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Bayesian analysis of a ROC curve for categorical
data using a skew-binormal model

Balgobin Nandram and Thelge Buddika Peiris
∗

In a taste-testing experiment, foods are withdrawn from
storage at various times and a panel of tasters is asked to
rate the foods on a nine-point hedonic scale. We provide a
statistical procedure that can assess the difference between
fresh foods and foods withdrawn a few months later. Thus,
we have two sets of ordinal data, one for the fresh foods and
the other for the stored foods that are withdrawn later. A
natural and popular way to compare two withdrawals is to
use the receiver operating characteristic (ROC) curve and
the area under the curve (AUC). It is a standard practice
to use a binormal model to obtain the ROC curve and the
AUC, and Bayesian methods have been used. One drawback
of the binormal model is that it has non-identifiable parame-
ters. First, we look more carefully at non-identifiability, and
we use robust measures to obtain a more non-parametric
analysis of the Bayesian binormal model. Second, in a more
innovative approach we extend the robust binormal model
to a skew-binormal model. Like recent approaches to ROC
curve analysis, we also incorporate a stochastic ordering.
We use the Gibbs sampler to fit both models in order to
estimate the ROC curves and the AUCs. Using both mod-
els, these AUCs demonstrate that there is not much prac-
tical difference between fresh foods and those withdrawn
later, but there are some differences in inference between
the two models. We have also shown, using marginal like-
lihoods, that the skew-binormal model may be better. A
small simulation study shows that the skew-binormal model
provides improved precision over the binormal model with
similar AUCs but somewhat different ROC curves.

Keywords and phrases: Area under the curve, Griddy
Gibbs sampler, Marginal likelihood, Non-indentifiability,
Robust measures, Sensory data, Stochastic order.

1. INTRODUCTION

Receiver operating characteristic (ROC) analysis can be
used to assess performance in any two-group classification
task. The ROC curve is a plot of the true positive rate (the
rate of actually positive cases correctly classified as posi-
tive) and false positive rate (the rate of actually negative
cases incorrectly classified as positive). Most ROC studies
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involving human judgments have employed an ordinal scale
that contains a fixed number of discrete response categories.
Smoothed ROC curves can be easily obtained by fitting a
parametric binormal model to two-sample data, cases and
non-cases. Several frequentist and Bayesian methods for fit-
ting “binormal” ROC curves to such data and estimating
the area under the curve (AUC) have been discussed. Our
application is on assessing food deterioration in an experi-
ment.

Most of the frequentist methods are used when the pop-
ulations for two groups (actually positive and actually neg-
ative) are known. Metz, Herman, and Shen (1998), Metz
(1989), Dorfman and Alf (1969) and Grey and Morgan
(1972) introduced different techniques to obtain maximum
likelihood estimate of the ROC curve. Tosteson, Pinto,
Holsinger, and Lamb (1994) showed limitations of some of
the above techniques and they illustrated how ROC curve
regression analysis facilitates diagnostic test assessment.
Faraggi and Reiser (2002) discussed and compared some
nonparametric estimation methods of area under the curve
with the binormal assumption.

Bayesian statistical inferences of ROC curves using con-
tinuously distributed data have been used quite successfully
in a large number of areas. O’Malley and Zou (2006) an-
alyzed hierarchical structured outcome data from a diag-
nostic test that requires cluster-specific monotone transfor-
mations. Here they have developed a hierarchical Bayesian
multivariate transformation method based on data with co-
variates. Inácio, Jara, Hanson, and De Carvalho (2013) used
a Bayesian nonparametric approach to study a covariate-
dependent ROC curve with a dependent Dirichlet process
for clustered data. In their work they evaluated the influ-
ence of age on the performance of blood glucose to accu-
rately diagnose individuals with diabetes. Here they used a
nonparametric approach that entails a modeling framework,
which requires specifying a prior distribution over all prob-
ability measures. As they pointed out, this does not mean
an absence of parameters in the model, on the contrary it
has an infinite number of parameters. But the objectives in
our work are different from theirs because we use standard
robust measures.

There are many studies on Bayesian statistical inference
of ROC curves using ordinal data too. Peng and Hall (1996)
introduced a Bayesian approach to generalized ordinal re-
gression models for rating data using a probit link func-
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tion. The approach that they have used admits latent bi-
normal distributions for diseased and non-diseased popula-
tions, even though other parametric distributions could be
considered. Johnson and Johnson (1996) addressed a situa-
tion frequently observed in radiology, in which several radi-
ologists rate, on an ordinal scale, multiple exams collected
from the same individual. These authors proposed a hier-
archical Bayesian latent variable model for this multi-rater
correlated ordinal data. Further Hellmich et al. (1998) and
Ishwaran and Gatsonis (2000) also used regression models
with ordinal data for ROC curve analysis.

Like many of these discussions, we assume that the deci-
sion variable axis is partitioned into K categories with K−1
cut-points, θ

˜
= {θ1, θ2, θ3, · · · , θK−1} and values beginning

from the “actually negative” end of the axis. We denote the
cumulative distribution functions of the decision variable x
for respectively the first group (actually negative) and the
second group (actually positive) by F1(x) and F2(x). Let
μ1 and σ1 denote respectively the mean and standard de-
viation of the population for the first group and μ2 and
σ2 denote respectively the mean and standard deviation of
the population for the the second group. With θ0 ≡ −∞
and θK ≡ ∞, the probability of a response in category
i, i = 1, 2, · · · ,K − 1, is then,

pji = Fj

(
θi − μj

σj

)
− Fj

(
θi−1 − μj

σj

)
, j = 1, 2.

The ROC curve represents the plot (1−F1(θ), 1−F2(θ))
for all θ. Let S1(θ) = 1−F1(θ) and S2(θ) = 1−F2(θ). Then
the ROC curve is given

ROC(u) = S2{S−1
1 (u)} = 1− F2{F−1

1 (1− u)}

for u ∈ [0, 1]. In addition to the ROC curve, an impor-
tant parameter of interest is the corresponding AUC =∫ 1
0
ROC(u)du. AUC has the interpretation of being the

probability that a randomly selected individual has a value
for the decision variable that is greater than that for a ran-
domly selected individual from the second group (Bamber,
1975).

In general, subjects in Group 1 are more likely to test
positively than the subjects in Group 2 which implies that
ROC(u) > u and further AUC > 0.5. But ROC(u) > u
(i.e., above the 45◦ straight line) if and only if F1 is stochas-
tically larger than F2 (i.e., F1(t) ≥ F2(t) for all t). Here we
use the technique introduced in Gelfand and Kuo (1991) and
developed in Gelfand and Kottas (2001) to have stochasti-
cally ordered distributions. Theoretical work on the symme-
try of the concave ROC curve has been investigated by oth-
ers (e.g., Bhattacharya and Hughes 2011, 2015 and Hughes
and Bhattarcharya 2013). However, we do not follow these
directions and we simply add the stochastic order to enforce
ROC(u) > u with robust measures.

Here our goal is to estimate the ROC curve and AUC us-
ing a Bayesian approach assuming the two groups are known

to the analyst. In our example of food preservation, we as-
sume that the panelists are accurate and coherent in as-
signing scores, and we wish to determine whether the food
deteriorates after several withdrawals. Jhonson and Jhonson
(1996) discussed a similar problem but since data are from
two known groups, our approach is slightly different than
theirs. We also discuss how to robustify our method using
the skew-normal data model. Our new model, the skew-
binormal model, has two skew-normal densities (Azzalini,
2014). Our skew-binormal model takes care of a degree of
skewness beyond the binormal model, and therefore, more
robust to non-normality.

The plan of the rest of the paper is as follows. In Sec-
tion 2, we describe a general model (i.e., without making any
specific distribution assumptions) and a special case, the bi-
normal model with some degree of robustness. In Section 3,
we describe the skew-binormal model (both cases and non-
cases). In Section 4, we describe an application on a food
experiment and use it to compare the binormal model and
the skew-binormal model via the ROC curves and AUCs.
We also perform a simulation study to assess any difference
between the binormal model and skew-binormal model. Sec-
tion 5 has concluding remarks.

