal LOOCV
procedure is biased and provides optimistic results. There-
fore, an external LOOCV procedure proposed by Ambroise
and McLachlan (2002) was used in our analysis. Similar to
many other multivariate methods, this procedure is chal-
lenged by server memory requirements and large computa-
tional time. According to the traditional attempts to over-
come these problems (see Antoniadis, et al. 2003; Le Cao and

Table 1. Colon cancer data: strongly significant genes for
classifying normal and tumor tissues

No. Clone ID Gene annotation

1 H06524I,II Gelsolin precursor, plasma (human)+

2 R87126I,II MYOSIN HEAVY CHAIN, NONMUSCLE+

3 D14812I,II Human mRNA for ORF, complete cds
4 Z50753I,II H.sapiens mRNA for GCAP-II/uroguanylin

precursor+

5 H08393I,II COLLAGEN ALPHA 2(XI) CHAIN+

6 T62947I,II 60S RIBOSOMAL PROTEIN L24+

7 M82919I,II Human gamma amino butyric acid (GABAA)
receptor beta-3 subunit mRNA, complete cds.

8 H64807I,II PLACENTAL FOLATE TRANSPORTER
9 J02854I,II MYOSIN REGULATORY LIGHT CHAIN 2,

SMOOTH MUSCLE ISOFORM(HUMAN);+

10 H11084I,II Vascular endothelial growth factor
11 R99907I,II INTERFERON REGULATORY FACTOR 2
12 T94579I,II Human chitotriosidase precursor mRNA,

complete cds.
13 M36634I,II Human vasoactive intestinal peptide mRNA,+

14 T57882I,II Myosin heavy chain, nonmuscle type A
15 R55310I,II S36390 Mitochondrial processing reptidase
16 T64012I ACETYLCHOLINE RECEPTOR PROTEIN,

DELTA CHAIN PRECURSOR
17 H09719I,II TUBULIN ALPHA-6 CHAIN (Mus musculus)
18 M63391I Human desmin gene, complete cds.
19 T92451II TROPOMYOSIN, FIBROBLAST AND

EPITHELIAL MUSCLE-TYPE;+

20 X62048II H.sapiens Wee1 hu gene.+

+: Ben-Dor et al. (2000)

Chabrier, 2008), we perform the external LOOCV procedure
as follows: 1) omit one observation of the training set, 2)
based on the remaining observations, the p∗ most significant
genes were chosen by our TH-SSVS approach, 3) the chosen
pfi genes were used to classify the left out sample, and 4) go
back to step 1) and select another observation. This process
was repeated for all observations in the training set until
each observation had been held out and predicted exactly
once. From the full set of 2,000 genes, our method on aver-
age selected only 10 genes at each MCMC step. The perfor-
mance of our method with p∗=10 is summarized in Table 2.
With 10 genes, models I and II misclassified 2 tumor tissues
(T33, T36) and 1 normal tissue (N36). Alon et al. (1999),
using a muscle index based on the average intensity of ESTs,
misclassified 5 tumor tissues (T2, T30, T33, T36, T37) and
3 normal tissues (N8, N12, N34). Furey et al. (2000), apply-
ing the support vector machine (SVM) with 1,000 or 2,000
genes, misclassified 3 tumor tissues (T30, T33, T36) and 3
normal tissues (N8, N34, N36). It is interesting to notice that
N36 and T36 were originated from the same patient, and
both were consistently misclassified by SVM and TH-SSVS
approaches. Our LOOCV results have been compared with
the following classification methods: support vector machine
(SVM; Furey et al., 2000); LogitBoost optimal, LogitBoost
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Table 2. Comparison of LOOCV performance of different
approaches for Colon cancer data

Method No. of genes LOOCV
error rate

1 SVMa 1000 or 2000 0.0968

2 LogitBoost, optimalb 2000 0.1290

3 Classification treeb 200 0.1452
4 MAVE-LDc 50 0.1613

5 1-nearest-neighborb 25 0.1452

6 LogitBoost, estimatedb 25 0.1935
7 SGLassoc 19 0.1290

8 LogitBoost, 100 iterationsb 10 0.1452

9 AdaBoost, 100 iterationsb 10 0.1613
10 BPRe 22 0.1129

11 L1-SVMf 15 0.0968
12 SVM-RFEg 24 0.0806
13 TH-SSVSI,II 10 0.0484

a: Furey et al. (2000);
b: Dettling and Bühlmann (2003);
c: Antoniadis et al. (2003);
d: Ma et al. (2007);
e: Lee et al. (2003);
f : Bradley et al. (1998);
g: Guyon et al. (2002).

