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A zero-and-one inflated Poisson model

and its application

WENCHEN LiU, YINCAI TANG®T, AND ANcHA XU*™T

To model count data with excess zeros and excess ones,
Melkersson and Olsson (1999) proposed a zero-and-one-
inflated Poisson (ZOIP) distribution. Zhang, Tian and Ng
(2016) studied the properties and likelihood-based inference
methods on ZOIP model. However, they only propose some
estimation methods for the ZOIP model. In this paper, the
maximum likelihood estimation (MLE) and Bayesian esti-
mation for this model are investigated and some properties
are derived. The reference prior and the Jeffreys prior are de-
rived for this model. It is further shown that they are second-
order matching priors and the posterior distributions based
on these priors are proper under a relatively mild condition.
And the zero-and-one-inflated Poisson regression model has
also been discussed. A simulation study based on proposed
sampling algorithm is conducted to assess the performance
of the proposed estimation for various sample sizes. Finally,
two real data sets are analyzed to illustrate the practicabil-
ity of the proposed method.

KEYWORDS AND PHRASES: Zero-and-one-inflated Pois-
son model, Objective Bayes, Reference prior, Metropolis-
Hastings algorithm.

1. INTRODUCTION

Count data with excess zeros arise frequently in vari-
ous fields when dealing with manufacturing defects (Lam-
bert [18]), patent applications (Crepon & Duguet [7]), road
safety (Miaou [21]), species abundance (Welsh et al. [27];
Faddy [9]), use of recreational facilities (Gurmu & Trivedi
[13]; Shonkwiler & Shaw [26]) and Legionellosis infection
(Xu et al. [29]), etc. Conventional models such as Poisson
or negative binomial distribution may not fit these data
well, and seriously underestimate the zero-count probabil-
ity, which is an important indicator (of production quality
in manufacturing for example). Various methods have been
developed to address this issue, in which zero-inflated Pos-
sion (ZIP) model proposed by Lambert [18] plays an impor-
tant part. For modeling complete female fertility Melkersson
and Rooth [20] proposed a zero-and-two-inflated count data
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model, which accounts for a relative excess of both zero and
two children. However, in many cases, count data may con-
tain excess zeros and ones simultaneously. For example, it is
most probable that in a shopping trip one does not buy or
just buy one item at a clothing store; one may be infected by
some virus for at most one time due to the generation of cor-
responding antibodies once after the infection. Melkersson
and Olsson [19] extended the zero-inflated Poisson distribu-
tion to a zero-and-one-inflated Poisson (ZOIP) distribution
to analyse the number of visits to a dentist in a year for
a sample of adult Swedes. The major goal of Melkersson
and Olsson [19] is to fit the dentist visiting data in Sweden.
They only considered the covariates with the parameter of
Poisson distribution. Zhang et al. [31] studied the proper-
ties and likelihood-based inference methods on ZOIP model.
They constructed five equivalent stochastic representations
without covariates for the ZOIP random variable and max-
imum likelihood estimates of parameters were obtained by
both the Fisher scoring and expectation-maximization algo-
rithms. At the end of their article, testing hypotheses under
large sample sizes are provided.

A random variable Y in a zero-and-one-inflated Possion
(ZOIP) model can be represented as ¥ = V(1 — B;) +
B (1 — Bs), where Bj is a Bernoulli random variable with
success probability pg, B2 is a Bernoulli random variable
with success probability p;, V' follows a Poisson distribu-
tion with rate parameter § and B;, By and V are mutually
independent. The relation between Y and (By, B2, V) is

(Y:0)<:>(V20731:0)U(BlZl,Bgzl)
(Y=1)& (V=1,B,=0)U(B, = 1,B; = 0)
Y =k) & (V=Fk B =0),k=2.3,...

