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Testing the equality of risk difference among
multiple incomplete two-way contingency tables

HuIiQioNG Lit, NIANSHENG TANG!, GUOLIANG TIANY,

AND HonNayUuaN Cao*f

Contingency tables are used to summarize categorical
data with multiple attributes, which frequently arise in nat-
ural and social sciences. In Tian and Li (2015), the equality
of risk difference based on a 2 x 2 table is tested at the pres-
ence of non-response. In this paper, we derive the joint dis-
tribution of multiple contingency tables with non-response.
Consequently, we propose a new homogeneity test statistic
for the risk difference among multiple contingency tables.
The limiting distribution of the proposed test statistic is
established along with inferential procedures. Upon rejec-
tion of the global null hypothesis of homogeneity, to identify
contingency tables with discordance, a multiple comparison
procedure is proposed. Numerical studies corroborate theo-
retical results. We illustrate our method with dataset from
a psychiatric study.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62H17;
secondary 62H15.

KEYWORDS AND PHRASES: Hypothesis testing, Incomplete
contingency table, Risk difference.

1. INTRODUCTION

In clinical trials and epidemiological studies, it is common
to summarize data in contingency tables. Incomplete con-
tingency tables arise frequently due to various reasons, such
as early withdrawn, recording errors, side effects, etc. As a
motivating example, we consider dataset from a multi-center
psychiatric study, which has been analyzed in Molenberghs
and Lesaffre (1994), Kenward et al. (1994), Molenberghs et
al. (1997), Michiels and Molenberghs (1997), and Kenward
et al. (2001). In this study, 315 patients with psychiatric
symptoms were treated by fluvoxamine, an antipsychotic
drug. We focus on the presence or absence of side effects
at the first and last visit after enrollment into the study.
The outcome presence or absence of therapeutic effects is
evaluated on an independent group of 315 patients at the
first and last visit as well. Observed counts are summarized
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in Table 1. From Table 1, we can see that there are quite
a number of non-responses for both side effects and ther-
apeutic effects, resulting in incomplete contingency tables.
The total number of subjects 315 is fixed in advance. We are
interested in whether the risk differences between first visit
and last visit are the same for side effects and therapeutic
effects in the presence of missing data. This can be extended
to K contingency tables. If risk differences between first visit
and last visit are not homogeneous among K contingency
tables, we would like to identify specific heterogeneous con-
tingency tables.

Statistical inferences for the above two questions are usu-
ally conducted through hypothesis testing and confidence in-
terval. Statistical methods for incomplete contingency tables
have received a lot of attention in recent years. For instance,
Choi and Stablein (1982) derived a method of analyzing
incomplete paired data where the mechanisms are consid-
ered to be independent of treatment. Tang et al. (2009)
proposed exact and approximate unconditional test-based
methods for constructing confidence intervals for proportion
and rate differences in the presence of incomplete paired bi-
nary data. Miller and Looney (2012) proposed a weighted
average method for estimating the odds ratio when the sam-
ple consists of a combination of complete and incomplete
matched pairs. However, all these papers work with a sin-

Table 1. Observed counts for patients at the first and last
visit after the treatment of fluvoxamine in a multi-center
psychiatric study (Kenward et al., 2001)

Side effect
The last visit
The first visit Yes No Non-response
Yes 89 13 26
No 57 65 49
Non-response 2 0 14
Therapeutic effect
The last visit
The first visit Yes No Non-response
Yes 11 1 7
No 124 88 68
Non-response 0 2 14
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gle incomplete 2 x 2 table and the literature on hypothesis
testing with multiple incomplete 2 x 2 tables is scarce.

In this paper, we develop a new method for testing the
homogeneity of risk differences under two conditions in mul-
tiple incomplete two-way contingency tables. Tian and Li
(2015) derived the joint distribution of the observed counts
in an r X ¢ incomplete contingency table with fixed total
counts under the missing at random assumption (MAR)
(Rubin, 1976). Based on the derived joint sampling distribu-
tion, they provided a new framework for analyzing incom-
plete contingency tables. We extend this earlier result to
the case of multiple contingency tables by treating the non-
response as a new category in the contingency table. We
will establish the limiting distribution of new test statistics,
and conduct statistical inference through bootstrap. Upon
rejection of the homogeneity hypothesis, to identify hetero-
geneous contingency tables, we propose multiple compar-
ison methods based on Bonferroni procedure, Single-step
adjusted MaxT procedure and Single-step adjusted MinP
procedure.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the proposed methods, their asymptotic dis-
tributions, bootstrap resampling methods for testing homo-
geneity of risk differences under two conditions in multi-
ple incomplete two-way contingency tables. Several multi-
ple comparison procedures are developed in Section 3. Sim-
ulation studies are conducted to investigate finite sample
performance of various methods in Section 4. In Section 5,
an example is used to illustrate the proposed methodology.
Concluding remarks are given in Section 6.

2. HOMOGENEITY TEST METHODS

2.1 The joint distribution of the observed
counts in multiple incomplete 2 x 2
tables

Consider K independent incomplete 2 x 2 tables, each
having Ni(k =1,2,..., K) subjects. Suppose that for each
patient in stratum k, we take two treatments (X,Y") corre-
sponding to two correlated dichotomous variables. In the kth
stratum, poor = Pr(X =0,Y =0), po1x = Pr(X =0,Y =
1), P1ok = PI‘(X = 1,Y = 0), P11k = PI‘(X = l,Y = 1),
where 23:0 Z;:O pijk = 1. For stratum k, consider paired
observations from a total of Ny (Nj is predetermined and
non-random) subjects which are classified into two classes
containing ny complete counts and Mg +mMyr +Mgyr incom-
plete counts. These incomplete counts consist of three cate-
gories, where mg, is the number of incomplete observations
on X (or missing on Y'), myy, is the number of incomplete
observations on Y (or missing on X ), and mgyy, is the num-
ber of missing data on both X and Y for the kth stratum.
The observed counts and cell probabilities are displayed in
Table 2, where N, = ny + Myk + My + Moy is fixed, while

1 1
ng = Zi:() ijo Nijky Mk = Migk + Moxk, Myk = My1k +
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Table 2. The observed counts and cell probabilities from a
multi-center study with incomplete observations

Y =0 Y=1 Missing on Y
X =0 Nook Nno1k Mozk

((poow) (poik) (pook + poik)
X=1 N10k N1k Mizk

(p1ok) (p11k) (p1ok + p1ik)
Missing on X | myox Mylk Mayk

(Pook + p1ok)  (Poik + Pi1k)

NOTE: The total number Nj, = Zi:o Z;:o Nijk+M1zk+Moxk+
My1k +Myok +Mayk = Nk +Mak +Myr +Mayk is fixed in advance.

Myor and Mgyyr = Ni — N — Mg — My, are random. Let
Yobs = {n00k - - - M11k; Mizks Mozk; Mylks Myok; Mayk } e
the observed frequencies and p = (Pook, Po1ks P1oks P11k) €
T4 be the cell probability vector, where T, is defined as

T, = {(91,...,9,,)T: 0,20, j=1,....p, X0_ 0, = 1}.
Following Choi and Stablein (1988) and Chang (2009),
we assume that the missing mechanism is MAR; i.e., the
probability of missing only depends on the observed counts
(Little and Robin, 2002). According to Tian and Li (2015),
to obtain sampling distribution of the observed counts Yy
in incomplete 2 x 2 tables for the kth stratum, we first in-
troduce a missing mechanism random variable R with four
categories, where R = 1 (or 12) with probability ¢y if both
the status of X and the status of Y are reported; R = 2
(or 12) with probability ¢o if only the status of X is re-
ported; R = 3 (or 12) with probability ¢a if only the status
of Y is reported; R = 4 (or 12) with probability ¢4 if nei-
ther the status of X nor the status of Y is reported. Hence,
R ~ Categorical,(¢), where ¢ = (¢p1p,...,dax)" € Ty is
called the parameter vector of the missing-data mechanism.
Next, based on the two binary variables X and Y, we can
construct a new four-category random variable Z as follows:

L, i (
2, if (
3, if (
4, if (

Thus, Z ~ Categorical,(p), where p € Ty is called the
model parameter vector. The joint distribution of R and Z
is defined by m = (m;;1), where m;jr, = Pr(R = i,Z = j)
in the kth stratum for 4,57 = 1,...,4;k = 1,..., K. Ta-
ble 3 shows the observed counts, missing counts, marginal
probabilities of R and Z, and joint probabilities of (R, Z).
For kth stratum, the full observations are {n;;}(¢,j = 0, 1)
with corresponding cell probabilities {ﬂljk};*:l, while the
latent counts are {n/,}i_;, {n/,}j_; and {n7}}j_, with
corresponding cell probabilities {7T2jk}?:17 {m3jx}j=1 and