estimated, LogitBoost 100 iterations, AdaBoost 100 itera-
tions, 1-nearest-neighbor, and Classification tree (Dettling
and Buhlmann, 2003); MAVE-LD (Antoniadis et al., 2003),
Supervised group Lasso (SGLasso; Ma et al., 2007), L1-SVM
(Bradley et al., 1998), SVM-RFE (recursive feature elimi-
nation) (Guyon et al., 2002) and Bayesian probit regression
(BPR) method (Lee et al., 2003). The summary is presented
in Table 2. It is clear from the comparison that our method,
which used fewer genes, is better than or comparable to the
other popular classification methods.

To assess the sensitivity of the Bayesian results to the in-
puts of hyperparameters in the prior distributions, we rean-
alyzed the data set by using different values of a, b, τ, h, and
θi. For instance, b = 16, τ = 0.5, h = 200, and θi = 0.007,
the identification of the relevant genes and the performance
of classification are essentially the same as before.

3.2 Leukemia data

We further illustrate the performance of our classifi-
cation procedure on the leukemia dataset (Golub et al.,
1999), which is available at http://www.broad.mit.edu/cgi-
bin/cancer/datasets.cgi. This gene expression level was ob-
tained from Affymetrix high-density oligonucleotide arrays
containing p = 6,817 human genes. Golub et al. (1999) gath-
ered bone marrow or peripheral blood samples from 72 pa-
tients suffering either from acute lymphoblastic leukemia
(ALL) or acute myeloid leukemia (AML), which were iden-
tified based on myeloid (bone marrow related) and their
origins, lymphoid (lymph or lymphatic tissue related), re-
spectively. The data comprise 47 cases of ALL (38 B-cell

Figure 2. Fig. 2 shows the gene inclusion probabilities (in
percentages) versus the gene index for leukemia data.

ALL and 9 T-cell ALL) and 25 cases of AML, which have
already been divided into a training set consisting of 38 sam-
ples of which 11 are AML and 27 are ALL; and a test set of
34 samples of which 20 are ALL and 14 are AML.

Based on the protocol given in Dudoit et al. (2002), the
following preprocessing steps were taken for the data: (i)
thresholding: floor of 100 and ceiling of 16,000; (ii) filter-
ing: exclusion of genes with max/min≤5 and (max-min)≤
500, where max and min refer respectively to the maximum
and minimum expression levels of a particular gene across
samples; and (iii) base 10 logarithmic transformation. The
filtering resulted in 3,571 genes. We further transformed the
gene expression data to have mean zero and standard devia-
tion one across samples. We applied the Bayesian TH-SSVS
method with the same inputs of the hyperparameters as in
the first example. An initial value of γ was similarly ob-
tained as before via 25 randomly selected genes from a total
of 3,571 genes.

The posterior gene inclusion probabilities for models I
and II are presented in Figure 2, and the relevant genes se-
lected on the basis of these probabilities are reported in Ta-
ble 3. Moreover, the relevant genes selected by Golub et al.
(1999) and Ben-Dor et al. (2000) are also shown. One of the
most significant gene is Zyxin. Macclama et al. (1996) has
shown that Zyxin encodes an LIM domain protein localized
at focal contacts in adherent erythroleukemian cells. It has
also been recently demonstrated that Zyxin exports from the
nucleus by intrinsic leucine rish nuclear export sequences,
and enter the nucleus through association with other pro-
teins.Wang and Gilmore (2003) reported that misregulation
of nuclear functions of Zyxin protein seems to be associ-
ated with pathogenic effects. Therefore, it is not surprising
that Zyxin plays an important role in classifying AML and
ALL. Among the top-ranked genes we also found CD33 anti-
gene with known expression specificity to AML (Sobol et al.
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Table 3. Leukemia data: strongly significant genes for
discriminating ALL and AML samples