(1)

Then the probability mass function of the nonnegative
integer-valued random variable Y is

pop1 + (1 —pg)e?, ifk=0,

Pr(Y =k ={ po(L=—p1)+(L—po)e? ifk=1,
k

(1—po) Le ?, if k> 2,

with 0 < pp < 1,0 < p; <1, and 8 > 0. We denote
this zero-and-one-inflated Poisson model as ZOIP (pg, p1, 6).
When py = 0, this model is a Poisson model. When p; =1,
po > 0, ZOIP becomes zero inflated Poisson model which is
also called a “with-zeros Poisson” model by Mullahy [23].
Broek [5] proposed a score test model to test whether a
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count variable was from a ZIP model or from a Poisson
model. Regression analysis based on this ZIP model has been
reported by Lambert [18], Lam et al. [16], Bae et al. [1],
Hasan and Sneddon [14], and Bassil et al. [2]. Regression
analysis with Bayesian techniques has been considered in
Ghosh et al. [11], Chen [6], Dagne [8], and Musio et al. [24].
Alternatively, we can develop the second form of the zero-
and-one inflated Poisson model by the following transforma-
tion of the first form. Denoted by gy and ¢; the probability
of Y being zero and one respectively, i.e.,
(3) { g0 = pop1 + (1 — po)e™? B
q1 = po(1—p1) + (1 —po)he®.

Then the probability mass function (2) becomes

qo0, if k= 07
(4) Pr(Y =k =< a. if k=1,
Lgo—ay 6% if > 9,

1—e=9—0e—¢ k! >

where q¢o > 0,q1 > 0,90 +q1 < 1, and 8 > 0. When ¢; =
%9, this model was called a “hurdle Poisson” model by
Mullahy [23] and King [15]. In this article, the Jeffreys and
reference priors are derived for the second form of the ZOIP
model which used the similar method used by Xu et al. [29]
and Xu and Tang [28]. The maximum likelihood estimation
and Bayesian estimation for zero-and-one-inflated Poisson
regression model are also discussed in our paper.

We have listed two forms or representations of the ZOIP
model, (2) and (4), in terms of (pg, p1,0) and (qo, q1,6) re-
spectively. In this article, the parameter estimation of the
second form of the ZOIP model is mainly studied as few
analyses have been reported based on this form. The re-
maining part of this article is organized as follows. In Sec-
tion 2, the maximum likelihood estimates (MLEs) of the
parameters are obtained and shown to be unique under a
mild condition. We focus our attention on the Bayesian es-
timation in Section 3. The reference prior and the Jeffreys
prior are derived and are shown to be second-order match-
ing priors when 6 is the parameter of interest. We derive
the closed forms of posterior distributions based on these
priors and prove that they are proper under a relatively
mild condition. The zero-and-one-inflated Poisson regres-
sion model is discussed in Section 4. A simulation study
is conducted in Section 5 to compare the performance of
MLE and Bayesian estimation. Finally, two real data sets
are analyzed in Section 6 to illustrate the practicability of
the proposed method. Our conclusions are presented in the
final section. The proofs of lemmas and theorems are given
in the appendix.

2. MAXIMUM LIKELIHOOD ESTIMATION

Given a random sample Y = (¥1,Ys,...,Y},) of size
n from the ZOIP model (4), the likelihood function of

340 W. Liu, Y. Tang, and A. Xu

(90, q1,0) is

()

—Sg—S
L (qo,q1,0|Y) oxq5°q* (1 —qo — qu)"

S
0 ef(’ﬂ*Sof

516
—S0—25 )
fe—0)" 70Tt

(1—ef—

whereS():So( )—ﬂ{ZY—O}Sl—Sl( )—ﬁ{l
Y; =148 = S(Y) = 3 y.5, Y. Here §X is defined to be
the number of elements of the set X.

Note that under model (4), the mean and variance of Y’
are given by

6 B =gt BT )
(7)  Var(Y) = q+H(l+9— %)
(e {585 0-)

According to the likelihood function (5), the maximum
likelihood estimates of ¢y and ¢; are

S,
8 Ai:—":()’l
(8) Gi =1

and the MLE of 6, 9, is the solution of the following equation:

9 S(e?—0-1)—(n—=Sy—51)0 (" —1) =0,

which can be solved numerically according to the Newton-
Raphson iterative algorithm. A sufficient condition for the
existence and uniqueness of 6 is given in the following the-

orem.