2. GENERAL MODEL AND BINORMAL
MODEL

In Section 2.1, we describe the general model and, in Sec-
tion 2.2, we describe the binormal model, which has a degree
of robustification.

Suppose that data, collected on a discrete K-category
scale, are obtained from n1 non-cases and n2 cases, and the
true states of the non-cases and the cases are known. If the
responses are mutually independent, a standard assumption
is that the categorical frequencies within each true state
follow a multinomial distribution. The observed data are
n
˜
1 = {n11, n12, n12, · · · , n1K :

∑
n1i = n1} for the non-

cases and n
˜
2 = {n21, n22, n22, · · · , n2K :

∑
n2i = n2} for

the cases. Then, the joint probability mass function of n
˜
1

and n
˜
2 is

p(n
˜
1, n
˜
2|θ) =

n1!

n11!.n12!. · · · .n1K !
× n2!

n21!.n22!. · · · .n2K !

×
[
F1

(
θ1 − μ1

σ1

)]n11
[
F1

(
θ2 − μ1

σ1

)
− F1

(
θ1 − μ1

σ1

)]n12

· · ·
[
1− F1

(
θK−1 − μ1

σ1

)]n1K

×
[
F2

(
θ1 − μ2

σ2

)]n21
[
F2

(
θ2 − μ2

σ2

)
− F2

(
θ1 − μ2

σ2

)]n22

· · ·
[
1− F2

(
θK−1 − μ2

σ2

)]n2K

.(1)

It is worth noting that there are K+3 parameters in this K-
category data model and they are θ1, . . . , θK−1, (μs, σ

2
s), s =

1, 2. These parameters are not identifiable, and without fur-
ther information they create a serious problem for compu-
tation and data analysis. Therefore, without additional in-
formation, one possibility is to reduce some parameters.

370 B. Nandram and T. B. Peiris



2.1 General model

Here we show how to reduce the number of parameters in
this model. When the first and the second groups are nor-
mally distributed, Metz, Herman, and Shen (1998) showed
that

F1(θ) = Φ(θ) and F2(θ) = Φ(bθ − a),

where a = |μ2−μ1|
σ2

, b = σ1

σ2
and Φ(·) represent the standard

normal cumulative distribution function. Using a similar ar-
gument and because

d[θ − c− (μ− c)]

dσ
=

θ − μ

σ
for d > 0 and −∞ < c < ∞,

without lost of generality, we can take μ1 = 0 and σ1 = 1.
Under these specifications there are now K +1 parameters,
and μ2 and σ2 are still not identifiable. So here we assume
the mean and the standard deviation for the second group
are functions of θ

˜
. That is, μ = μ(θ

˜
) > 0 and σ = σ(θ

˜
). In

addition, for robustification we take

μ(θ
˜
) =

{
med(θ

˜
), if med(θ

˜
) ≥ 0

˜
,

smallest positive θi, if med(θ
˜
) < 0,

and

σ(θ
˜
) = med|θ

˜
− μ(θ

˜
)|,

where med(θ
˜
) = median of {θ1, θ2, · · · , θK−1} and med|θ

˜
−

μ(θ
˜
)| = median of {|θ1 − μ(θ

˜
)|, |θ2 − μ(θ

˜
)|, | · · · , |θK−1 −

μ(θ
˜
)|}.
To enforce the stochastic ordering, we define two distri-

bution functions, say G and F, such that

F1(θ) = G(θ) and F2

(
θ − μ(θ

˜
)

σ(θ
˜
)

)
= G(θ)F

(
θ − μ(θ

˜
)

σ(θ
˜
)

)
.

This construction is motivated by the works on stochas-
tic ordering of Gelfand and Kuo (1991), developed in
Gelfand and Kottas (2001) and used by Kottas and Gelfand
(2001) for a semi-parametric Bayesian approach and Kot-
tas, Branco, and Gelfand (2002) and Hanson, Kottas, and
Branscum (2008) for a non-parametric Bayesian approach.

Further, rather than a normal distribution, we assume the
more heavy tailed and actually more convenient standard
logistic density function (location 0 and scale 1) for θ

˜
θ1, θ2, · · · , θK−1 ∼iid log(0, 1)

such that θ1 < θ2 < · · · < θK−1,

where log(0, 1) denotes the logistic distribution with location
0 and scale 1 (i.e., f(x) = ex/(1+ex)2,−∞ < x < ∞). That
is, θ1, . . . , θG−1 are order statistics from a standard logistic
distribution. Then, the joint prior distribution for θ

˜
is

f(θ
˜
) = (K − 1)!

K−1∏
i=1

eθi

(1 + eθi)2
, θ1 < θ2 < · · · < θK−1.

Therefore, using Bayes’ theorem, the joint posterior density
of θ

˜
is

π(θ
˜
| n1
˜
, n
˜
2) ∝

K−1∏
i=1

{
[G(θi)−G(θi−1)]

n1i

×
[
[G(θi)F

(
θi − μ(θ

˜
)

σ(θ
˜
)

)
−G(θi−1)F

(
θi−1 − μ(θ

˜
)

σ(θ
˜
)

)]n2i eθi

(1 + eθi)2

}
,

where −∞ = θ0 < θ1 < θ2 < · · · < θK−1 < θK = ∞.
It is convenient to transform the parameters θi, i =

1, . . . ,K − 1, to parameters in (0, 1). This can potentially
remove some computational difficulties when we use the
griddy sampler for such awkward posterior densities. So we
define

τi =
eθi

1 + eθi
, i = 1, 2, · · · ,K − 1,

and then note that

θi = logit (τi) = log

(
τi

1− τi

)
, i = 1, 2, · · · ,K − 1.

It is convenient to work with τi, i = 1, . . . ,K − 1.
Then, without any information about τi, i = 1, . . . ,K−1,

we have

τ1, τ2 < · · · , τK−1 ∼iid U(0, 1),

such that 0 < τ1 < τ2 < · · · < τK−1 < 1.

That is, τ1, . . . , τK−1 are order statistics from a standard
uniform distribution. Thus, the joint distribution function
of τ

˜
is

f(τ
˜
) = (K − 1)!, τ1 < τ2 < · · · < τK−1.

Therefore, using Bayes’ theorem, the joint posterior distri-
bution function of τ

˜
is

π(τ
˜
|n
˜
1, n
˜
2) ∝

K−1∏
i=1

[G(logit (τi))−G(logit (τi−1))]
n1i

(2)

×
[
G (logit (τi))F

(
logit (τi)− μ(τ

˜
)

σ(τ
˜
)

)
−G (logit (τi−1))F

(
logit (τi−1)− μ(τ

˜
)

σ(τ
˜
)

)]n2i

,

where 0 = τ0 < τ1 < τ2 < · · · < τK−1 < τK = 1.
Finally, we use the griddy Gibbs sampler (Ritter and Tan-

ner 1992) to draw τi, i = 1, . . . ,K−1, from their conditional
posterior densities,

τi|τ
˜
(i), n

˜
1, n
˜
2, i = 1, 2, · · · ,K − 1,
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where τ
˜
(i) is the vector of all parameters excluding the ith

one. The τi are drawn using a grid method; see Nandram
and Yin (2016) for an efficient grid method. Of course, this
Gibbs sampler will depend on actual forms of G and F .

2.2 Binormal model

In this section, we specify the parametric cumulative dis-
tribution functions. Assuming that G and F are normal cu-
mulative distribution distributions, the corresponding pos-
terior function of τ

˜
in (2) is

π(τ
˜
|n
˜
1, n
˜
2) ∝

K−1∏
i=1

[Φ(logit (τi))− Φ(logit (τi−1))]
n1i

×
[
Φ (logit (τi)) Φ

(
logit (τi)− μ(τ

˜
)

σ(τ
˜
)

)
− Φ (logit (τi−1)) Φ

(
logit (τi−1)− μ(τ

˜
)

σ(τ
˜
)

)]n2i

,

where 0 = τ0 < τ1 < τ2 < · · · < τK−1 < τK = 1 and Φ(.)
is the cumulative distribution function of standard normal
distribution.