Table 3. The observed counts, missing counts, marginal probabilities of R and Z, and joint probabilities of (R, Z)

M.M.R.V. Four—category variable Z M.P. | Observed
R 1 2 3 4 of R | counts
1 1
1 (or 12) T11k T12k T13k T14k D1k ng = 2:0 Zo Nijk
i=0j=
ook no1k N1ok N1k
(nook) (no1k) (n1ok) (n11k)
’ ’ 7 ’
2 (or 12) To1k(niy)  ma2k(nog) / , go | OTF T Tk + 2k
mask (M) Toak(nyy) Migk = N3 + Nag,
_ n// n// m — n// n//
3 (or 12) w31k (n1%) } 33k (153k) } . YOk /1/k + fx/k
32k (Nay) T34k (Nay) Mylk = Noy + Ny,
— 1
4 (or 12) | maw(nix)  maze(ngg)  Task(nsy)  mae(niy) | dak | Mayk = 3 ik
j=1
M.P. of Z Pook Do1k P10k Plik 1 Ni = ng + Mak
+myk + Mayk

NOTE: M.M.R.V. = missing mechanism random variable, M.P.= marginal probability. Only

" "

/ ! 1 " i s s . ! ! ! !
N1k, N3k, N1k, Nk, N1k, Mok, N3 are missing while ngy, = Moer — Ng, N4k = Mizk — N3,

" " 1

" 1" 1" 1" " .
Ny, = Myok — N1k, Mar = My1k — Nap, and Ny, = Mayr — N1 — Nay, —nag,. R ~ Categorical, (¢)
and Z ~ Categoricaly(p). Mak = Mock + Mizk, Myk = Myok + My1k.

{7r4jk};*:1, respectively. Note that only nf,, nj,, nf}, nj,,
" n " : : : / _ _ /
nllk, ngy, and n/sk ar/(/e missing whlll(/e n2,7l = Mogk n/llk,
Mg = Mizk = Mgy N3 = Myok = Mg, Ny = Mylk = Nogs
and nfj;, = mgyyr —nY;, —ni —nf,. Thus the complete data

_ / ’ Y A R A TR
Yeom = Yops U {n1k7n3k,n1k,n2k7n1k,n2k,n3k = {nOOkv

e/ o "o, 1 "
N1k, 10k, W11k Mgy -« o s Mgy Mgy - o o s Mgy Mgy - - -5 My
follow a multinomial distribution with the following joint

probability mass function (pmf)

f(Yeom|m)
- ! I 1" 1" " "
00k, « + -y M1k Mgy -+« s Mages Miks - - -5 Ml Mk - - -5 Nae
4 4 4
’ " "’
00k . M01k 10k M1k ik ik ik
X (T TR T Tk i) <H Tk ) (H T35k ) (H Tyjk |>
=1 j=1 =1
7 € Tie.

Then the joint pmf of the observed data Y,,s can be ob-
tained by summing over all missing data in f(Yeom|7), yield-
ing

Nook -"M01k 110k

F(Yops|m) = 01_1 (TR TS SRR AR ) (a1 + a2y ) O

(Ta3k + Taar )™ " (T31k + Tazk)"VON X

4
m x
(32k + maa) " (D2 =y Tag)"evk, € T,
where
(1)
071 _ Nk
1 00k, MO1k, 010k, V11K, TMOxk, Mlxk, TNy0k, Mylk, Mayk

When R and Z are independent, the missing-data generation
mechanism is said to be ignorable or MAR. Under MAR, the
joint pmf in the kth stratum reduces to

Fi(Yorslp,2) = C7 - [(0ne) ™ Pty it P
X [dak (pook + Pork)]"** [P2k (Prok + pr1x)]™ "
X (@3 (Pook + P1ok)]"* [Psk (Pork + Pr1k)]™
X [dar (Pook + Po1k + Prok + p11x)] " ev*
(2)
3)
where C is defined in (1),

= Ot (BT oo ) LDl Yons),
d) € T47

7000k 0,V 01k 10k P11k

L1(p[Yobs) = poor" Poi" Pk Piik (Pook + Po1k)™*
X (p1ok + P11&) "= (pook + P1ok) ™k (Po1k + Prik) ™.

Then (2) indicates that

(4) Yobs|(é, p) ~ Multinomialg (N, ¢)
where ¢ = (1% Pook, D1k Po1ks P1k P10k> P1k P11k, P2k (Pook +

Poik)s P2k (Prok  +  Piik), d3k(Pook  +  Diok), P3k(Pork  +
P11k), ¢ar)' with only 6 free parameters. In other words,

(4) is a special 9-dimensional multinomial distribution with
different equality constraint on each component of ¢.

2.2 Homogeneity test of risk differences

Denote i, = (pook+p1ok) — (Pook +Po1x) = Prok—Po1k (k =

1,..., K), which can be interpreted as the risk difference of

P

Risk difference test in multiple incomplete two-way contingency tables 355



two clinical entities (e.g., the first visit and the last visit as
introduced in section 1) in the kth stratum. Here, our main
interest is to test the following hypothesis:

(5) (51:52: ~:6Ké7' VS

6]'1 75 5]‘2 for some j; 75.]2 S {1,2,. R

Hol

H 1 - K }7
where 7 € [—1, 1] is an unknown parameter. In the following,
we will develop three most commonly used testing method:
likelihood ratio test, score test and Wald test.

2.2.1 Likelihood ratio test

Let p;jr be the maximum likelihood estimator (MLE) of
pijk (4, 7 = 0, 1) in the kth stratum. It follows from Campbell
(1984) and Chang (2009) that MLEs of pook, Po1k, P1ox and
p11x satisfy the following equations:

Pook = {rook + mozkPook/(Pook + Po1k) + Myorbook/(Pook + P1ok)}
00k = ;

Ng
Pork = {ro1k + MozkPo1k/(Pook + Po1k) + My1kPork/(Pork + P11k)}
01k A ,
P {n1ok + myorPror/(Pook + Prok) + MickPror/(Prox + P11k)}
10k = A ,
i = {n11k + my1xPr1r/(Boik + Pr1k) + MickPrir/(Brox + P11x)}
11k = .

Nk

Thus, pook, Poik, Pror and pi1x can be obtained via the
EM algorithm (Dempter et al,, 1977). It can be shown
from (2) that the MLEs of ¢, ¢2k, ¢3k and ¢4 are given
by b1k = n/Ni, dor = mar/Ni, b3 = myr/Ng, and
G4k = Mayi/Ni, respectively.

Let p;;1 be the constrained MLE of p;;, under Hy: pior —
poixk =7 for i, 7 =0,1, k=1,..., K. Thus, it follows from
(2) that pook, Po1x and 7 under Hy are obtained by solving
the following 2K + 1 equations:

(6)

Nook Niik Mok - Mizk
Pook 1 — Pook — 2Po1k — T  Pook +Poik 1 — Door — Doik
Myok Myik

~ ~ ~ ~ ~ ~ = Oa

Pook + Poik +7 1 — Poox — Pork — T
o1k niok 2n11k Mock
Dotk Poik +7 1 —Dook —2Poik —T  Dook + Dotk

Mizk Myok Mylk

— — — = — — — — — =0,
1 —pook —Poik  Pook +Poik +7T 1 —Pook — Poik — T

Z{ 10k N1k Myok
Poik +7 1 — Pook — 2Potk — 7 Pook + Poik + T
m
ylk } =0

1 — Pook — Poik — 7

Note that there are no closed-form solutions for 7, poox
and po1x (K = 1,2,...,K), which can be obtained by it-
eratively solving the above equations via the Fisher scor-
ing algorithm. Then, the likelihood ratio statistic for testing
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Hy:01=---=0g =7 is given by

Ty = 2{U(p) — U(Po, )},

which is asymptotically distributed as the x? distribu-
tion with K — 1 degree of freedom, where I(p) =

K
> lk(Pr) with 1k(Pr) = nook 1og(Pook) + no1k 1og(Pork) +
=1

niok log(Pror) + niiklog(Piik) + Mmozklog(Poor + Doik) +
mmklO!](l—ﬁOOk—ﬁom)+my0klog(]§00k+ﬁ10k)+my1klog(1—

I(Po,7) = Zlk(pok, 7) with

Ik (Pok, T) = nook log(Pook) + no1k log(pmk) +ﬂ10k log(po1x +
7) +na1k log(1 — poor — 2Po1x — 7) + Mok 10g(Pook + Po1k) +
Mizk 10g(1 — Pook — Poik) + Myok log(Poor + Poix + 7) +
my1k log(1 — Pook — Poik — 7)+constant, for k = 1,..., K.
We reject Hy at significance level a if T; > X%{A,aa where

Pook — Piok)+constant,

X%(—l,oz is the upper « percentile of the x? distribution with
K —1 degrees of freedom. Rejecting Hy implies that ignoring
stratification is unreasonable.