No Gene ID Gene descriptions

1 M27891I,II CST3 Cystatin C (amyloid angiopathy and
cerebral hemorrhage)+∗

2 X95735I,II Zyxin+∗

3 D88422I,II CYSTATIN A∗

4 M27783I,II ELA2 Elastatse 2, neutrophil
5 M23197I,II CD33 antigen (differentiation antigen)+∗

6 M16038I,II LYN V-yes-1 Yamaguchi sarcoma viral related
oncogene homolog+∗

7 L09209I,II APLP2 Amyloid beta (A4) precursor-like protein
2∗

8 M83652I PFC Properdin P factor, complement∗

9 U22376I C-myb gene extracted from Human (c-myb)
gene, complete primary cds, and five complete
alternatively spliced cds+∗

10 M84526I DF D component of complement (adipsin)+∗

11 X62654I,II ME491 gene extracted from H.sapiens gene for
Me491/CD63 antigen∗

12 J04615I SNRPN Small nuclear ribonucleoprotein
polypeptide N∗

13 M92287I,II CCND3 Cyclin D3∗

14 J05243I,II SPTAN1 Spectrin, alpha, non-erythrocytic1
(alpha-fodrin)∗

15 M11722I Terminal transferase mRNA∗

16 Y12670I,II LEPR Leptin receptor+

17 X85116I Epb72 gene exon 1+∗

18 U82759I GB DEF = Homeodomain protein HoxA9 mRNA
19 X74262II RETINOBLASTOMA BINDING PROTEIN

P48+

20 X04085II Catalase (EC 1.11.1.6) 5’flank and exon 1
mapping to chromosome 11, band p13 (and
joined CDS)+

21 X82240II TCL1 gene (T cell leukemia) extracted from
H.sapiens mRNA for Tcell leukemia/lymphoma 1

22 L47738II Inducible protein mRNA+∗

23 U05259II MB-1 gene+∗

24 HG1612II Macmarcks∗

25 M22960II PPGB Protective protein for beta-galactosidase∗

+: Golub et al. (1999);
∗: Ben-Dor et al. (2000).

1987), CD63 antigene known as a member of the tranmen-
brane 4 superfamily (Smith et al., 1995), and Macmarks in-
volves in growth and metastasis of certain tumors (Spizz
and Blackshear, 1997).

Only 12 genes are selected on average by our method,
and the p∗ = 12 genes were used to conduct prediction on
the test set. In Table 4, we compare our classification re-
sults with the following popular classification methods: SVM
(Furey et al., 2000); weighted voting machine (Golub et
al., 1999); MAVE-LD and MAVE-NPLD (Antoniadis et al.,
2003); PLS-LD and PLS-QDA (Nguyen and Rocke, 2002);
L1-SVM (Bradley et al., 1998); SVM-RFE (recursive fea-
ture elimination) (Guyon et al., 2002) and Bayesian probit

Table 4. The comparison of classification methods for the
leukemia data

Method No. of genes Test error rate

1 SVMa 25 to 1000 0.0588 to 0.1176

2 WVMb 50 0.1471
3 MAVE-LDc 50 0.0294
4 MAVE-NPLDc 50 0.0294

5 PLS-LDd 50 0.0294

6 PLS-QDAd 50 0.1765
7 BPRe 28 0.0294

8 L1-SVMf 24 0.0000
9 SVM-RFEg 32 0.0294
10 TH-SSVSI,II 12 0.0000

a: Furey et al. (2000);
b: Golub et al. (1999);
c: Antoniadis et al. (2003);
d: Nguyen and Rocke (2002).
e: Lee et al. (2003);
f : Bradley et al. (1998);
g: Guyon et al. (2002).

regression (BPR) method (Lee et al., 2003). Our results,
with fewer genes, are better than or comparable to those
obtained by the above existing methods in the literature.
Most of the methods have also done well in accurately clas-
sifying the leukemia types in the test set. So here we do
not gain much with respect to classification accuracy, but
this well known data set is used as a validation of continued
reliable performance of our TH-SSVS method.