Theorem 2.1. If at least one observation is larger than
one, i.e., n — Sy —S1 > 0, then there is a unique solution of

0 for Equation (9).

Parameters pg and p; in the ZOIP model (2) can be easily
expressed by (go,q1,0). Based on the invariance property
for the maximum likelihood estimation and the one-to-one
transformation (3), we can obtain the MLEs of py and p; as
follows:

5 Gt @ — (L40)e?
’ —(1+0)e?
io — (1 — po)ed
5y = o= (L=po)e™”
Po

3. BAYESIAN ESTIMATION

In this section, we give the Jeffereys prior and two refer-
ence priors of model (4) under the Bayesian framework.



3.1 Fisher information matrix

In this section, we provide a detailed derivation of the
Fisher information matrix for the parameters (qo, g1, ). As-
suming that only one sample is observed, the corresponding
likelihood function is

Li(qo,q1,0|Y) o(qé{Y:O}q{{Yzl}
(1 —qo — C]1)1_I{Y:0}—I{Y:1}
Y —1{y=1}

(e — g — 1)I-HY=0}-1{y=1}"

which indicate that the information matrix of (qo, ¢1) and
is block diagonal. By calculation, we have

<821nL) 1—q1
—E 5 — ,
2q3 q0(1 —q0—q1)
_E (82 1nL> _ 1 ’
0q00q (1-q —aq1)
—E<821I;L>— 1—qo ,
g3 (1 —q —aq1)

—E <8281THQL) = (1 —qo — q1)k(9),

e??_02e% —2¢% 41

where k(6) = (o712
matrix of (qo, q1,6) for one observation is

. Thus the Fisher information

(10) Hi(q0.41.6) = (’}; ;) ,
where
1—q; 1
hy = <qo(1—%o—m) (1—1<1_0q—OQ1) )
(I—go—q1) q1(1—qo—q1)
and

hg = (1 —qo — ql)k(G)
3.2 Jeffreys prior
Lemma 3.1. & (9) is positive for § > 0.

Jeffreys prior (Jeffreys, 1961) is proportional to the
square root of the determinant of the Fisher information
matrix. Accordingly, we can get the Jeffreys prior for (qg, ¢1)
and 6

(11)

with 0 >0,0<¢gp <land0<q <1-—qp.

77(q0,q1,0) < g5 a7 K(0)/2,

3.3 Reference prior

Jeffreys prior has been successfully applied to one-
dimensional problems but can experience difficulties when
multi-dimensional ones are considered. As mentioned by
Berger, Bernado and Sun [4], “in multi-parameter models,

reference priors typically depend on the parameter or quan-
tity of interest, and it is well known that this is necessary
to produce objective posterior distributions with optimal
properties”. The reference prior can be obtained according
to the following algorithm, which was proposed by Berger
and Bernado [3].

Here we take two-group parameters for an example
to illustrate the algorithm of reference prior. Berger and
Bernado [3] indicated that the parameters in the model are
ordered in terms of importance in the inference. We assume
that X is a random variable with density function p(z|n),
where n = (11, 12) denotes an unknown two-group parame-
ter vector and 7 is the group parameter of interest. Denote
the dimension of 177 and m2 by n; and ny respectively. Let

9%log p(X In)]

H = H(’I’]) = _EX|71 |: 87]/87]

be the Fisher information matrix for p(X|n). Suppose H is
invertible and define § = S(n) = H~1(n). Let Ny = nq,
Ny = nq + no. Denote by S;(n) the upper left N; x N;
matrix of S(n), with Sa(n) = S(n), and H;(n) = Sj_l(n);
the matrix hj(n) is defined as the low right n; x n; corner
of Hj;(n). Then for two groups of parameters (Berger &
Bernardo [3]) the algorithm can be described as follows:

1. Choose a nested sequence of compact subsets of ©!,
such that U2, 0! = ©. ©(n1) = {n1 : (M1, n2) € O'},

Ol (nz) = {n2 : (n1,m2) € ©'}.
2. For each [, let

 |ha ()Y 11 (ny)(2)

l
To(n2|m) = :
’ f@l(nz) |ha(n)['/2dn2
3. Find
(12)
; mh(n2|m )exp{5 E' [log [h1(n)|In1]} et (n,) (M)
Wl(n): 171 )
Joronny €xP{ 5 E[log [ () [72] s
where
Elgtmlm) = [ gln) (malm)dna
el (n2)
and
1, zeQ
13 Tow =< '
(13) (=) {0, otherwise.