2.2.2 Score test
Following the arguments of Tang et al. (2016), it follows

from (2) that the score function of log-likelihood with re-
spect to 7 under Hy is

81 K N10k
LS
Ot = powx + 7

N1k

S(po) = — ~ —
(Po) 1 — poor — 2po1k — T

My0k _
Dook + Potk + T

Mylk
~ ~ ~ I
1 — Pook — Poik — T

where 7, poor. and po1x (K = 1,2,...,K) are given in (6).
The Fisher information matrix with respect to 7, poor and
po1x under Hy is given by

Ih I Lz Ty s
Iy Iz Iz 0 O
I=| @Iz I3 I33 0 O ;
Iy 0 0 Iy Iy
Lis 0 0  Ij5 Iss
2

where I11 = Y (Niog + Ni1k + b)), Ti2 = Ni11 + b1, L13 =

k=1
Nig +2N11 + b1, Iy = Ni12 + ba, Its = Nig2 + 2N112 + bo,
Iss = Noor + N111 + a1 + by, fog = 2N111 + a1 + by, 33 =
Noi1 + Niotr +4N111 +ay + b1, Iy = Noo2 + Niiz + az + by,
Iys = 2N112 +ag + ba, Iss = No12 + Nig2 +4N112 + az + by,
where N = ng/piji for i,5 = 0,1, ax = mar/{(poor +
Po1k)(1=pook —poik)}, bk = myr/{ (Pook+Po1k+0k) (1—pook —
Poik—Ok)}, Prok = Poik +0k, and prix = 1 —pook —2po1k — Ok
It follows that the upper left element I'' of I"! can be
calculated. The score statistic for testing Hy : 61 = J2 =



--+ =0 = T is given by

T,=> {

k=1

niok N1k
Dotk +7 1 —Pook — 2Do1k — T

mMyok
Dook + Potk + T

. My1k 2711
1 —pook — Do1k — T

which is asymptotically distributed as the 2 distribution
with K — 1 degrees of freedom. We reject Hy at significance
level v if T > X%(—La'

2.2.3 Wald test

Testing hypothesis Hy : 01 = do = -+ = dg = T is
equivalent to testing the following hypothesis Hj) : Ad = 0,
where § = (61,02,-- ,0x)%, 0= (0,0,---,0)T and

1 -1 0 0 -~ 0 O
0 1 -1 0 0 0
A=| 0 0 1 -1 0 0
o 0o o 0 -~ 1 -1 (K—1)xK
The naive MLE of & is given by 8 = (51, cen SK)T.

Since variance of & is given by var(d) =diag(var(dy), ...,

var(dx)), an estimate of var(d) under Hy is given by

var(d) =diag(var(d1|Hp), . . ., var(dx |Hp)), where
Var(8y,|Ho) = Var(poor. + Porr) + Var(foo + Prox)

-2 O (PookP11k — PoikPiok)
Ni Aoy,
— ) 1 A . D i
Var(pook + Poik) = ——— [¢1kD1k + o }7
k- Aok Doy,

and
[ﬁglk]ﬁ)zk + <133k gSk] )

— 1
Var(poor + P = —
(POOk plok) N

k410K 1k

where D1y = (Pook + Potk) (1 — Pook — Poik), Dox = (Pook +
Prox) (L = Pook — Prok)s Dar = PookPo1k P11k + Poik) + (Pook +
Poik)ProkD1ik, and Aox = @1 + Paxd3xDsp/(D1xDay) for
k=1,..., K. Thus, the Wald-type statistic for testing Hy :
61 = --- =0 = 7 can be expressed as

T, =& AT(Avr(3)AT) 1AS,
which is asymptotically distributed as the x2 distribution

with K — 1 degrees of freedom. We reject Hy at significance
level o if T, > X%(_La.

2.3 Statistical inference through bootstrap

The condition for using the above developed asymptotic
procedures to test hypotheses Hy : 61 = do = -+ =g =7
is that Ny,..., Nk are sufficiently large. In practical appli-
cations, it is rather difficult to satisfy the above condition. In
this case, using the above developed asymptotic test proce-
dures to test hypotheses Hy may lead to inaccurate results.
Therefore, a nonparametric bootstrap resampling method is
developed to solve the above mentioned difficulties in this
subsection.

Given the observed data Yons = {nook,---,M11k; Mizk,
MOzk; My1ks Myok; Mayk; k = 1,2,..., K}, the naive MLEs
Dijk of pij are obtained through the EM algorithm for 4, j =
0,1 and &k =1,2,..., K. Also, the observed value, denoted
by tr, of statistic Ty, (L = [,s,w) can be obtained from
available data. For k = 1,2, ..., K, based on poog, Po1k, P10k,
P11k, P1xe = ni/Ni, b2k = Mai /N, p3x = myr/Ni, and
Gak = Mgy, /Ny, we can independently generate
(n{5h), mi = (mimi0,)T

)

Yo(lljg,k = {N(b) =

m?gb) = (m;bl)k,m;%)k)T, mg;)k} ~ Multinomialg (Ng, ¢),

where ¢ = (d1x Pook, D1k Dotk P1k Prok: P1k P11k, P2k (Pook +
Poik), P2k (Prox + Prik), @3k (Pook + Piok), Par(Pork + Piik),
¢4r)". For each generated YS;)S = {YE)ZLJ, YE)I;)SQ, ey
Y(()%)&K}, we can calculate a bootstrap replicate t(;) of statis-
tic Ty, (L =1, s, w). Repeating this process B times, we ob-
tain B bootstrap replicates {tz(b)}{f:l. Thus, the p-value for
testing hypotheses Hy : 61 = o = - -+ = 7 = 7 via statistic
T, (L =1,s,w) can be computed by

B
. 1 O)
bp = E;I@L > tr),

where I(-) is an indictor function which is 1 when tgj) >tr,
and 0 otherwise.

3. MULTIPLE COMPARISON PROCEDURE

WetestH0:51:(52:-~~:(5K:TOVSH1:5k7é70
for some k € {1,---, K}, where 7y is a fixed constant. If
Hy is rejected, there is at least one k € {1,--- , K} such
that 0y # 79. We would like to identify such heterogeneous
strata. Towards this goal, we consider the following multiple
testing problem:

H/C()Zék =170 VS Hkl :(Sk 757'0 for k = 1,2,-“ ,K.
At significance level o, Hyo,k = 1,..., K is rejected if the
corresponding p-value is smaller than «/K by Bonferroni
method. If none of the p-values corresponding to Hyg, k =
1,..., K is smaller than /K, we fail to reject the global
null Hy.
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In this section, we shall propose three statistics for the
multiple testing of Hyg based on the likelihood ratio test,
score test, and Wald-type test.