4. SIMULATION STUDY

4.1 Simulation setup

This section illustrates our proposed TH-SSVS method
using simulated data and demonstrates the effectiveness
of our method for binary classification problems. We com-
pared the performance of TH-SSVS method with L1-SVM
(Bradley et al., 1998), SVM-RFE (recursive feature elim-
ination) (Guyon et al., 2002) and Bayesian probit regres-
sion (BPR) method (Lee et al., 2003). L1-SVM, SVM-RFE
and BPR methods can do gene selection and predict the
tumor class simultaneously like our TH-SSVS method. The
optimal tuning and other parameters in these four meth-
ods are obtained by LOOCV technique on the training set.
To further show that our model is robust to the choice
of the prior parameters, three different prior settings are
tried for the simulation study. Prior set 1: a = 6, b =
16, τ = 1, θi = 0.005, i = 1, · · · , p, h = 100; Prior set 2:
a = 6, b = 8, τ = 0.5, θi = 0.005, i = 1, · · · , p, h = 100; Prior
set 3: a = 6, b = 8, τ = 1, θi = 0.007, i = 1, · · · , p, h = 100.

In the simulation, we use the leukemia data set (Golub et
al., 1999) and use BWSS criteria to extract top 40 genes, so
xi, i = 1, · · · , 40 are those microarray measurements from
the leukemia data set, and generate xi ∼ N(0, 0.01), i =
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Table 5. Simulation Results

Method No. of Misclassification SD TP TN
variables error rate

1 BPR 45 4.82 4.52 75.00 99.13
2 L1-SVM 49 4.10 3.53 72.50 98.98
3 SVM-RFE 41 4.69 4.34 67.50 99.28
4 TH-SSVSI,II-1 37 2.95 2.54 87.50 99.89
5 TH-SSVSI,II-2 37 2.95 2.48 85.00 99.85
6 TH-SSVSI,II-3 38 3.02 2.79 80.00 99.69

41, · · · , 2000. The covariates are designed so that only 2%
of the variables are relevant for classification and the rest
of the variables are redundant. We generate 72 samples in
total, and randomly split it into 38 samples in the training
set and 34 samples in the test set. The class labels are kept
as in the original data set. Therefore, the number of covari-
ates is larger than the number of samples. We replicate the
simulation 100 times. Then we want to see how precisely our
proposed method can select the 40 relevant variables from
the redundant variables, and check whether the prediction
performance of the proposed method is better than that of
the other four methods.

4.2 Simulation results

We report the simulation results of different methods in
Table 5. The simulation results of our proposed method un-
der three different prior settings are denoted as TH-SSVS-
1, TH-SSVS-2, and TH-SSVS-3. In this table, the numbers
in the second row under “No. of Variables” are the me-
dian number of total variables selected by L1-SVM, SVM-
RFE, BPR and TH-SSVS methods. These variables are then
used by different methods for classification. Since we exactly
know which variables are relevant and which are redundant
in this simulation, we can check how successfully the meth-
ods are able to select the relevant variables and eliminate
the redundant variables. The median true positive (TP) and
true negative (TN) rates are included in Table 5. The TP
rate is the percentage of truly relevant variables selected,
and the TN rate is the percentage of redundant variables
not selected. From Table 5, it can be seen that our pro-
posed TH-SSVS method produces more than 80% TP and
TN rates, which are respectively higher than that of the
other three methods. Ideally we would like to have both TP
and TN rates as high as possible. The big novelty of our
method is sparse Bayesian variable selection, and from the
reported TP and TN rates we see that our method is able to
select the true relevant variables and discard the redundant
variables and produce a more sparse model.

From the misclassification results summarized in Table
5, we can clearly see that in terms of average misclassifica-
tion error, our TH-SSVS method attains lower misclassifi-
cation error than L1-SVM, SVM-RFE and BPR methods.
The misclassification results of our method under three dif-
ferent priors are similar. Thus we can draw the conclusion

that our method is not sensitive to the choice of the prior.
However, it should be pointed out that the prior inclusion
probabilities θi should be set to a small value, as a large
value may lead to many irrelevant variables selected in the
model and might reduce the prediction accuracy.