It is easy to check that {ﬂ'é—,j = 1,2} defines a proba-
bility distribution. Define the 2-group reference prior,
assuming it yields a proper posterior, by

()
00 = B )

where n* is some point in ©!, which is the first nested
compact set.

A zero-and-one inflated Poisson model and its application 341



The calculation of the 2-group reference prior is greatly sim-
plified under the condition

(14) |h1(m)| depends only on ;.

Lemma 3.2. If (14) holds, then

15 () = (1_1 %) Ioi ().

where the integral is over the range ©'(n;).

Here we use this lemma to obtain the reference prior when
(go,q1) is the parameter of interest.

Theorem 3.1. The reference prior when (qo,q1) or 6 is the
parameter of interest is given by

(16)  7r(go,q1,0) < g5 a7 (1 — g0 — 1)/ 2k(0) /2,
with>0,0<q¢g <1and0<q; <1-—¢qp.

A probability matching prior is a prior distribution which
describes the posterior confidence or credible regions with
exact or approximate frequent validity. Let 9, (a) denote
the posterior lower a-quantile of a parameter ¥ based on n
observations Y = (Y1, Y2,...,Y,). A prior 7 is called an ith
order matching prior for 9, if it satisfies

Py(¥ < Un(a)) = o+ O(n~"/?).
Here the left-hand side is the frequentist probability of Y’
satisfying ¢ < ¢, («) given 9.

Lemma 3.3. Suppose k;; be the (i,j) element of [H(n)] ™1,
where n = (n1,...,Mn,) and [H(n)] is the Fisher information
matriz of ;. If ;1 and (na,...,nx) are orthogonal (Cox &
Reid, 1987), then (n) is a second-order matching prior for

m iff m(n) satisfy
m(n) x ku(n)_l/gK(ng, ..

This Lemma comes from Peers [25].

Theorem 3.2. The Jeffreys prior (11) and the reference
prior (16) are second-order matching prior for 6.

777k)

Theorem 3.3. When 0 is the parameter of interest, the
reference prior for (6,po,p1) is given by

(17)

Tr(6,po, 1) o [popre’ + (1 — po)]
[po(1—p1)e’ + (1 —po)0]
(ef — 60— 1) k(6)'/2,

with 0 <py <1,0<p; <1, and § > 0.

—1/2

~1/2 _
/ (1—po)~?pg

Note that when pg and p; are the parameters of interest,
the condition of Theorem 1 in Yang [30] is not satisfied.
Then the reference prior for (pg, p1, ) can not be calculated
by this method.
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3.4 Posterior properties

The posterior distributions of (qo, ¢1,6) using the Jeffreys
prior and the reference prior are respectively

So—1 g§,-1 —So—
77(q0,q1,01Y) xqy° 7¢;" P (1 —qo — qu)" 505

95
(ee _ 9 _ 1)%—50—51

k2 (9),

and

’I’L—So—Sl—%

V) g 3T TE (1 — o —
Tr(90,q1,0|Y) xqy *q; *(1—qo—q1)

GS
(60 _ 0 _ 1)71750751 k (9)

N

Now we show the posterior distributions are proper under a
relatively mild condition.

Theorem 3.4. The posterior distribution of (qo, q1,0) using
either the Jeffreys prior or the reference prior is proper when
S > 2, and improper when S < 2.

Theorem 3.5. When 0 is the parameter of interest, the
posterior distribution of (0, po,p1) using the reference prior
is proper when S > 2, and improper when S < 2.