3.1 Test statistics
3.1.1 Likelihood ratio statistic

The likelihood ratio statistic for testing Hyg : 0k = 79 is

given by
Uk (Book» Pors» 7))

which is asymptotically distributed as the x? distribution
with one degree of freedom under Hyy : d = 79, where

Tire = 2[lx (Pook, Pork, Ox) —

s (Boow Potk, O%) = nook log(Boor) + 101k 1og(Po1r)

+n1ok log(Pork + ) + ni1k log(1 — Pook — 2otk — Ok)
+mozr log(Pook + Poik) + Mgk 10g(1 — Pook — Poik) + Myok
1og(Pook + Pork + k) + My1x 10g(1 — Pook — Pork — Ok),

Uk (Pook> Porks> T0) = Mook 10g(Boor) + o1k log(Bgy )+

1ok 10g(Boyy, + 7o) + na1k log(1 — Py — 2051, — T0)+

moxk 10g(Boor + Po1x) + Mazk 10g(1 — Poor, — Poix) + Myok

log(Phor + o1 + 7o) + my1k 10g(1 — Doy, — Po1e — 7o)
where ﬁoomﬁmmgk = Piok — Poixr can be obtained as in
section 2.2.1, Pio,Po1x are the solutions of the following

equations:

ook N1k Mgk
Pook L = Pook — 2P61k — 70 Pook T Dok
Mizk mMyok
%k % % ~k
L= Pook = Po1k  Pook T Pore + 70
_ mMyi1k -0
~x ~x% -
1 — Poox, — Porg — 7o
no1k n10k 2nq1k Mogk
~x ~% ~% ~x ~x ~x
Po1k Powk T 70 1= Door — 20615 — 70 Pook T Pork
Mizk Myok
~x ~x ~x ~x
L = Pook — Pork  Pook + Pork + 70
myik
- 1 ok _y S~k T = 0
Poor — Po1k 0

Fisher scoring method can be used to iteratively solve the
above equations to obtain p,, and pg;-

3.1.2 Score statistic
The score statistic for testing Hyg is given by

N1k
2P51k = 70

+ My0k
Pook T Po1x + 70

To = { ~*n10k

Po1x T 70 1 — Pook —

_ mMyik A*
1 —PGor — Poir — 70 IB*-i—A
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*b* +B*a +B*b*7

where N;} = ny/piy, for i,5 = 0,1, @ = ma/{(Poor +
Po1e) (1 = Poor — 15311@)} b* = myk/{(ﬁgok + Do, + 70)(1 —
Pook — ﬁglkj 7o)}, plOk = pOlk + 7o, pllk =1- pOOk -
20515, — To, AT = ZZ ozg o Nijs Ay = (Ngo + Niy) (Vg +

NlO) + 4NooNuv IB31 = N00N01N1+ + N10N11N0+ where
N1+ = Nip + Ny, N0+ = Njo + Ny, B = Ny N, , and
BS = (Ngo + Nio)(Ngy + N7y). Under Hyo @ 6 = 70, Tk
is asymptotically distributed as standard normal distribu-
tion.

3.1.3 Wald-type statistic

It follows from Chang (2009) that under Hoy, the asymp-
totic mean of 0y, is given by E(dy) ~ Ok, and the asymptotic
variance of d; can be estimated by

Var(dy) = Var(poox + Prok) + Var(Boox + Hior)
—p 1k (PookP11k — PoikP1ok),
Ny Aoy,

Hence, the Wald-type statistic for testing Hyg is given by

Tor = (0 — To)/\/@'(sk), which is asymptotically dis-
tributed as the standard normal distribution under Hyq :
5k =1T0-

3.2 Testing procedures

In this subsection, several multiple comparison proce-
dures are proposed to test the hypothesis Hy : §1 = 62 =
- =0g =79 vs Hy : 8y, # 70 for some k € {1,--- , K}.

3.2.1 Bonferroni procedure

Following Westfall and Young (1993) and Hochberg and
Tambhane (1997), we reject the null hypothesis Hyg : 6, = 79
if Tox(r = 1,s,w) is greater than the critical value ¢ (k =
1,2,...,K). In this case, we can define the p-value for con-
trolling the family-wise error rate as follows:

p = P(maxy=1,. x|Trk| > c| Ho),
where the critical value ¢ can be taken to be z,/2x, which
is the upper a/2K-percentile of the standard normal distri-
bution. According to the Bonferroni procedure, one rejects
0:01 =0y = =0 = 7o if maxp—1_ kltrk| > Zas2K,
where t, is the observed value of statistic T}..

3.2.2 Single-step adjusted MaxT procedure

It is well known that the Bonferroni procedure is rather
conservative. The p-value adjustment procedure is one of the
most commonly used alternatives for multiple hypothesis
testing. we consider the following single-step adjusted MaxT
procedure.

Step 1. Compute the observed values t¢,1, ...,
statistics T,1,...,
data.

t. i of test
T.x(r = l,s,w) based on the original



~ Step 2. Given the MLEs fook, Poik: Oks O1k: b2k, D3k,
dar (k = 1,...,K) for the original data, we generate B
bootstrap samples

(b) b . ) (b)) (). (b))
{no0ks - - - 7n11k’mlmk7m0mk’mylk7my0k’mzyk’b =1,...,B}

~ Multinomialg (N, ¢),

where ¢ = (¢1x Pook, P1k Po1k; P1k (Pork +0k), P1k (1 — Pook —
2Po1k — Ok ), P2k (Pook + Pork ), P2k (1 — Pook — P11k), D3k (Pook +
Dotk + 0k), G5k (L — Pook — Potk — Ok ), Pa) -

Step 3. Based on the bth bootstrap sample (b =1,...,B),
we calculate the observed values tibl), o ’t£1})(
Ty, Trx(r =1, s,w). Let wp = maxkzl,wmtgg\.

Step 4. Sort wiq,...,wp to obtain the ordered values
wi)y < we) < - < w) and compute the critical value
Ca = W[B(1—a)+1]s where [a] is the largest integer not greater
than a.

Step 5. Reject global null hypothesis Hy : §; = d2 =
<o = 0 = 79 if maxg=1, . K|trk| > co. In particular, one
can reject the hypothesis Hyg : 0 = 70 if |tqx| > co for
k=1,...,K, where r =1, s, w.

of statistics

3.2.3 Single-step adjusted MinP procedure

Similar to the singe-step adjusted MaxT procedure, in
this section, we propose an algorithm based on the single-
step adjusted MinP procedure as follows.

,t. of test
,Trx(r = 1, s,w) based on the original

Step 1. Compute the observed values t,1,...
statistics 11, ...
data.
~ Step 2. Given the MLEs pook, Poik, Ok, P1ks P2k, Pak,
dar, (k = 1,...,K) for the original data, we generate B
bootstrap samples

®) ., ®) () .

b b b b
{n( ) n® . m® mOxk,mylmmyOk,m;;k;b:1,...,B}

00k> " = P11k " lxk>

~ Multinomialg (N, @),

where &’AZ (52311@ Pooks D1k ]5011@1(2)11@ (Pork +0), D1k (1 —pook —
2Po1k — Ok ), P2k (Pook + Pork ), P2k (1 — Pook — P11k), D3k (Pook +
Dok + 0k), D3k (1 — Pook — Dotk — Ok), Pak) -

Step 3. Based on the bth bootstrap sample (b =1,...,B),

ibl), e ,tq(f})( of statistics

we calculate the observed values t
Tr,...,Trx(r=1,s,w). Let wp = maxp—1, .,

Step 4. The adjusted p-value is calculated by prr =
B

L5 > [tk =1, K).
b=1

§tep 5. Reject global null hypothesis Hy : 61 =y =+ =
0 = 7o if p =ming—1 . xPrr < a. In particular, one rejects
the hypothesis Hyg : 0 = 79 if prr < a, where r =1, s, w.

4. SIMULATION STUDIES

In this section, we investigate the finite sample perfor-
mance of the proposed methods. Specifically, we examine
the type I error control and power in a variety of settings
via Monte Carlo simulations. First, we generate 10,000 sam-
ples {Ng, myg, my, Myyr} from the multinomial distribu-
tion Multinomialg(Nk; d1x Pook; P1k Poiks Pk Proks D1k P11k,

G2 (Pook +Do1k)s P2k (D1ok+D11k), @38 (Pook+P10k), O3k (Po1k+
D11k), Par) in stratum k (k = 1,...,K) to calculate the

empirical type I error rate and the empirical power. We
generate 5,000 bootstrap samples. In this simulation, we
consider K = 2. Our interest is to test d; = d2, where
0k = plok — Poik, k = 1,2 as in Table 2.

Denote marginal probabilities po+x = pook + Dok, P1+k =
Piok + Piik,P+ok = DPook + Piok, and piyix = Ppoir +
pi11k, k = 1,2. To induce dependence among entries in
the contingency table, we define the correlation coeffi-
cient pr = (Pook — Po+kD+ok)/ (Pot+kD1+kP+okP+1k) % b =
1,2 (Choi and Stablein, 1982). Parameter configurations
are as follows. (¢11, ¢)21, q25317 ¢41)T = (07, 0.1, 0.1, O.l)T,
(12, P2a, P32, da2)" = (0.5,0.1,0.1,0.3)T, por1 = 0.4,0.6,
Po+2 = 03,05,07, pP1 = P2 = 01,03,05, N = Ny =
30,50 and 100 for the balanced design and (Np, Na) =
(30,50) and (50, 100) for the unbalanced design.

Empirical type I error rates are summarized in Table 4-
5, 8-9, and empirical powers are summarized in Table 6-7,
10-11, where 6; = 0.1 and do = 0.3. Statistical significance
level is set to be 0.05.