5. DISCUSSION

In this paper, we propose a sparse Bayesian probit regres-
sion model together with stochastic search variable selection
approach for gene selection and cancer classification. Our
proposed model employs two different sparsity-enforcing pri-
ors for the regression coefficients. These sparsity-enforcing
priors can be rewritten in two level hierarchical manner for
simplicity. Simulation-based MCMC method is introduced
to estimate the unknown parameters. Moreover, by integrat-
ing some parameters out from some full conditional distri-
butions and jointly updating the parameters, we can apply
an efficient sampling scheme to simulate samples from the
posterior distributions. Other nice features of our approach
also include the flexibility in choosing the initial value of γ,
and the ability in providing posterior gene inclusion proba-
bilities to achieve biological interpretation. We demonstrate
the performance of our TH-SSVS approach on the colon can-
cer and leukemia data sets. With a small subset of relevant
gene, our approach compared favorably with other popular
approaches in performing disease classification.

While a, b, τ and θ are treated as known hyperparame-
ters, they can be treated as unknown parameters with hier-
archical prior distributions to them. The project of extension
to more than two categories using multinomial probit model
is ongoing. We assume that genes are independent. In our
future research, we will extend the model to account for a
interaction structure between genes.

ACKNOWLEDGEMENTS

We thank the editor and reviewers for insightful com-
ments, which have led to a significant improvement of this
article. Supported by the grant of Natural Science Founda-
tion of China (11501294,11501261), China Postdoctoral Sci-
ence Foundation (2015M580374,2016T90398), Natural Sci-
ence Foundation of Guangdong (2016A030313856), Jiangsu
Qinglan Project(2017), Open Project Program of the Key
Laboratory of Statistical Information Technology and Data
Mining (SDL201704) and Project of Natural Science Re-
search in Jiangsu Province (15KJB110007).

Received 1 March 2014

REFERENCES
Albert, J. and Chib, S. (1993). Bayesian analysis of binary and poly-

chotomous response data. Journal of the American Statistical As-
sociation 88 669–679. MR1224394

Alon, U., et al. (1999). Broad patterns of gene expression revealed
by clustering analysis of tumor and normal colon tissues probed
by oligonucleotide arrays. Proceedings of the National Academy of
Sciences, USA 96 6745–6750.

Sparse Bayesian variable selection 393

http://www.ams.org/mathscinet-getitem?mr=1224394


Ambroise, C. and McLachlan, G. J. (2002). Selection bias in gene
extraction on the basis of microarray gene-expression data. Proc.
Natl Acad. Sci. USA 99 6562–6566.

Antoniadis, A., Lambert-Lacroix, S. and Leblanc, F. (2003). Ef-
fective dimension reduction methods for tumor classification using
gene expression data. Bioinformatics 19 1–8.

Bae, K. and Mallick, B. K. (2004). Gene selection using a two-level
hierarchical Bayesian model. Bioinformatics 20 3423–3430.

Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schum-

mer, M. and Yakhini, Z. (2000). Tissue classification with gene
expression profiles. J Comput. Biol. 7 559–583.

Bradley, P. and Mangasarian, O. (1998). Feature selection via
concave minimization and support vector machines. In: Proceed-
ings of the 15th International Conference on Machine Learning,
82–90.

Brown, P. J., Vannucci, M. and Fearn, T. (1998). Multivariate
Bayesian variable selection and prediction. Journal of the Royal
Statist. Soc. B 60 627–641. MR1626005

Chakraborty, S., Ghosh, M., Maiti, T. and Tewari, A. (2004).
Bayesian neural networks for bivariate binary data: An applica-
tion to prostate cancer study. Statistics in Medicine 24 3645–3662.
MR2212305

Chakraborty, S., Ghosh, M., Mallick, B. K., Ghosh, D. and
Dougherty, E. (2007). Gene Expression-Based Glioma Classifi-
cation Using Hierarchical Bayesian Vector Machines. Sankhya 69
514–547. MR2460007

Chakraborty, S. (2009). Bayesian Binary Kernel Probit Model
for Microarray Based Cancer Classification and Gene Selec-
tion. Computational Statistics and Data Analysis 53 4198–4209.
MR2744317

Chakraborty, S. and Guo, R. (2011). Bayesian Hybrid Huberized
SVM and its Applications in High Dimensional Medical Data.
Computational Statistics and Data Analysis 55(3) 1342–1356.
MR2741419

Chhikara, R. and Folks, L. (1989). The inverse gaussian distribu-
tion: theory, methodology, and applications. Marcel Dekker, New
York.

Cristianini, N. and Shawe-Taylor, J. (1999). An Introduction to
SVM. Cambridge University Press, Cambridge.
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