3.5 Posterior sampling

The marginal distributions of (g, q1) using the Jeffreys
prior and the reference prior are respectively

So—% 5;-3% e
(a0, 1Y) o g’ 2 atF (L= go — )",

and
So—1 g, -1 n—Sg—S;—1
mr(g0, 1Y) < qo° 2qy" *(1—qo — qu)" N
They are the Dirichlet distributions with shape parame-
ters (So+l,51+%,n—50—81+1) and (So+%,51+%,n—
So — S1 + 3) respectively. They can be easily sampled using
the rdirichlet(N, alpha) function in the R package gtools.
The marginal distribution of 6 using the Jeffreys prior
and the reference prior is identical. And the distribution is
6° 1
m(0Y) x Ca T k= (0).
The Bayesian inference of the ZOIP model (4) about 6 can
be performed using the Metropolis-Hastings sampling pro-
cedure below.

1. Set initial value for () > 0.
2. Fort=1,2,...,
(a) Set § =91,
(b) Propose a new value 8 from N(6,¢2) and set §' =
|6 |, where o is a tuning parameter.

(0 |Y)
7(@Y) *

(d) Set 6 = " with probability o and () = § with
the remaining probability.

(¢) Calculate loga = min(0, A) with A = log



From the posterior sample of (6, go, 1), the posterior sam-
ple of (6, po, p1) can be obtained though the transformation
(23).

4. ZERO-AND-ONE-INFLATED POISSON
REGRESSION MODEL

In this section we consider ZOIP model (4) with co-
variates. The covariates are usually linked to model pa-
rameters qo,q1 and 6. Denote go = (qo1,.-.,40n), g1 =
(q11,---,q1n) and O = (61,...,0,). Assume that the in-
dependent responses Y; are sampled from ZOIP(qo;, g1, 60;)
and the parameters 8 = (01,...,6,), go = (go1,---,q0n);
and g1 = (qi1,...,q1n) are linked to the covariates
Z = (Z]_, . .,Zn)T, WO = (wgl, oo ,wOn)T and W]_ =
(w11s .-+ swin)T in forms like

exp (wg;v0)
14exp (wgno);FCXp (wiiv1)’
L exXp (‘-"17;’)’1)
q1; = 1 T T 5
+exp r}wono)-s-exp (w1;71)
gi = exp (zi /6)7

where ~g, 71 and 3 are vectors of regression parameters;
Z1y...52n are the covariates of the same length as 3;
Wj1, .-+, Wjn are the covariates of the same length as ~;,
j = 0,1, and the first element of wg;,w1; and z; being 1
corresponding to the intercept. We denote this zero-and-
one-inflated Poisson regression model as ZOIP regression
model.

qoi =

(18)

4.1 Maximum likelihood estimation

Let Y = (1,Ys,...,Y,) be a sample from the ZOIP
regression model (18). The log-likelihood function under re-
gression case is

(19)

(Y0, 71, BIY) =D I{Y;=0}Ingoi + Y _I{Yi=1}Ingqy
=1 =1

+) I1{Yi>2}
=1

9}/1 93

In 1—qoi —qii 0;'e”
1—e % —fet Y

where qo;, g1; and 0; are given by (18). We use the Newton-
Raphson iteration algorithm to get the MLEs of ~g, 71 and
3. Firstly set the initial values of '7(()0), 'yio) and B(®). Then
given the the values of v, v and B® the (k + 1)-th
iteration of the Newton-Raphson iteration algorithm is

n -1
,770(k+1) :,770(’@) + Z q(()]:)(l _ qé’f))wmw&}

i=1

f (¥ =0} — ) o]

1

7

n -1
,?l(k-l-l) =1 (k) + Zqﬂ?)(l _ q£’§))w1iw};‘|

i=1
Z [(I {Yi=1} - qYZ)) wli} ;
i=1
and
ﬁ(k-‘,—l)
oM {3%(’)’0, V1 ﬂ|Y)} ! 9l(y0,71, BIY)
0pB0p" op o
where
n (k)
Ol(v0, 71, BlY) 6" (%" — 1)
00070 BY) S~y 50y v - St DT
S gy
and
826(70’ Y1 ﬁ|Y)
0BoB™
=Y I{v;>2}
i=1
20— g0 et _ 960 1] 4
X 0" ziz: .
@ e |

We continue this procedure until convergence.