We use the griddy Gibbs sampler to draw τi, i =
1, . . . ,K − 1. The conditional posterior density of τi is

π(τi|τ
˜
(i), n

˜
1, n
˜
2)

∝ [Φ(logit (τi))− Φ(logit (τi−1))]
n1i

×
[
Φ (logit (τi)) Φ

(
logit (τi)− μ(τ

˜
)

σ(τ
˜
)

)
− Φ (logit (τi−1)) Φ

(
logit (τi−1)− μ(τ

˜
)

σ(τ
˜
)

)]n2i

,

where 0 = τ0 < τ1 < τ2 < · · · < τG−1 < τK = 1 and
τ
˜
(i) is the vector of values except the ith component. The

Gibbs sampler is run by drawing the τi, each in turn, from
its conditional posterior density.

In addition, we use μ(θ
˜
) = med(θ

˜
) if med(θ

˜
) is positive

or μ(θ
˜
) = the first non-negative order statistic larger than

med(θ
˜
) if med(θ

˜
) is negative, and σ(θ

˜
) = med|θ

˜
− μ(θ

˜
)|.

These can be written as functions of the τi via the logit
transformation.

We obtained starting values for the griddy Gibbs sampler
as follows. First, we define

θ̂1i = Φ−1

[ ∑i
j=1 n1i∑K−1
j=1 n1i

]
, θ̂2i = Φ−1

[ ∑i
j=1 n2i∑K−1
j=1 n2i

]
,

and

σ̂2
1 =

∑K−1
i=1

(
θ̂1i − ˆ̄θ1

)2
K − 2

, σ̂2
2 =

∑K−1
i=1

(
θ̂2i − ˆ̄θ1

)2
K − 2

.

Then, we take

μ(θ̂
˜
) =

∑K−1
i=1

(
θ̂1i − σ̂1|θ̂2|

)
K − 1

, σ(θ̂
˜
) =
√

σ̂2
1 σ̂2

2 ,

and

θi = θ̂1i, τi =
eθ̂i

1 + eθ̂i
, i = 1, 2, 3, · · · ,K − 1.

3. SKEW-BINORMAL MODEL

We use the skew-normal density for both “non-cases” and
“cases”. The standard skew-normal density with location 0,
scale 1 and skewness parameter λ is given by,

f(z|λ) = 2φ(z)Φ(λz), −∞ < z < ∞,

where φ(z) is the standard normal density and Φ(z) is the
cumulative distribution function; see Azzalini (2014) for a
book-length review of the skew-normal density and related
densities. Note that λ is not the coefficient of skewness, γ1,
but λ and γ1 have the same sign. For example, if λ < 0, the
skew-normal density is negatively skewed, and if λ > 0, it is
positively skewed.

It is noted by Azzalini (2014)

E(Z)=μZ =

√
2

π

λ√
1 + λ2

, Var(Z)=σ2
Z =1− 1

π

λ2

1 + λ2
,

(3)

and the coefficient of skewness is given by

γ1 =

(
4− π

2

)
R3,(4)

where R = μZ

σZ
. It is also true that

λ =
R√

2
π −
(
1− 2

π

)
R2

.

Note that R can also be written as

R =

{
2γ1
4− π

} 1
3

,

which we take as

R = sign(γ1)

{
2|γ1|
4− π

} 1
3

.

We use a method of Brys, Hubert and Struyf (2012) to
obtain a robust measure of γ1. Let k1 of θ1, θ2, · · · , θK−1 be
such that θi ≤ med(θ

˜
), i = 1, 2, · · · ,K − 1 and k2 = (K −

1 − k1) of θ1, θ2, · · · , θK−1 be such that θi > med(θ
˜
), i =

1, 2, · · · ,K−1. We define qi0 = θi−med(θ
˜
) for the θi values

with θi > med(θ
˜
) and qi1 = θi − med(θ

˜
) for the θi values

with θi > med(θ
˜
). Then we define the fractions,

hi0,i1 =
qi1 + qi0
qi1 − qi0

for all i0 = 1, 2, · · · , k1 and i1 = 1, 2, · · · , k2.

Finally

γ1 = med{hi0,i1 , i0 = 1, 2, · · · , k1, i1 = 1, 2, · · · , k2}.

372 B. Nandram and T. B. Peiris



One drawback of the skew-normal density is that it mod-
els moderate skewness. In fact, |γ1| ≤ 0.9953 (see Azzalini
2014). It is also true that |λ| ≤ 10 and γ1 is mostly con-
stant outside this range. We will express γ1 in terms of
the skewness of θ1, θ2, · · · , θK−1. Then we will make R a
function of θ1, θ2, · · · , θK−1. So that λ will be a function of
θ1, θ2, · · · , θK−1.

In our application, the continuous latent variable for the
“non-cases” will have a skew-normal density with location
0 scale 1 and skewness parameter λ1(θ

˜
). The “cases” will

have a skew-normal density with location μ(θ
˜
) scale σ(θ

˜
)

and skewness parameter λ2(θ
˜
). We model λ1(θ

˜
) such that

(5)
1

c
λ2(θ

˜
) < λ1(θ

˜
) < cλ2(θ

˜
), c ≥ 1.

Here we note an interesting symmetric relation between
λ1(θ

˜
) and λ2(θ

˜
) (i.e.,

1

c
λ1(θ

˜
) < λ2(θ

˜
) < cλ1(θ

˜
)).

In addition, we assume that

λ1(θ
˜
) = ν + λ2(θ

˜
),

which implies that

1

c
λ2(θ

˜
) < ν + λ2(θ

˜
) < cλ2(θ

˜
)

and (
1

c
− 1

)
λ2(θ

˜
) < ν < (c− 1)λ2(θ

˜
).

We use μ(θ
˜
) and σ(θ

˜
) in a manner similar to the binormal

model.
For our application, we denote the distribution of the

latent variable for “non-cases” as Gλ2(θ
˜
)+ν(z) and for the

“cases” as Fλ2(θ
˜
)

(
z−μ(θ

˜
)

σ(θ
˜
)

)
. Then the likelihood function is

π(θ
˜
, ν | n

˜
1, n
˜
2) ∝

K−1∏
i=1

[
Gλ2(θ

˜
)+ν(θi)−Gλ2(θ

˜
)+ν(θi−1)

]n1i

×
[
[Gλ2(θ

˜
)+ν(θi)Fλ2(θ

˜
)

(
θi − μ(θ

˜
)

σ(θ
˜
)

)
−Gλ2(θ

˜
)+ν(θi−1)Fλ2(θ

˜
)

(
θi−1 − μ(θ

˜
)

σ(θ
˜
)

)]n2i

,

where −∞ = θ0 < θ1 < θ2 < · · · < θK−1 < θK = ∞.
We have the same prior distribution of θ1, θ2, · · · , θK−1

as in the binormal model

f(θ
˜
) = (K − 1)!

K−1∏
i=1

eθi

(1 + eθi)2
, θ1 < θ2 < · · · < θK−1.

In addition, since(
1

c
− 1

)
λ2(θ

˜
) < ν < (c− 1)λ2(θ

˜
),

we use a uniform prior for ν. Specifically,

ν | θ ∼ uniform

[
(
1

c
− 1)λ2(θ

˜
), (c− 1)λ2(θ

˜
)

]
if λ2(θ

˜
) ≥ 0

or

ν | θ ∼ uniform

[
(c− 1)λ2(θ

˜
), (

1

c
− 1)λ2(θ

˜
)

]
if λ2(θ

˜
)< 0.