We summarize the main findings from the simulations as
follows.

(i) The bootstrap re-sampling test procedure demon-

strates robust behavior and outperforms the asymp-

totic test procedure (see, e.g., Table 4-5) in the sense

that all the estimated type I error rates for the boot-

strap re-sampling test procedure are close to the nom-

inal level a = 0.05 under various settings.

The MaxT and MinP procedures usually outperform

the Bonferroni procedure regardless of the test statis-

tics.

The empirical power increases as p increases.

From Table 6-7 and Table 10-11, we can see that as the

proportion of the missing data increases, the empirical

power decreases.

The Wald-type statistics on the basis of the Bonferroni

procedure are liberal regardless of sample size.

The empirical powers for the Wald-type statistics with

the Bonferroni procedure are greater than those with

the single-step MaxT procedure and the single-step

MinP procedure. Yet the Wald-type statistics have in-

flated type I error rates.

(vii) The score statistic is pretty robust in all settings. The
type I error rates are close to the nominal level and the
powers are reasonably high.
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Table 4. Empirical type | error rates for testing hypothesis Hy : 61 = d2 based on 10000 trials, Ny = N, = 30, K =2 at

a=5%

(61, b2, b, b4) Dos Dors p Asymptotic test res]j;(;tlsi.;?i)est
T Ts Ty Tt Tos Tow
(0.7,0.1,0.1,0.1) 04 0.3 0.1 4.40 3.36 4.56 5.30 4.80 5.30
0.3 4.44 3.42 4.20 5.20 5.50 5.30
0.5 2.78 2.30 3.08 5.70 5.20 5.40
0.5 0.1 4.40 3.50 4.92 5.30 4.80 5.30
0.3 4.42 2.84 3.92 5.20 5.50 5.30
0.5 3.42 2.28 2.92 5.70 5.20 5.40
0.7 0.1 4.68 3.60 4.72 5.30 4.80 5.30
0.3 4.08 2.96 4.26 5.20 5.50 5.30
0.5 3.64 2.12 2.88 5.70 5.20 5.40
0.6 0.3 0.1 4.58 3.84 5.10 5.60 5.60 5.80
0.3 4.66 3.74 5.18 5.90 5.10 5.40
0.5 4.46 2.80 3.88 4.90 5.10 5.10
0.5 0.1 5.30 3.62 4.84 5.60 5.60 5.80
0.3 4.54 3.22 4.22 5.90 5.10 5.40
0.5 3.72 2.54 3.70 4.90 5.10 5.10
0.7 0.1 5.14 3.80 5.22 5.60 5.60 5.80
0.3 4.30 3.16 4.62 5.90 5.10 5.40
0.5 3.52 2.40 3.42 4.90 5.10 5.10
(0.5,0.1,0.1,0.3) 0.4 0.3 0.1 4.26 3.22 6.00 5.10 5.20 5.20
0.3 3.34 2.36 4.86 5.00 5.40 4.90
0.5 2.82 1.70 3.90 5.03 5.50 5.10
0.5 0.1 3.88 3.38 6.00 5.10 5.20 5.20
0.3 3.48 2.68 5.00 5.00 5.40 4.90
0.5 2.66 1.34 3.52 5.03 5.50 5.10
0.7 0.1 3.68 3.30 5.90 5.10 5.20 5.20
0.3 3.54 2.86 5.50 5.00 5.40 4.90
0.5 3.12 1.42 3.60 5.03 5.50 5.10
0.6 0.3 0.1 4.52 3.62 6.88 4.60 5.33 5.43
0.3 3.42 2.78 5.68 4.47 5.13 5.53
0.5 3.04 1.82 3.80 4.47 5.27 5.30
0.5 0.1 4.38 3.38 6.82 4.60 5.33 5.43
0.3 4.08 2.92 5.48 4.47 5.13 5.53
0.5 2.80 2.18 4.10 4.47 5.27 5.30
0.7 0.1 4.44 3.34 6.60 4.60 5.33 5.43
0.3 3.78 2.24 5.54 4.47 5.13 5.53
0.5 2.96 2.00 4.26 4.47 5.27 5.30

5. A REAL DATA EXAMPLE by their effect, i.e., side effect and therapeutic effect group.

From Table 1, we observe ngg1 = 89, ng11 = 13, nig1 = 57,
In this section, we shall revisit the multi-center study in- ny1; = 65, moz1 = 26, M1y = 49, myor = 2, my11 = 0,
troduced in Section 1. In this dataset, patients are grouped mg,1 = 14, N1 = 315, ngo2 = 11, ngiz = 1, nig2 = 124,

360 H. Lt et al.



Table 5. Empirical type | error rates for testing hypothesis Hy : 61 = d2 based on 10000 trials, Ny = No = 50, K =2 at

a=5%

(61, b2, b3, b4) poin Dors p Asymptotic test resljr(r)l(;tlsi::gaiest
T T Tw Ty Ths Tow
(0.7,0.1,0.1,0.1) 0.4 0.3 0.1 4.46 3.70 4.66 5.30 5.70 5.00
0.3 4.76 3.82 4.90 5.40 5.40 5.00
0.5 4.26 3.66 4.16 5.60 4.30 4.60
0.5 0.1 4.72 4.48 5.06 5.30 5.70 5.00
0.3 3.88 4.32 5.22 5.40 5.40 5.00
0.5 4.36 3.36 3.74 5.60 4.30 4.60
0.7 0.1 4.44 3.64 4.52 5.30 5.20 5.00
0.3 4.22 3.64 4.36 5.40 5.40 5.00
0.5 4.10 3.26 3.78 5.60 4.30 4.60
0.6 0.3 0.1 4.96 4.12 5.76 5.40 5.10 5.50
0.3 4.84 3.96 5.06 4.10 5.10 4.90
0.5 4.32 3.32 4.44 4.30 4.50 4.70
0.5 0.1 4.46 4.18 5.14 5.40 5.10 5.50
0.3 4.60 4.08 5.06 4.10 5.10 4.90
0.5 4.28 3.26 3.76 4.30 4.50 4.70
0.7 0.1 4.72 4.52 5.96 5.40 5.10 5.50
0.3 5.06 4.14 5.08 4.10 5.10 4.90
0.5 4.04 3.42 3.98 4.30 4.50 4.70
(0.5,0.1,0.1,0.3) 0.4 0.3 0.1 4.30 4.32 7.24 4.47 4.40 4.27
0.3 4.74 4.12 6.78 4.63 4.50 4.27
0.5 3.62 2.78 4.78 5.10 4.57 4.30
0.5 0.1 4.76 4.04 6.54 4.47 4.40 4.27
0.3 4.14 3.60 6.22 4.63 4.50 4.27
0.5 3.78 2.82 5.04 5.10 4.57 4.30
0.7 0.1 4.06 4.20 6.88 4.47 4.40 4.27
0.3 3.58 3.68 6.64 4.63 4.50 4.27
0.5 3.98 2.98 5.34 5.10 4.57 4.30
0.6 0.3 0.1 4.30 3.68 7.22 5.10 5.40 5.60
0.3 5.04 4.32 7.02 4.90 4.90 5.30
0.5 3.40 2.70 5.08 4.23 4.50 4.80
0.5 0.1 4.36 4.02 6.86 5.10 5.40 5.60
0.3 4.30 3.72 6.86 4.90 4.90 5.30
0.5 4.32 3.22 5.98 4.23 4.50 4.80
0.7 0.1 5.22 4.08 7.38 5.10 5.40 5.60
0.3 4.24 3.32 6.26 4.90 4.90 5.30
0.5 3.70 3.00 6.00 4.23 4.50 4.80

niig = 887 mogo = 7, Migo = 687 mMyo2 = 0, my12 = 2, Section 2.2.1. We compute 51 = ]3101 —]3011 = 0.2147 and
Mey2 = 14, No = 315. We calculate Pook,Poik,Pior and d2 = Pro2 — Poiz = 0.5375. To investigate if there is a sta-
P11k, k = 1,2 through the EM algorithm as illustrated in tistical significant difference between the side effect group
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Table 6. Empirical power for testing Hy : 61 = d2, where 61 = 0.1,05 = 0.3, Ny = Ny =30 and K =2