4.2 Bayesian inference

In this paper, we choose normal prior for the Bayesian
inference. We assume that

B~ Ng(Bo,03I5) and ~; ~ Ny, (v0s,02,Ir,), (i = 0,1)
where Bo, Yoi, 0/23, O’?Yi are known constants. It is further as-
sumed that the parameters v, 1 and 8 are mutually inde-
pendent. And denote II(yo,~1,/3) as the joint prior of the
parameters vp,y1 and (3. The posterior distribution being
proper is easy to prove in that the function about (vo, 1, 3)
in the likelihood function is bounded.

For the regression case, the posterior distribution for
~Yo,v1 and B has a nonstandard density with a compli-
cated expression. MCMC method is used to sample from
the posterior distribution. In particular, the Gibbs sampling
method has been used to obtain a large number of random
variates from the posterior distribution. Any distributional
summary (such as mean, median or quantiles) of the poste-
rior distribution can then be approximated by their corre-
sponding sample analogue.

Let Y = (11,Ys,...,Y,) be a sample from the ZOIP
regression model (18). Then the posterior density of

(’707 Y1, /6) given Y is
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(20) 7(By 70,1 |Y) o< [[aor MY
=1
i)'

Y;!

1 —qoi — qui
1—e % — et

X H(IB7 Yo, '71)'

In order to implement the Gibbs sampling algo-
rithm, the full conditional distributions of 7[ye|y1,3, Y],
m[v1 |70, B, Y] and 7[B|v0, 1, Y] are needed. The full con-
ditional distributions of ~g, 1 and 3 are not standard dis-
tributions. It is easy to see that these conditional densities
are log-concave. So the adaptive rejection sampling(ARS)
(see Gilks and Wild [12]) can be used to sample ~p,
~v1 and B from their respective full conditional distribu-
tions.

Thus the Bayesian inference of the ZOIP regression model
(18) can be performed using the Gibbs sampling procedure
below.

1. Set initial values for vo(®,~1(© and 8.
2. Fort =1,2,..., perform the following iterative update.

(a) Sample 'y(()t) using ARS, given the sampled values

of 'yét_l), ,B(t_l) and Y.

(b) Sample 'ygt) using ARS, given the sampled values

of 'yét), ,8(“1) and Y.

(¢) Sample B using ARS, given the sampled values

of ’yét), ’ygt) and Y.

5. SIMULATION STUDY

In this section we will assess the performance of model
(4). The sample size was set to n = 20, 30, 50, and 100,
the value of gy was set to 0.15, 0.2, the value of ¢; was
set to 0.3, 0.4, the value of 6 was set to 3, 5, and 8, the
confidence level a was set to 95% and all simulations are
replicated for 10,000 times. When we do simulation, accord-
ing to ZOIP model (4), the sample of size n is reserved only
when n — Sy — S1 > 0, considering the existence of MLE of
0. Here the equal tail two-sided confidence intervals is used.
The comparison results for the root mean squared error and
the coverage probabilities are recorded in Tables 1 and 2. In
the tables, the subscript M represents the maximum likeli-
hood estimation. The subscripts J and R represent Bayesian
estimation with the Jeffreys prior and the reference prior re-
spectively.

For the point estimate of #, the MLE performs slightly
better than the two Bayesian estimates when 6 is small
but they are similar when 6 is large. For the point esti-
mates of qo and ¢; the MLE performs slightly worse than
the Bayesian estimates when n is small and the MLE and
Bayesian estimate performs similarly when n is large. For
the point estimates and interval estimates of ¢y and ¢
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the Jeffreys prior and the reference prior perform simi-
larly. For the interval estimates of ¢y and ¢; the coverage
probabilities based on the Bayesian estimates are generally
more accurate than that based on the MLE. As the sample
size increases, the accuracy of all the estimates increases,
and the accuracy differences among the estimates becomes
smaller.