We actually choose c = 2 in our application. A referee has
pointed out that inference may be sensitive to the choice of
c; see our sensitivity analysis in Section 4.

Here, also we use the transformation from θ to τ as in
binormal case. So we define

τi =
eθi

1 + eθi
, and then θi = logit (τi) = log

(
τi

1− τi

)
,

i = 1, 2, · · · ,K − 1.

Then the joint prior distribution function of τ is

f(τ
˜
) = (K − 1)!, τ1 < τ2 < · · · < τK−1.

Therefore, the joint posterior distribution function of τ
˜
and

ν is

π(τ
˜
, ν|n

˜
1, n
˜
2)

∝
K−1∏
i=1

[
Gλ2(τ

˜
)+ν(logit (τi))−Gλ2(τ

˜
)+ν(logit (τi−1))

]n1i

×
[
Gλ2(τ

˜
)+ν (logit (τi))Fλ2(τ

˜
)

(
logit (τi)− μ(τ

˜
)

σ(τ
˜
)

)
−Gλ2(τ

˜
)+ν (logit (τi−1))

× Fλ2(τ
˜
)

(
logit (τi−1)− μ(τ

˜
)

σ(τ
˜
)

)]n2i

,

where 0 = τ0 < τ1 < τ2 < · · · < τK−1 < τK = 1 with the
appropriate range on ν and Gλ2(τ

˜
)+ν(.) is the corresponding

function of Gλ2(θ
˜
)+ν(.) for transformed parameter τ

˜
(i.e.,

when θi is replaced by logit (τi), i = 1, 2, · · · ,K − 1).
The griddy Gibbs sampler (Ritter and Tanner 1992) is

used to draw τi, i = 1, 2, · · · ,K − 1, and ν. The conditional
posterior density of τi is

π(τ
˜
i|τ
˜
(i), ν, n

˜
1, n
˜
2)

(6)

∝
K−1∏
i=1

[
Gλ2(τ

˜
)+ν(logit (τi))−Gλ2(τ

˜
)+ν(logit (τi−1))

]n1i

×
[
Gλ2(τ

˜
)+ν (logit (τi))Fλ2(τ

˜
)

(
logit (τi)− μ(τ

˜
)

σ(τ
˜
)

)
−Gλ2(τ

˜
)+ν (logit (τi−1))

× Fλ2(τ
˜
)

(
logit (τi−1)− μ(τ

˜
)

σ(τ
˜
)

)]n2i

,
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where 0 = τ0 < τ1 < τ2 < · · · < τK−1 < τK = 1 and τ
˜
(i) is

the vector of values except the ith component.
Once θ1, θ2, · · · , θK−1 have been drawn, we use μ(θ

˜
) =

med(θ
˜
) if med(θ

˜
) is positive or μ(θ

˜
) = the first non negative

order statistic larger than med(θ
˜
) if med(θ

˜
) is negative, and

σ(θ
˜
) = med|θ

˜
−μ(θ

˜
)| as we have used in binormal case. Here,

λ2(τ
˜
) is obtained using the procedure outlined at the begin-

ning of this section starting at equation (3) coupled with
the robust measure of skewness (Brys, Hubert and Sturyf
2012).

Finally, the conditional density of ν is

π(ν|τ
˜
, ν, n

˜
1, n
˜
2)

(7)

∝
K−1∏
i=1

[
Gλ2(τ

˜
)+ν(logit (τi))−Gλ2(τ

˜
)+ν(logit (τi−1))

]n1i

×
[
Gλ2(τ

˜
)+ν (logit (τi))Fλ2(τ

˜
)

(
logit (τi)− μ(τ

˜
)

σ(τ
˜
)

)
−Gλ2(τ

˜
)+ν (logit (τi−1))

× Fλ2(τ
˜
)

(
logit (τi−1)− μ(τ

˜
)

σ(τ
˜
)

)]n2i

.

with the appropriate range. Again, the grid method is used
to draw ν in (7). Therefore, to execute the Gibbs sampler,
we draw τ1, . . . , τK−1 from (6), each in turn, and then ν from
(7) and the entire procedure is repeated until convergence;
see Section 4.

Here also we use the starting values for μ(θ
˜
), σ(θ

˜
) and τi

for the griddy Gibbs sampler as for the binormal case. We
also use ν = 0 and λ1(θ

˜
) = λ2(θ

˜
) as starting values.

4. APPLICATIONS TO THE MEAL,
READY-TO-EAT

In this section, we present numerical results based on the
Natick Food Experiment (NFE). In Section 4.1, we describe
the NFE. In Section 4.2, we first show how to use marginal
likelihoods to choose between the binormal model and skew-
binormal model for the foods. Then, in Section 4.3, we com-
pare the ROC curves and the AUCs obtained from these
two models. We also discuss sensitivity to choice of c in (5).
In Section 4.4, we perform a small simulation study.

4.1 A brief description of the MREs

The data we study arise from the Natick Food Experi-
ment (NFE), in which at each storage time and temperature,
sensory data on a nine-point hedonic scale are obtained for
the Meal, Ready-to-Eat (MRE) from 36 panelists. The MRE
has twelve meals (menus), each meal consisting of four to six
food items. On arrival at Natick Laboratories (NLABS), the
meals were inspected for completeness and stored at four
different temperatures, 40C, 210C, 300C, and 380C, then
withdrawn and tested at 6, 12, 18, 24, 30, 36, 48, and 60

months. Description of the NFE is given by Chen, Nandram
and Ross (1996) and the references therein. More recent dis-
cussions, but very limited because of confidentiality, is given
in US ARMY RDECOM (2014).

The meals were opened by test monitors, and each item
served to a panel of 36 untrained subjects who judged its
acceptability on a nine-point hedonic rating scale where 1 =
dislike extremely, 9 = like extremely, and intermediate inte-
ger scores have graduated meanings. For a detailed analysis
of these data, see Chen, Nandram and Ross (1996). Other
interpretations of these data are given by Nandram (2005,
1998, 2012). Our analysis in this paper is much different as
we want to assess deterioration over two withdrawals rather
than the prediction of shelf-lives that are too large. Such
analyses have not been done with these data. We study the
entrees kept at 21 degrees centigrade withdrawn after 12,
18, 24, 30, 36, 48 and 60 months.

For the nine-point hedonic scale, many of the cells are
empty because there are only thirty six panelists. Therefore,
our methods become unstable, so we have to collapse the
table into a five-point hedonic scale. Specifically, we add
cells 1 and 2, 3 and 4 to form respectively new cells 1 and
2, and we add 6 and 7 and 8 and 9 to form respectively
new cells 4 and 5; the old cell 5 is the new cell 3. There
are still one or two empty cells and some foods and some
withdrawals, but our methods are much more stable on a
5-point scale rather than a 9-point scale.

For each food we study two withdrawal times, fresh foods
and foods withdrawn later. Thus, for each withdrawal time,
there is a five-cell categorical table of 36 panelists. Our task
is to see if fresh foods are different from foods withdrawn
later. To this end, we apply our methodology to these data
to obtain the ROC curves and the AUCs to assess any dete-
rioration. We are making a reasonable assumption that the
panelists are very accurate in scoring.

As stated above, this is an older dataset that has twelve
meals (menus), but nowadays the MRE has twenty-four
meals. The procedure that is used nowadays is very similar
to the one we described in this section. The new datasets
are confidential and are not available to the public. How-
ever, our methodology is still useful to NLABS and we will
make it accessible to them.

4.2 Comparison of the binormal model and
the skew-binormal model

We use marginal likelihoods to compare the binormal
model and the skew-binormal model. The integration needed
is done using Monte Carlo methods.