Asymptotic test

Bootstrap resampling test

(¢1, P2, @3, Pa) Po+1 Po+2 p T T ™ sz . .
(0.7,0.1,0.1,0.1) 0.4 0.3 0.1 35.20 54.36 58.42 45.70 71.50 69.80
0.3 34.24 54.04 57.66 47.40 75.00 74.10
0.5 34.94 53.62 58.04 50.00 79.80 79.50
0.5 0.1 25.52 37.56 44.76 27.70 43.30 44.20
0.3 29.66 43.86 50.00 32.90 53.40 53.60
0.5 35.68 52.88 58.04 45.20 68.00 67.70
0.7 0.1 23.98 35.52 42.24 27.60 44.20 45.50
0.3 27.82 40.64 47.70 34.90 51.10 52.20
0.5 34.08 49.20 55.68 41.20 62.50 62.40
0.6 0.3 0.1 33.52 53.32 57.40 45.70 71.50 69.80
0.3 34.94 53.54 57.70 47.40 75.00 74.10
0.5 34.02 52.70 56.82 50.00 79.80 79.50
0.5 0.1 26.94 38.72 45.64 27.70 43.30 44.20
0.3 31.38 44.88 50.98 32.90 53.40 53.60
0.5 36.26 52.64 57.80 45.20 68.00 67.70
0.7 0.1 23.88 34.58 41.76 27.60 44.20 45.50
0.3 28.08 39.56 46.06 34.90 51.10 52.20
0.5 33.94 48.80 54.72 41.20 62.50 62.40
(0.5,0.1,0.1,0.3) 0.4 0.3 0.1 17.70 33.48 48.02 29.00 53.50 54.80
0.3 16.26 31.96 47.66 32.60 59.30 59.10
0.5 16.98 33.48 48.00 37.20 64.40 64.80
0.5 0.1 15.90 27.62 40.18 20.90 34.80 34.90
0.3 17.56 29.62 42.94 23.20 42.60 41.90
0.5 18.92 32.16 47.98 28.10 52.20 52.30
0.7 0.1 16.76 26.44 39.38 19.40 32.60 33.70
0.3 17.66 28.92 43.46 23.10 38.90 39.80
0.5 18.82 31.02 46.56 28.90 49.50 49.30
0.6 0.3 0.1 17.50 33.70 48.42 29.00 53.50 54.80
0.3 16.50 32.24 46.64 32.60 59.30 59.10
0.5 17.64 33.86 47.64 37.20 64.40 64.80
0.5 0.1 16.72 26.94 39.96 20.90 34.80 34.90
0.3 18.48 29.66 42.60 23.20 42.60 41.90
0.5 17.24 30.68 45.56 28.10 52.20 52.30
0.7 0.1 15.74 25.12 37.24 19.40 32.60 33.70
0.3 18.24 29.22 42.52 23.10 38.90 39.80
0.5 18.14 29.78 44.88 28.90 49.50 49.30
and therapeutic effect group, we test Hy : 61 = d2 vs overwhelming evidence to reject the null hypothesis that

Hy : 61 # 2. The proposed homogeneity testing proce-
dures, i.e., asymptotic method and bootstrap re-sampling
method are used. The results are summarized in Table 12.
We observe that though the observed test statistics span
a wide range, the resulting p-values are similar, providing
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risk differences between the side effect group and therapeu-
tic effect group are the same.

Although there are some differences between 61 and
52, they are very close to their mean 0.3761. To examine
whether there is a substantial difference in proportion be-



Table 7. Empirical power for testing Hy : §; = 2, where 61 = 0.1,0o = 0.3, Ny = Ny =50 and K = 2

Asymptotic test

Bootstrap resampling test

(¢1, P2, B3, Pa) Po+1 Po+2 P T ol Tw ) . T
(0.7,0.1,0.1,0.1) 0.4 0.3 0.1 74.26 86.98 86.52 80.90 93.30 92.60
0.3 72.50 86.44 86.06 82.50 94.00 93.60

0.5 72.74 86.18 86.14 81.70 94.50 94.40

0.5 0.1 44.96 57.68 63.32 44.00 60.60 60.90

0.3 55.02 67.86 71.96 56.00 73.10 73.50

0.5 72.84 84.54 84.78 76.10 88.70 86.70

0.7 0.1 41.74 55.30 61.50 43.50 57.10 58.70

0.3 51.62 64.00 69.20 54.80 67.20 68.30

0.5 67.22 79.74 81.80 70.90 83.60 83.00

0.6 0.3 0.1 73.40 86.32 86.16 80.90 93.30 92.60
0.3 73.30 85.74 85.54 82.50 94.00 93.60

0.5 72.98 85.88 85.64 81.70 94.50 94.40

0.5 0.1 46.48 59.12 64.66 44.00 60.60 60.90

0.3 55.36 68.26 72.30 56.00 73.10 73.50

0.5 74.14 85.34 85.66 76.10 88.70 86.70

0.7 0.1 42.92 55.24 61.46 43.50 57.10 58.70

0.3 52.28 65.26 70.46 54.80 67.20 68.30

0.5 67.68 79.68 81.48 70.90 83.60 83.00

(0.5,0.1,0.1,0.3) 0.4 0.3 0.1 50.02 68.10 77.38 61.50 81.30 81.80
0.3 50.24 68.26 76.62 63.50 83.80 84.90

0.5 50.72 69.82 78.54 66.50 87.50 88.60

0.5 0.1 34.24 46.68 59.78 35.70 51.10 51.90

0.3 40.18 54.34 66.66 43.60 59.80 60.80

0.5 49.84 65.16 74.92 56.00 74.10 74.30

0.7 0.1 32.60 44.18 57.14 32.20 49.30 49.60

0.3 38.56 50.08 63.20 41.30 58.80 60.30

0.5 47.80 60.90 72.60 51.80 70.60 71.70

0.6 0.3 0.1 51.80 68.90 77.38 61.50 81.30 81.80
0.3 51.52 69.56 77.58 63.50 83.80 84.90

0.5 51.50 69.70 77.86 66.50 87.50 88.60

0.5 0.1 32.52 46.26 58.38 35.70 51.10 51.90

0.3 39.46 52.50 64.78 43.60 59.80 60.80

0.5 49.56 65.58 75.84 56.00 74.10 74.30

0.7 0.1 32.12 43.82 57.62 32.20 49.30 49.60

0.3 38.40 51.18 63.54 41.30 58.80 60.30

0.5 47.02 60.24 72.18 51.80 70.60 71.70

tween the first visit and the last visit, we consider testing
Hyo : 6, =0.3761 vs Hyy: 0, #0.3761 for k=1,2.

Testing results are summarized in Table 13, where test
statistics based on the likelihood ratio statistic, score statis-
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tic and Wald statistic are presented and p-values are
recorded in parentheses. Again, at significance level 0.05,
we have overwhelming evidence to reject Hyg : § = 0.3761
for £ = 1,2 and conclude that risk differences between the
first visit and the last visit are not the same for the side
effect group and therapeutic effect group.



Table 8. Empirical type | error for testing Hy : 61 = do = 0.1, where N1 = 30, Ny = 50 and K = 2