For the binormal model, the marginal likelihood is

PBN (n
˜
1, n
˜
2) =

∫ ∫
· · ·
∫
τ1<τ2<···<τK−1

P (n
˜
1, n
˜
2|τ
˜
)π(τ

˜
)dτ
˜
,

and for the skew-binormal model, the marginal likelihood is
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PSBN (n
˜
1, n
˜
2)

=

∫ ∫
· · ·
∫
τ1<τ2<···<τK−1

P (n
˜
1, n
˜
2|τ
˜
, ν)π(τ

˜
, ν)dτ

˜
dν.

If PBN (n
˜
1, n
˜
2) > PSBN (n

˜
1, n
˜
2), the binormal model is bet-

ter than the skew-binormal model and vice versa.
We use the method of Nandram and Kim (2002)

(with a slight modification) to compute PBN (n
˜
1, n
˜
2) and

PSBN (n
˜
1, n
˜
2). Specifically,

PBN (n
˜
1, n
˜
2)

=

∫ ∫
· · ·
∫
τ1<τ2<···<τK−1

P (n
˜
1, n
˜
2|τ
˜
)

π(τ
˜
)

πa(τ
˜
|n
˜
1,n

˜
2)
πa(τ

˜
|n
˜
1, n
˜
2)dτ

˜∫ ∫
· · ·
∫
τ1<τ2<···<τK−1

π(τ
˜
)

πa(τ
˜
|n
˜
1,n

˜
2)
πa(τ

˜
|n
˜
1, n
˜
2)dτ

˜

,

where πa(τ
˜
|n
˜
1, n
˜
2) is an approximation to π(τ

˜
|n
˜
1, n
˜
2) and

it is used to draw sample from πa(τ
˜
|n
˜
1, n
˜
2), of course, such

that τ1 < τ2 < · · · < τK−1. Suppose we can have a sample
τ (h), h = 1, 2, · · · ,M (e.g. M=1000) from πa(τ

˜
|n
˜
1, n
˜
2). Then

we approximate PBN (n
˜
1, n
˜
2) by

̂PBN (n
˜
1, n
˜
2) =

M∑
h=1

whP (n
˜
1, n
˜
2|τ
˜
(h)),

wh =
π(τ

˜
(h))

πa(τ
˜
(h)|n

˜
1, n
˜
2)
, h = 1, 2, · · · ,M.

Similarly, for PSBN (n
˜
1, n
˜
2) we calculate

̂PSBN (n
˜
1, n
˜
2) =

M∑
h=1

whP (n
˜
1, n
˜
2|τ
˜
(h), ν(h)),

wh =
π(τ

˜
(h), ν(h))

πa(τ
˜
(h), ν(h)|n

˜
1, n
˜
2)
, h = 1, 2, · · · ,M.

Here (τ
˜
(h), ν(h)), h = 1, 2, · · · ,M , is a sample from

πa(τ
˜
, ν|n

˜
1, n
˜
2).

We have samples from π(τ
˜
|n
˜
1, n
˜
2) and π(τ

˜
, ν|n

˜
1, n
˜
2) that

we can use to construct samples from πa(τ
˜
|n
˜
1, n
˜
2) and

πa(τ
˜
, ν|n

˜
1, n
˜
2). Here

πa(τ
˜
, ν|n

˜
1, n
˜
2) = πa(ν|τ

˜
, n
˜
1, n
˜
2)πa(τ

˜
|n
˜
1, n
˜
2),

where

ν ∼ U

((
1

c
− 1

)
λ2(θ

˜
), (c− 1)λ2(θ

˜
)

)
.

In Appendix A we show how to obtain the proposal den-
sity, πa(τ

˜
|n
˜
1, n
˜
2) and in Appendix B we show how to obtain

the standard errors of the log-marginal likelihood and the
log Bayes factor. We obtain two proposal densities which
are both based on the beta distribution.

In Figure 1, we plot the marginal log-likelihood of the
skew-binormal model versus the binormal model for all foods
and all seven withdrawal times. We see that most of the
points lie above the 45◦ straight line for both proposal den-
sities (55/84 for the top panel and 58/84 for the bottom

Figure 1. Comparison of the log-marginal likelihoods under
the binormal model and the skew-binormal model using beta

prior (top) and uniform prior (bottom).

panel). The one based on the uniform proposal density is
much simpler than that based on the general beta distribu-
tion; see Appendix A.

For greater detail in Table 1, we present these compar-
isons for two withdrawal times (12 months and 60 months).
First, note that for all foods the standard errors are rea-
sonably small with the standard errors under the binormal
model smaller than those under the skew-binormal model.
This is due to the fact that it is more difficult to compute
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Table 1. Log marginal likelihoods (LML) and their standard errors (SE) under the binormal model (BN) and skew binormal
model (SBM), log Bayes factors (LBF) and their standard errors for fresh food versus food withdrawn at 12 months (top) and

for fresh food versus food withdrawn at 60 months (bottom)

Food LML(BN) SE(BN) LML(SBN) SE(SBN) LBF SE(LBF)

1 -29.581 1.444 -11.046 2.962 18.536 2.586
2 -30.383 1.176 -13.342 2.248 17.041 1.916
3 -27.452 1.371 -11.201 2.657 16.251 2.276
4 -27.090 1.235 -11.876 2.916 15.213 2.641
5 -21.261 1.353 -6.753 3.021 14.508 2.702
6 -16.785 1.670 -44.174 2.426 -27.389 1.760
7 -20.721 1.251 -21.728 2.420 -1.007 2.072
8 -25.076 1.145 -28.903 2.015 -3.827 1.658
9 -23.910 1.595 -22.713 3.033 1.197 2.579
10 -14.841 1.363 -21.135 2.314 -6.294 1.869
11 -40.747 1.598 2.093 3.869 42.841 3.523
12 -26.922 1.266 -35.761 2.048 -8.839 1.610

Food LML(BN) SE(BN) LML(SBN) SE(SBN) LBF SE(LBF)

1 -34.957 1.444 -11.697 2.952 23.260 2.575
2 -24.201 1.396 -17.319 2.333 6.882 1.870
3 -49.985 1.242 -10.524 2.543 39.461 2.220
4 -28.972 1.328 -20.498 2.974 8.474 2.662
5 -28.386 1.445 -5.611 3.095 22.774 2.737
6 -15.207 1.547 -41.548 2.491 -26.341 1.952
7 -24.448 1.289 -20.240 2.311 4.208 1.918
8 -14.380 1.310 -39.649 1.950 -25.269 1.444
9 -32.550 1.484 -21.516 3.014 11.034 2.624
10 -32.863 1.247 -16.136 2.329 16.727 1.968
11 -31.531 1.631 -4.373 3.823 27.158 3.458
12 -28.443 1.218 -37.599 2.063 -9.156 1.665

NOTE: Formulas for SEs are shown in Appendix B.

the marginal likelihood under the skew-binormal model. For
12 months’ withdrawal, as judged by the Bayes factor, we
notice that there are six foods (1, 2, 3, 4, 5, 11) for which
the skew-binormal model is better, three foods (6, 10, 12) in
which the binormal model is better, and three foods (7, 8,
9) in which it is difficult to tell the better model when the
standard errors are considered. For 60 months’ withdrawal,
again as judged by the Bayes factor, we notice that there
are nine foods (1, 2, 3, 4, 5, 7, 9, 10, 11) in which the skew-
binormal model is better than the binormal model, and three
foods (6, 8, 12) in which the binormal model is better than
the skew-binormal. Based on the marginal likelihoods, there
are no foods with inconclusive decisions.

4.3 Numerical results

We now discuss the key results for the MREs. We
present the posterior mean (PM), posterior standard devia-
tion (PSD) and 95% credible interval for each of the AUCs.
We note that in all foods and both models the numerical
standard errors (NSE) are small.