Bonferroni MaxT MinP
(#1, 62, 65, ) po po g Tk Tsk Twk Tix Tsk Twk Tix Tsk Twk
(0.7,0.1,0.1,0.1) 0.4 0.3 0.1 3.48 2.92 6.20 5.95 5.80 5.15 4.20 4.60 4.70
0.3 3.26 2.76 6.22 5.85 5.80 5.95 4.60 4.80 4.80
0.5 2.94 1.88 5.76 5.40 5.90 4.90 4.30 4.60 4.80
0.5 0.1 4.24 3.96 7.28 5.25 5.40 5.60 5.60 5.60 4.40
0.3 3.90 3.12 6.08 5.05 5.50 5.25 5.00 5.20 5.10
0.5 3.18 2.16 5.92 5.35 5.80 5.35 5.00 5.60 5.20
0.7 0.1 4.00 3.64 6.72 4.90 5.00 5.15 5.40 5.70 4.10
0.3 4.20 3.48 6.98 5.75 5.85 5.20 5.10 5.30 5.20
0.5 2.98 2.02 5.62 5.80 5.35 5.10 5.20 5.50 5.60
0.6 0.3 0.1 4.32 3.56 6.60 5.80 5.40 5.40 5.10 5.90 5.60
0.3 4.48 3.36 7.14 5.75 5.40 5.90 4.90 4.60 5.00
0.5 3.00 1.90 6.12 5.85 5.45 6.00 5.90 5.50 4.40
0.5 0.1 4.20 4.26 6.90 5.30 5.15 5.20 5.60 5.30 5.50
0.3 4.14 3.42 7.18 5.40 4.90 5.10 5.20 4.50 4.90
0.5 3.50 2.44 6.76 5.70 5.30 5.95 4.60 4.10 4.90
0.7 0.1 3.86 3.64 6.64 4.90 4.90 5.10 5.20 5.40 5.40
0.3 4.44 3.76 7.06 5.70 5.45 5.70 5.70 5.70 5.80
0.5 3.72 2.72 6.34 5.10 5.00 4.95 5.40 5.30 5.70
(0.5,0.1,0.1,0.3) 0.4 0.3 0.1 3.56 3.04 9.92 5.15 4.60 5.25 5.00 4.40 5.30
0.3 3.16 2.50 10.66 4.95 5.00 4.70 4.70 4.50 4.80
0.5 2.22 1.44 9.82 4.95 4.95 4.95 4.80 5.00 5.00
0.5 0.1 3.62 3.32 9.68 4.95 4.50 5.00 4.70 4.00 4.80
0.3 2.98 2.70 10.10 4.25 4.00 4.15 4.40 4.50 4.40
0.5 2.76 1.88 9.60 4.15 4.40 4.05 4.00 4.00 4.00
0.7 0.1 3.20 2.92 10.06 5.05 4.45 4.70 5.40 4.70 5.10
0.3 3.24 2.86 9.96 4.65 4.20 4.55 4.40 4.70 4.50
0.5 2.34 1.68 9.48 4.10 4.40 4.20 4.00 4.00 4.70
0.6 0.3 0.1 3.56 3.20 10.60 4.90 5.80 5.05 4.10 4.80 4.40
0.3 3.28 2.56 10.04 4.85 5.90 4.80 4.80 4.90 4.30
0.5 2.56 1.40 10.60 5.25 5.45 5.45 4.70 5.30 5.20
0.5 0.1 3.56 3.34 10.96 5.00 5.05 5.15 4.10 4.00 4.40
0.3 3.12 2.80 10.82 4.10 4.70 4.35 4.80 4.70 4.00
0.5 2.68 2.02 10.10 4.85 4.95 4.75 4.10 4.30 4.90
0.7 0.1 3.88 3.70 10.22 4.85 5.45 5.00 4.30 5.00 5.00
0.3 3.38 3.06 10.40 4.70 5.25 4.70 4.80 4.70 4.90
0.5 2.58 1.98 9.72 4.50 4.85 4.60 4.80 4.10 4.70

6. DISCUSSION

In this paper, we derive the joint distribution of the ob-
served counts in an 2 X 2 contingency table with fixed total
number of observations under missing at random assump-
tion and propose new methods to test the equality of risk
differences among multiple contingency tables. A post-hoc
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analysis is proposed to identify heterogeneous contingency
tables. Numerical results support the proposed theory and
the method is shown to be able to address practical prob-
lems of interest.

An important assumption is that data are missing at ran-
dom. For non-ignorable missing data, we are not able to
explicitly write down the joint distribution of the observed



Table 9. Empirical type | error for testing Hy : 61 = 6 = 0.1, where N1 = 50, No = 100 and K = 2

Bonferroni MaxT MinP
(91,62, 93, 64) powt pot P Tix Tsk Twk Tk Tste Twk Tik Tsk Twk
(0.7,0.1,0.1,0.1) 0.4 0.3 0.1 4.12 4.08 6.70 4.35 4.40 4.45 4.40 4.20 4.40
0.3 4.56 3.96 6.82 4.30 4.90 4.00 4.60 5.10 4.10
0.5 4.26 3.62 6.68 4.10 4.25 3.90 4.50 4.50 4.20
0.5 0.1 4.30 4.08 6.48 4.70 4.90 4.90 4.70 5.40 5.10
0.3 4.28 3.96 6.74 4.45 4.60 4.40 4.90 5.10 4.70
0.5 4.56 3.60 6.72 4.65 4.55 4.70 4.00 4.00 4.10
0.7 0.1 4.50 4.26 6.70 4.35 4.10 4.30 4.40 4.00 4.40
0.3 4.12 3.80 6.54 4.35 4.50 4.25 5.20 5.10 4.90
0.5 4.00 2.98 6.40 4.50 4.45 4.30 5.30 5.10 4.90
0.6 0.3 0.1 4.32 3.98 6.66 4.60 4.50 4.55 4.50 4.70 4.60
0.3 4.72 4.22 6.80 4.35 4.60 4.30 4.50 4.90 4.30
0.5 3.74 3.24 5.96 4.40 4.95 4.20 4.40 5.10 4.00
0.5 0.1 4.50 4.46 6.68 5.05 4.80 5.00 5.10 5.10 4.90
0.3 4.16 3.82 6.34 4.45 4.35 4.45 4.60 4.80 4.50
0.5 4.10 3.72 6.18 3.80 4.05 3.90 4.50 4.30 3.90
0.7 0.1 4.26 4.22 6.60 4.50 4.30 4.35 4.90 4.40 4.40
0.3 4.74 4.40 6.78 4.60 4.45 4.55 5.20 5.10 5.10
0.5 4.16 3.48 6.44 5.15 4.95 4.90 5.70 5.50 5.30
(0.5,0.1,0.1,0.3) 0.4 0.3 0.1 4.50 4.00 10.88 5.60 5.65 5.55 4.90 4.50 4.80
0.3 3.46 3.32 10.54 5.45 5.35 5.45 4.00 4.10 4.70
0.5 3.98 3.14 10.90 5.25 5.35 5.25 5.20 5.60 5.40
0.5 0.1 4.38 4.28 11.60 5.45 5.15 5.10 5.70 5.30 5.70
0.3 3.78 3.40 10.92 5.45 5.15 5.10 5.00 4.90 4.30
0.5 3.76 3.10 10.54 5.50 5.30 5.95 5.50 5.70 5.20
0.7 0.1 4.40 4.32 10.86 5.30 5.15 5.15 5.00 5.70 5.50
0.3 4.66 4.10 11.74 4.70 4.65 4.75 4.90 4.50 4.10
0.5 3.76 2.68 10.18 5.00 5.00 5.20 5.70 5.30 5.10
0.6 0.3 0.1 4.52 4.12 11.38 5.10 5.25 5.30 4.80 4.20 4.10
0.3 4.74 4.32 11.68 5.30 5.10 5.45 4.90 4.20 4.90
0.5 3.58 2.88 10.28 4.80 4.80 4.90 4.20 4.40 4.10
0.5 0.1 4.28 4.68 11.46 4.80 4.45 4.60 4.80 4.50 4.40
0.3 4.16 3.74 11.02 5.40 4.85 5.05 5.00 4.70 4.20
0.5 4.04 3.10 10.76 5.25 4.85 5.80 5.00 4.80 5.20
0.7 0.1 4.26 4.38 11.20 4.60 4.50 4.50 4.30 4.80 4.30
0.3 4.52 4.54 11.68 4.70 4.40 4.55 4.00 4.00 4.90
0.5 3.44 2.84 9.96 4.90 4.70 5.15 5.10 5.40 5.30

counts and consequently the asymptotic results would not
be valid. However, we conjecture that bootstrap resampling
method to calculate p-values remain valid for the global
test HO : 51 = 52 = ...
son Hyy :

= 0 and multiple compari-
0 = 10,k = 1,..., K. In practice, it is recom-
mended to use the bootstrap resampling method when sam-

ple size is small. In addition, bootstrap resampling method
also provides robust inference against various modeling as-
sumptions, including MAR.