We first give a summary of the performance of the two
Gibbs samplers (the binormal model and the skew-binormal

model). We have run both samplers in exactly the same way.
That is, we drew 11,000 iterates, used 1,000 as a “burn in”
and took every 10th iterate thereafter. When we fit both
models, we looked at the auto-correlations among the iter-
ates, used the Geweke test of stationarity with trace plots
and the effective sample size. We have done this for all 84
Gibbs samplers (12 foods at 7 withdrawals) for each model.
The auto-correlations were always negligible, the Geweke
test almost always gave acceptable p-values (larger than .05)
and effective sample sizes were mostly 1,000 except for a few
Gibbs samplers under the skew-binormal model where the
effective sample sizes reach 500. So for the skew-binormal
model, we have increased the number of runs to 15,000,
used 5,000 as a “burn-in” and choose every 10th iterate.
This brought the effective sizes to nearly 1,000. The entire
procedure is set up to run automatically with no interven-
tion from the user; we can run fewer iterations but would
need individual attention to run the 84 Gibbs samplers for
each model. In the end, the computer time to run one Gibbs
sampler for the binormal model on our Linux Computational
Node with 2.70GHz and 8 CPU Cores is about three sec-
onds whereas the skew-binormal model took about three
minutes. Much of the time taken by the Gibbs sampler un-
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Table 2. Posterior mean (PM), standard deviation (PSD),
numerical standard error (NSE) and 95% credible interval
(CI) of the area under the curve using the binormal model
(left) and the skew-binormal model (right) for fresh food

versus food withdrawn at 12 months

Food PM PSD NSE 95% CI

1 .650 .018 .00058 (.631, .670)
2 .652 .014 .00043 (.633, .678)
3 .649 .015 .00041 (.630, .667)
4 .659 .028 .00107 (.632, .682)
5 .668 .028 .00095 (.645, .688)
6 .690 .031 .00108 (.639, .753)
7 .660 .024 .00075 (.637, .683)
8 .655 .016 .00052 (.631, .687)
9 .650 .026 .00084 (.634, .663)
10 .658 .024 .00078 (.640, .678)
11 .730 .083 .01071 (.626, .833)
12 .647 .013 .00036 (.630, .670)

Food PM PSD NSE 95% CI

1 .724 .022 .00069 (.685, .769)
2 .676 .041 .00196 (.640, .783)
3 .777 .027 .00080 (.729, .828)
4 .754 .025 .00073 (.703, .798)
5 .729 .025 .00073 (.682, .776)
6 .727 .032 .00264 (.666, .788)
7 .760 .023 .00072 (.714, .805)
8 .679 .025 .00094 (.642, .723)
9 .731 .020 .00066 (.693, .771)
10 .778 .027 .00085 (.729, .827)
11 .684 .018 .00054 (.650, .721)
12 .679 .028 .00081 (.636, .714)

NOTE: NSEs are obtained by the batch-means method.

der the skew-binormal model comes from computing cdfs
and inverse cdfs of the skew-binormal densities; the stan-
dard normal cdf and its inverse take respectively less time,
of course.

In Table 2, we present posterior inference about the AUCs
for foods withdrawn after 12 months. Under the binormal
model, the AUCs are all around .650 with food 11 having
an AUC of .730. Also, the PSDs are small, thereby mak-
ing the 95% credible intervals (CI) narrow. On the other
hand, under the skew-binormal model, the PMs are roughly
around .750, with some of them a bit smaller. The PMs of
the AUCs under the skew-binormal model are larger than
those under the binormal model. There are some foods (e.g.,
1, 3, 4, 7, 9, 10) for which the 95% credible intervals under
the binormal model are completely to the left of those un-
der the skew-binormal model and, in fact, for four of these
foods the skew-binormal model fits better. In Figure 2, we
present the corresponding ROC curves for both the binor-
mal model and the skew-binormal model. We notice that
for some foods (1, 3, 4, 7, 9, 10), the ROC curves under the
skew-normal model are completely above those of the bi-

Table 3. Posterior mean (PM), standard deviation (PSD),
numerical standard error (NSE) and 95% credible interval
(CI) of the area under the curve using the binormal model
(left) and the skew-binormal model (right) for fresh food

versus food withdrawn at 60 months

Food PM PSD NSE 95% CI

1 .645 .014 .00044 (.628, .665)
2 .664 .016 .00057 (.637, .700)
3 .640 .009 .00026 (.627, .657)
4 .654 .028 .00100 (.628, .675)
5 .661 .033 .00107 (.637, .679)
6 .675 .028 .00087 (.633, .728)
7 .657 .019 .00049 (.635, .679)
8 .666 .019 .00070 (.640, .693)
9 .647 .020 .00057 (.629, .661)
10 .647 .014 .00043 (.630, .665)
11 .739 .077 .00544 (.639, .848)
12 .649 .016 .00054 (.628, .681)

Food PM PSD NSE 95% CI

1 .728 .021 .00064 (.687, .768)
2 .705 .062 .00554 (.644, .842)
3 .776 .028 .00087 (.722, .824)
4 .754 .025 .00069 (.712, .805)
5 .728 .026 .00077 (.679, .776)
6 .728 .034 .00291 (.664, .791)
7 .762 .023 .00072 (.717, .807)
8 .679 .026 .00114 (.634, .729)
9 .733 .020 .00068 (.696, .772)
10 .765 .044 .00438 (.654, .833)
11 .684 .018 .00055 (.649, .719)
12 .682 .028 .00095 (.639, .719)

NOTE: NSEs are obtained by the batch-means method.

normal model; other ROC curves overlap. For all foods, the
95% point-wise bands all being above the 45◦ straight line.
Therefore, we can say that the panelists were able to distin-
guish between fresh foods and foods withdrawn 12 months
later, albeit not very strongly. It is important to enforce the
stochastic ordering; otherwise the lower band of the ROC
curves near to the origin can go below the 45◦ (not ap-
pealing for ROC curves). However, we note that the ROC
curves under the skew-binormal model are much smoother
with more curvature than under the binormal model.

In Table 3 we present posterior inference about the AUCs
for foods withdrawn after 60 months. In Figure 3, we present
the corresponding ROC curves with the 95% pointwise
bands all being above the 45◦ straight line. We notice that
for three foods (1, 3, 7) the ROC curves under the skew-
binormal model are almost always above those under the
binormal model. Overall, the conclusions are similar to foods
withdrawn after 12 months.

If we assume that the panelists can discriminate reason-
ably well among the different withdrawals, we can make the
following conclusion. The 95% credible intervals are all to

Bayesian analysis of a ROC curve 377



Figure 2. ROC curves and 95% pointwise credible intervals under the binormal model (solid) and the skew-binormal model
(dotted) for fresh foods versus foods withdrawn at 12 months. Axes: X- false positive rate, Y- true positive rate.
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Figure 3. ROC curves and 95% pointwise credible intervals under the binormal model (solid) and the skew-binormal model
(dotted) for fresh foods versus foods withdrawn at 60 months. Axes: X- false positive rate, Y- true positive rate.
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Table 4. Sensitivity analysis under the skew-binormal model: Posterior mean (PM) and posterior standard deviation (PSD) of
the area under the curve by c for fresh food versus food withdrawn at W = 12 months and W = 60 months

c=1.5 c=2 c=3 c=5 c=10 c=15

Food W PM PSD PM PSD PM PSD PM PSD PM PSD PM PSD

1 12 0.720 0.023 0.724 0.022 0.726 0.025 0.727 0.026 0.724 0.026 0.725 0.026
60 0.723 0.023 0.728 0.021 0.734 0.024 0.737 0.026 0.734 0.026 0.734 0.027

2 12 0.675 0.036 0.676 0.041 0.663 0.039 0.660 0.040 0.654 0.040 0.654 0.039
60 0.689 0.049 0.705 0.062 0.725 0.075 0.750 0.076 0.768 0.070 0.766 0.072

3 12 0.775 0.030 0.777 0.027 0.783 0.025 0.788 0.025 0.785 0.025 0.785 0.026
60 0.774 0.030 0.776 0.028 0.778 0.028 0.779 0.028 0.776 0.028 0.775 0.031

4 12 0.752 0.028 0.754 0.025 0.757 0.025 0.759 0.025 0.758 0.024 0.758 0.024
60 0.752 0.028 0.755 0.025 0.762 0.021 0.769 0.021 0.770 0.021 0.771 0.021

5 12 0.727 0.026 0.729 0.025 0.727 0.028 0.727 0.028 0.726 0.028 0.727 0.028
60 0.726 0.026 0.728 0.026 0.726 0.029 0.726 0.029 0.725 0.029 0.726 0.029

6 12 0.733 0.032 0.727 0.032 0.731 0.032 0.730 0.032 0.730 0.033 0.730 0.032
60 0.733 0.033 0.728 0.034 0.731 0.033 0.731 0.033 0.730 0.034 0.732 0.034

7 12 0.755 0.026 0.760 0.023 0.769 0.024 0.773 0.026 0.772 0.026 0.771 0.026
60 0.756 0.026 0.762 0.023 0.775 0.022 0.782 0.024 0.782 0.025 0.782 0.025

8 12 0.679 0.021 0.679 0.025 0.667 0.023 0.661 0.024 0.658 0.021 0.657 0.025
60 0.679 0.022 0.679 0.026 0.665 0.022 0.659 0.024 0.656 0.026 0.655 0.027

9 12 0.724 0.021 0.731 0.020 0.746 0.024 0.754 0.028 0.757 0.031 0.761 0.033
60 0.725 0.021 0.733 0.020 0.750 0.023 0.759 0.027 0.764 0.031 0.769 0.032

10 12 0.775 0.029 0.778 0.026 0.782 0.028 0.778 0.038 0.771 0.046 0.770 0.047
60 0.771 0.033 0.765 0.044 0.682 0.059 0.673 0.060 0.654 0.050 0.641 0.032

11 12 0.682 0.019 0.684 0.018 0.690 0.020 0.694 0.022 0.699 0.023 0.701 0.024
60 0.682 0.019 0.684 0.018 0.689 0.020 0.693 0.022 0.697 0.023 0.699 0.024

12 12 0.679 0.025 0.679 0.028 0.669 0.025 0.666 0.026 0.663 0.024 0.677 0.054
60 0.681 0.025 0.682 0.028 0.676 0.028 0.764 0.081 0.672 0.030 0.671 0.030

the right of .50 and so statistically there is a deterioration
of the foods under either model. However, in practice be-
cause the ROC curves are not too far above the 45◦ line,
we can conclude that the foods actually deteriorate but not
substantially over the five-year period.

We have performed a sensitivity analysis to see how pos-
terior inference changes with c that we specified in our anal-
ysis as c = 2. With this in mind, in Table 4 we have com-
pared posterior mean (PM) and posterior standard devia-
tion (PSD) of the AUCs for the 12 foods and two withdrawal
times, W = 12, W = 60, at c = 1.5, 2.0, 3.0, 5.0, 10.0, 15.0.
For each food, there are negligible changes in the PMs and
PSDs as c changes. This is true at bothW = 12 andW = 60.
There are some foods in which there is an increase of PM
with c, the variation in the PSDs is small. For example, for
Food 7, PM increases from .755 to .773 at W = 12 and .756
to .782 at W = 60. But these increases are minor. We con-
clude that around c = 2, inference about the AUCs is hardly
sensitive as c changes.

4.4 Simulation study

We have performed a simulation study to assess the dif-
ference between the binormal model and the skew-binormal
model. As in our data analysis, we consider the five-point
hedonic scale. We choose the probabilities that a panelist

responded in the jth cell of five-cell contingency table as
pj , j = 1, . . . 5. We have selected two scenarios for these
probabilities p

˜
1 = (.50, .25, .15, .05, .05) for the non-cases

and p
˜
2 = (.05, .20, .50, .20, .05) for the cases for a small de-

gree of separation and p
˜
1 = (.50, .25, .15, .05, , 05) for the

non-cases and p
˜
2 = (.05, .05, .150, .25, .50) for the cases for

a medium degree of separation. We have chosen two sets of
panel sample sizes, 36 and 72. Thus, we have a 22 factorial
design with separation (2 levels) and sample size (2 levels).

We generated 200 runs of the cell counts according to
separation probabilities and sample sizes from multinomial
distributions. We noticed one or two cells are zeros, so we
enforced a restriction of positive cell counts in the simu-
lation to avoid difficulties in fitting the models. Except for
parallel computing, we fit the binormal model and the skew-
binormal model in the same manner as we did for the food
data. The MCMC diagnostics for all 800 runs show accept-
able performance for convergence. In Figure 4 and Table 5,
we averaged the posterior means of the ROC curves, and
the posterior means and posterior standard deviations of the
AUCs over the 200 runs at each of the four design points by
model.

In Table 5 we present the results of the AUCs by de-
sign point and model. For all design points under the skew-
binormal model, the posterior means are nearly the same.

380 B. Nandram and T. B. Peiris



Figure 4. ROC curves for the simulated data for the binormal model (solid) and the skew-binormal model (dotted). Axes:
X-false positive rate, Y-true positive rate. The design points are (a) Level-1: small separation, 36 panelists; (b) Level-2:

medium separation, 36 panelists; (c) Level-3: small separation, 72 panelists; and (d) Level-4: medium separation, 72 panelists.

Table 5. Simulation study: Comparison of the binormal model
and the skew-binormal model using the AUC averaged over

the 200 runs by separation and sample size

PM PSD

36 1 0.733[0.0022] 0.034[0.0003]
Binormal 2 0.720[0.0027] 0.041[0.0007]

72 1 0.748[0.0018] 0.025[0.0001]
2 0.741[0.0023] 0.034[0.0005]

36 1 0.731[0.0020] 0.032[0.0002]
Skew-binormal 2 0.735[0.0019] 0.033[0.0002]

72 2 0.736[0.0016] 0.025[0.0001]
2 0.734[0.0016] 0.025[0.0001]

NOTE: The notation a[b] means that a is the average and b the
standard error over the 200 runs.

There are some differences under the binormal model. For 36
panelists the summaries are a bit different at medium sepa-
ration (compare PM= .733 and PSD= .034 with PM= .720
and PSD= .041). We notice a significant drop in the PSDs
from 36 panelists to 72 panelists regardless of separation
and model. Surprisingly, for 72 panelists at medium separa-
tion PSD = .034 under the binormal model and PSD = .025
under the skew-binormal model.

In Figure 4 we present the average posterior mean ROC
curves under the binormal model (solid) and the skew-
binormal (dotted) by design point. [Because of space, we
put all four figures on the same page, but here we describe
the figures from the original single pages.] For 36 panelists
and at small separation the two curves cross each other
near .4, thereby explaining why the AUCs are similar. At
medium separation, there is a significant difference in the
ROC curves with the one for the skew-binormal model sig-
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nificantly above the one for the binormal model mostly in
the interval (.15, .45), again explaining why the AUC is lower
at this design point. For 72 panelists and at the first separa-
tion the two curves cross each other near .4 with the ROC
curve much lower for the skew-binormal below .4, thereby
again explaining why the AUCs are similar. For 72 panelists
and at the second separation the two curves are very similar
but still crossing each other, again explaining why the AUCs
are similar.

In the simulations we have noticed some differences be-
tween the two models at the four design points, but it is
difficult to pin down any useful pattern. We have attempted
greater separation, but the skew-binormal model becomes
difficult to fit because there are one or two cells with zero
counts.

5. CONCLUDING REMARKS

We have developed a robust Bayesian analysis to study
count data obtained from a nine-point hedonic scale at
two time points. We have robustified a standard binormal
model by modeling skewness. Our robust procedure is not
as complicated as in Bayesian non-parametric statistics (e.g.
Dirichlet Process). In fact, we have used robust summaries
to get an improvement over a standard binormal model.
We were able to get around the difficulties created by a set
of non-identifiable parameters in a clever reparametrization
that naturally speeds up the Gibbs sampler (Nandram and
Chen 1996).