Molenberghs et al. (1999) provided examples, in the con-

tingency table setting, where different non-ignorable miss-
ing models that produce the same fit to the observed data,
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Table 10. Empirical power for testing Hy : 01 = 05 = 0.1 vs Hy : 61 = 0.1,05 = 0.3, where Ny = 30, Ny = 50 and K = 2

Bonferroni MaxT MinP
(91,62, 65, 64) Povt o bow g Tix Tsk Tk Tk Tsk Tk Tk Tsk Tk
(0.7,0.1,0.1,0.1) 0.4 0.3 0.1 60.08 58.92 65.14 67.15 71.05 60.85 66.30 70.80 61.00
0.3 60.94 59.92 66.00 68.75 74.05 60.40 67.50 73.20 60.10
0.5 58.12 57.12 64.08 72.50 79.35 60.50 72.80 78.90 62.00
0.5 0.1 35.52 33.68 44.42 38.35 38.35 38.70 39.00 39.30 39.20
0.3 43.08 41.06 51.08 50.00 49.50 47.80 50.80 50.30 48.80
0.5 59.52 56.58 64.08 66.65 69.40 58.35 65.20 67.20 57.60
0.7 0.1 32.50 30.66 41.44 36.80 36.05 37.45 36.90 37.10 37.90
0.3 40.18 37.52 48.22 44.55 44.45 43.65 44.20 44.90 43.60
0.5 54.60 50.24 59.18 61.95 63.15 55.00 61.60 63.50 54.40
0.6 0.3 0.1 58.86 58.04 63.88 67.10 70.65 60.20 65.70 69.40 59.40
0.3 60.40 59.30 65.50 68.80 72.65 60.45 67.50 71.30 59.80
0.5 60.38 58.86 65.44 72.60 78.50 60.40 73.30 78.70 62.10
0.5 0.1 35.38 33.72 43.44 38.25 38.00 38.40 39.60 38.80 39.30
0.3 44.54 42.52 51.52 49.80 48.85 48.00 50.80 49.40 48.70
0.5 59.34 56.08 63.34 66.40 68.55 58.90 64.70 66.50 57.60
0.7 0.1 32.28 30.44 40.82 36.95 35.75 37.50 37.50 36.50 38.00
0.3 39.86 37.30 48.82 44.15 43.25 43.75 44.40 43.90 44.20
0.5 55.22 51.06 60.66 61.60 62.35 55.85 61.10 62.30 55.30
(0.5,0.1,0.1,0.3) 04 0.3 0.1 35.52 34.08 56.48 45.83 49.20 40.97 46.70 50.10 42.00
0.3 35.38 33.78 56.86 48.60 54.40 41.47 49.00 53.80 42.20
0.5 34.42 32.54 55.86 51.87 60.37 39.10 53.00 61.00 40.10
0.5 0.1 22.96 21.16 40.96 29.27 29.37 29.10 30.50 29.50 30.20
0.3 28.86 25.88 46.98 35.87 36.63 34.80 34.70 36.20 34.40
0.5 34.42 29.88 55.06 46.97 49.40 39.50 45.80 47.90 39.10
0.7 0.1 22.68 20.96 40.60 26.20 25.30 26.57 26.70 25.00 27.50
0.3 27.08 23.94 45.40 32.07 32.03 30.90 32.50 32.40 31.00
0.5 33.16 28.32 52.20 43.90 44.47 38.57 45.20 45.60 39.90
0.6 0.3 0.1 35.00 33.06 55.16 45.73 48.67 40.67 46.90 49.00 41.60
0.3 34.90 33.04 55.52 48.37 53.00 41.27 48.80 53.50 41.80
0.5 34.40 32.26 55.50 51.17 59.17 38.80 51.90 60.00 39.40
0.5 0.1 24.88 23.82 42.90 29.00 28.57 29.33 29.30 28.80 29.20
0.3 29.32 26.64 48.92 35.37 35.97 34.27 34.00 35.60 32.50
0.5 35.08 30.14 54.80 46.07 48.63 39.23 45.10 47.90 38.80
0.7 0.1 22.94 21.04 40.24 26.27 25.43 26.37 26.10 24.90 27.30
0.3 27.52 24.56 45.36 31.73 31.63 30.93 31.50 32.50 31.70
0.5 32.92 27.80 51.28 43.50 43.13 37.93 45.00 44.80 39.20

are different in their prediction of the unobserved counts.
This implies that such models cannot be examined using
data alone. Indeed, even if two models fit the observed data
equally well, one still needs to reflect on the plausibility
of the assumptions made as discussed in Molenberghs et
al. (1999). In this scenario, prior knowledge about some of
the parameters should be incorporated into data analysis.
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It is desirable to consider a range of plausible models in
the sensitivity analysis. Such an analysis might show that
some parameter estimates are very variable and no precise
conclusions can be reached from the range of models con-
sidered, whereas other parameter estimates may be shown
to be fairly stable. This certainly warrants additional devel-
opment but is beyond the scope of this paper.



Table 11. Empirical power for testing Hy : 01 = 05 = 0.1 vs Hy : 61 = 0.1,05 = 0.3, whereN; = 50, No = 100 and K = 2

(6 Bonferroni MaxT MinP
62, 65, 64) post bow2 P T Tk Twk Tix Tsk Twk Tix Tk Twk
(0.7,0.1,0.1,0.1) 0.4 0.3 0.1 96.98 97.48 96.72 97.15 97.95 95.10 96.80 97.60 95.20
0.3 97.62 97.96 97.64 97.40 98.25 94.85 97.00 98.00 94.90
0.5 97.76 98.18 97.62 98.85 99.15 95.40 98.90 99.10 95.00
0.5 0.1 70.12 69.36 76.18 72.45 72.40 72.55 71.50 72.10 71.30
0.3 81.94 81.50 85.32 84.20 85.05 83.45 84.20 85.40 83.00
0.5 96.52 96.72 96.06 96.90 97.50 95.10 96.20 97.20 94.10
0.7 0.1 65.14 64.12 71.40 66.85 66.05 67.15 68.00 67.10 68.70
0.3 76.26 75.08 81.28 79.20 79.20 78.85 79.90 79.20 79.30
0.5 93.38 92.56 94.24 93.55 94.10 91.25 93.20 94.00 91.00
0.6 0.3 0.1 97.16 97.80 97.02 97.30 97.75 95.00 97.00 97.50 95.20
0.3 97.28 97.78 97.26 97.40 98.15 95.00 97.20 97.80 95.10
0.5 96.96 97.34 96.88 98.70 99.05 95.35 99.00 99.00 95.10
0.5 0.1 69.92 69.00 76.04 72.70 71.80 72.50 71.60 71.10 71.40
0.3 82.26 81.78 86.26 84.35 85.10 83.80 83.80 84.80 83.50
0.5 97.06 97.24 96.64 96.95 97.40 95.15 96.10 97.10 94.00
0.7 0.1 66.50 65.74 72.84 67.25 65.75 67.15 68.80 66.60 68.70
0.3 76.84 75.36 81.62 79.30 79.10 78.85 80.10 79.30 79.50
0.5 93.14 92.66 93.68 93.60 94.55 91.65 93.60 94.90 91.70
(0.5,0.1,0.1,0.3) 0.4 0.3 0.1 87.50 88.44 93.60 90.05 91.95 85.85 90.70 92.70 87.30
0.3 88.28 88.64 93.56 90.45 92.75 85.15 91.60 93.40 86.80
0.5 88.26 88.68 93.92 92.25 95.00 84.10 92.00 94.80 83.80
0.5 0.1 54.10 52.64 70.58 57.80 57.35 57.30 57.10 56.00 56.70
0.3 66.42 64.94 80.42 68.85 68.85 67.55 68.10 67.80 66.40
0.5 85.50 85.04 91.46 88.05 89.15 83.40 87.90 88.90 83.20
0.7 0.1 49.38 48.14 66.46 52.50 50.35 52.45 52.20 50.50 53.00
0.3 60.62 57.80 76.44 63.55 63.00 62.55 63.60 62.20 62.50
0.5 79.96 77.52 88.34 82.45 83.10 78.55 82.30 83.20 77.90
0.6 0.3 0.1 88.30 88.52 93.86 89.90 91.05 85.00 90.80 92.00 86.60
0.3 87.94 88.46 93.86 90.15 92.25 84.60 91.30 93.00 86.50
0.5 87.58 87.92 92.82 92.20 94.70 84.30 92.00 94.10 83.70
0.5 0.1 54.60 53.02 70.90 57.65 56.80 56.85 56.50 54.90 55.70
0.3 64.70 63.92 79.00 69.20 68.80 67.65 68.40 68.00 66.70
0.5 85.62 85.14 91.44 87.85 89.15 83.45 87.90 88.90 83.60
0.7 0.1 50.38 48.92 67.32 51.45 49.65 51.55 51.20 50.20 51.50
0.3 61.12 59.40 75.92 63.00 62.45 62.15 62.70 61.90 61.90
0.5 80.26 77.56 88.34 82.55 83.00 79.15 82.40 83.20 78.20

Table 12. Three test statistics and corresponding bootstrap
p-values for testing Hy: 61 = 62 vs Hy: §1 # o

Table 13. Three test statistics and corresponding bootstrap

Test statistic Test statistic value  Bootstrap p-value

Likelihood ratio test 90.0464 < 0.0000001
Score test 115.6219 < 0.0000001
Wald test 51.1145 < 0.0000001

p-values
Tik Ts Tk
k=1 22.7484 —4.1134 —4.9511
(< 0.000001) (< 0.000001) (< 0.000001)
k=2 20.6479 4.3000 5.1826

(< 0.000001) (< 0.000001) (< 0.000001)
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