We note that the novelty in our paper is threefold. First,
we have made the binormal model more robust by dealing
with the non-identifiablity in a more non-parametric manner
still incorporating the stochastic ordering. Second, we have
introduced the skew-binormal model into the ROC curve
literature and we have included the stochastic ordering as
well to extend the binormal model for ROC curve analysis.
Third, the computation using the griddy Gibbs sampler is
also innovative even with the difficulties involved in comput-
ing the cdf’s and inverse cdf’s for the skew-normal densities.

Our substantive conclusion is the foods actually deterio-
rate over time. But the deterioration may be slow because
over a five-year period the ROC curves are not too far above
the 45◦ line. The AUCs are statistically much larger than
0.50, but they are far from say .95. Shelf-live estimation for
these foods are difficult just because the food deterioration
is slow (e.g., see Chen, Nandram and Ross 1996).

We have performed simulation study to compare the
binormal model and the skew-binormal model. While the
AUCs are very similar across the four design points (two sep-
arations versus two sample sizes), the skew-binormal model
can give improved precision. The similarity in the AUCs is
partly due to the crossing of the ROC curves, thereby lead-
ing to nearly equal AUCs. It is possible to have much more
improved ROC curves under the skew-binormal model by in-
creasing the number of panelists, but this is time-consuming
and costly to NLABS.

One important extension of our model can be done. It
may be possible to provide a combined analysis of all twelve
foods in the food system. Because of the sparseness of the
data from each food (responses of 36 panelists on a 9-point
hedonic scale), it will be sensible to combine the data from
all foods as in small area estimation. Another team of re-
searchers is working on this project but not on the robust-
ness side (using the binormal model). Also, this research will
benefit from using a nonparametric Bayesian approach (e.g.,
a Dirichlet process mixture model; see Inácio, Jara, Hanson,
and De Carvalho 2013).

APPENDIX A. CONSTRUCTION OF
πa(

˜
τ |

˜
n1,

˜
n2)

We show how to construct the proposal density,
πa(τ

˜
|n
˜
1, n
˜
2).

Let Xi ∼iid Gamma(αi, 1), i = 1, 2, · · · ,K, then the
joint density of X1, X2, · · · , XK is

f(x1, x2, · · · , xK) =
K∏
i=1

{
1

Γ(αi)
xαi−1
i e−x1

}
.

Let

Yj =

∑j
i=1 Xi∑K
i=1 Xi

, i = 1, 2, · · · ,K, and T =

K∑
i=1

Xi.

Then

j∑
i=1

Xi = TYj and Xj = T (Yj − Yj−1), j = 1, 2, · · · ,K,

and the jacobian is tK−1 when X
˜

is transformed to Y
˜
. So

the joint density function of Y1, Y2, · · · , YK and T is

f(y1, y2, · · · , yK , t)

(A.1)

= tK−1 (ty1)
α1−1e−ty1

Γ(α1)
× (t(y2 − y1))

α2−1e−t(y2−y1)

Γα2
× · · ·

× (t(1− yK−1))
αK−1e−t(1−yK−1)

ΓαK

=
t
∑K

i=1 αi−1

Γ(α1)Γ(α2) · · ·Γ(αK)
e−t

× yα1−1
1 (y2 − y1)

α2−1 · · · (1− yK−1)
α1−1.

Therefore, the joint density function of Y1, Y2, · · · , YK is

f(y1, y2, · · · , yK)

(A.2)

=
t
∑K

i=1 αi−1

Γ(α1)Γ(α2) · · ·Γ(αK)
yα1−1
1 yα2−1

2 · · · yαK−1−1
K−1
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× (1− y1
y2

)α2−1(1− y2
y3

)α3−1 · · · (1− yK−1

yK−2
)αK−2−1,

0 < y1 < y2 < · · · < yK−1 < 1.

So that τi, i = 1, 2, · · · ,K − 1, can be drawn from

τi ∼ Beta

⎛⎝ i∑
j=1

αj ,

K∑
j=i+1

αj

⎞⎠ ,

where αK =
∑K−1

j=1 αj

K . Note that if we take αi = 1, i =
1, 2, · · · ,K,

τi ∼ Beta(i,K − i), τ1 < τ2 < · · · < τK−1.

That is, τ1, τ2, · · · τK−1, are the order statistics from the
U(0, 1) distribution.

We can obtain a possibly better proposal density as fol-

lows. We now use the iterates τ
(h)
i , i = 1, 2, · · · ,K, h =

1, 2, · · · ,M is from Gibbs sampling. Take

τ
(h)
1 ∼ Beta(α1,

K∑
i=2

αi),

τ
(h)
2 ∼ Beta(α1 + α2,

K∑
i=3

αi), . . . , τ
(h)
K ∼Beta(

K−1∑
i=1

αi, αK).

Denote the means and variances of the τi are

μ̂i =
1

M

M∑
h=1

τ
(h)
i σ̂2

i =
1

M − 1

M∑
h=1

(τ
(h)
i − μ̂i)

2.

Then, equating moments we get

α1

τ
= μ̂1,

α1 − α2

τ
= μ̂2, · · ·∑K

i=1 α
(h)
i

τ
= μ̂K , τ̂ =

∑K
i=1 μ̂1(1− μ̂i)∑K

i=1 σ̂
2
i

.

Finally,

α1 = τ̂ μ̂1, α2 = τ̂(μ̂2 − μ̂1), . . . , αK = τ̂(μ̂K − μ̂K−1).

So we have two proposal densities, one in which the αi

are all unity and the other is based on the iterates from the
Gibbs sampler.

APPENDIX B. MONTE CARLO STANDARD
ERROR OF THE MARGINAL

LIKELIHOODS

We obtain a general approximation of the Monte Carlo
error, also called numerical standard error, of a typical log-
marginal likelihood, which includes the weights. Let T =∑n

j=1 wje
Xj , where the Xj and the wj are respectively in-

dependent and identically distributed. Let x̄ and Sx and

w̄ and Sw denote the respective sample means and stan-
dard deviations. The lemma below gives the standard devi-
ation of log(T ) in the special case in which the variation in
the weights is small. This is different from the batch-means
method that cannot be used here.

Lemma. Assume the variation in the wj is small,
then approximation of estimated standard error of

log
{∑n

j=1 wje
Xj

}
is SX√

n
.

Proof. Let T =
∑n

j=1 wje
Xj then using the first order Tay-

lor series approximation, we can show that

V ar(log(T )) =
V ar(T )

(E(T ))2
.

Suppose wj and Xj , j = 1, 2, · · · , n, are independent and
identically distributed with means μw and μX and variances
σ2
w and σ2

X respectively. Then, using first order Taylor’s se-
ries expansion

E(T ) 

n∑

j=1

μwe
μX = nμwe

μX

and

V ar(T ) = V ar(

n∑
j=1

wje
Xj )

=

n∑
j=1

[
E(w2

j e
2Xj )− (E(wje

Xj )2
]

=

n∑
j=1

[
E(w2

j )E(e2Xj )− (E(wj(E(eXj )2
]



n∑

j=1

[
(μ2

w + σ2
w)(e

2μX + σ2
Xe2μx)− μ2

we
2μx
]

= n

[
μ2
w + σ2

w +
σ2
w

σ2
X

]
e2μxσ2

X .

It follows that

V ar(log(T )) 

n
[
μ2
w + σ2

w +
σ2
w

σ2
X

]
e2μxσ2

X

(nμweμX )2
,

and the estimated variance is given by

V̂ ar(log(T )) 

n
[
X̄2 + S2

w +
S2
w

S2
X

]
e2X̄S2

X

(nw̄eX̄)2

=
S2
X

n

[
1 +

S2
w

w̄2

[
1 +

1

S2
X

]]
.

When the coefficient of variation of the wj is small,

V ar(log(T )) 
 S2
X

n . So estimated standard error of

log
{∑n

j=1 wje
Xj

}
is SX√

n
.
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