To compare the performance between Bayesian estima-
tion and MLE when covariates are considered, a simulation
study was carried out. The sample size was set to n = 50,
and 100. Throughout, there are three covariates matrix (Z,
Wy, W1) and matrix generation method is the same. The
covariates matrix is the sum of a fixed matrix generated by
(—1,0,1) and a random matrix which comes from N(0,2).
And we standardized these matrix by column. Set the real
B = (1.5,-2), v0 = (1,—2) and v = (1,—1). For prior
distribution, we assume Bo = 400 = o1 = (0,0) and
o% = 030 = 031 = 1000. Each simulation is replicated
for 2,000 times. The simulation results are listed in Ta-
ble 3. As the sample size increases, RMSE of all the esti-
mates decreases, and the difference among them becomes
smaller. And the MLE is slightly better than Bayesian esti-
mate.

6. REAL DATA ANALYSIS

6.1 Singapore Legionnaires’ disease data

In this subsection, one example about Legionnaires’ dis-
ease in Singapore from the healthcare industry is presented
to illustrate our method and this data set was analyzed by
Xu et al. [29]. Legionellosis (Legionnaires’ disease and Pon-
tiac fever) is an acute respiratory infection caused by gram
negative, rod-shaped bacteria of the genus Legionella (Lam
et al. [17]). In Singapore, Legionnaires’ disease has been rec-
ognized as a potential public health threat. In order to make
relevant control polices, it is useful to know the distribution
of the counts of Legionellosis cases. For illustration, here we
apply our model in the study of the weekly Legionellosis
count data in the year 2005. The data were reported by
the Ministry of Health of Singapore. Xu et al. [29] derived
the Jeffreys prior and reference prior for the ZIP model and
presented the Bayesian fitted frequencies and compared with
likelihood method for both the ZIP and pure Poisson mod-
els. See Table 4 for their detailed results. The estimation
results of ZOIP model (4) is presented in Table 5. In these
tables, PE represents the point estimation and CI represents
the confidence interval.

Asisnoted by Xu et al. [29], the difference between the es-
timation accuracy of the ZIP models and the Poisson model
is not clear according to the fitted frequency distributions.
According to the fitted frequency shown in Table 4, the fre-
quency of one is underestimated overall in Xu et al. [29] (the
estimated value is nearly half of the observed frequency).
In our result, both the MLE and Bayes estimation for all
frequencies are closer to the observed values. Besides, the



Table 1. RMSE of parameter estimation for model (4)

0 q q1 n [2Y} 05 Or qoM qog qQoR qim qiJ QiR
3 0.15 0.3 20 0.6484 0.7611 0.7591 0.0798 0.0731 0.0726 0.1029 0.0917 0.0914
30 0.5013 0.5736 0.5649 0.0649 0.0680 0.0678 0.0836 0.0780 0.0806
50 0.3841 0.5431 0.5586 0.0502 0.0514 0.0494 0.0620 0.0633 0.0609
100 0.2861 0.4632 0.4522 0.0360 0.0349 0.0359 0.0452 0.0462 0.0457
0.4 20 0.6793 1.0253 0.9865 0.0777 0.0733 0.0749 0.1081 0.1005 0.0995
30 0.5754 0.7150 0.6821 0.0667 0.0623 0.0629 0.0879 0.0816 0.0867
50 0.4381 0.4719 0.5023 0.0495 0.0490 0.0513 0.0693 0.0670 0.0658
100 0.3047 0.4365 0.4535 0.0347 0.0350 0.0356 0.0497 0.0476 0.0489
0.2 0.3 20 0.6836 0.7600 0.7951 0.0915 0.0801 0.0831 0.1059 0.0916 0.0925
30 0.5665 0.6133 0.5894 0.0720 0.0668 0.0679 0.0802 0.0779 0.0776
50 0.4096 0.4326 0.4399 0.0580 0.0537 0.0525 0.0654 0.0633 0.0611
100 0.2873 0.4192 0.3972 0.0397 0.0395 0.0406 0.0457 0.0459 0.0467
0.4 20 0.6888 0.8132 0.8418 0.1013 0.0834 0.0849 0.1289 0.1014 0.1010
30 0.6179 0.7095 0.6939 0.0727 0.0919 0.0711 0.0900 0.0805 0.0853
50 0.4785 0.5046 0.5259 0.0577 0.0411 0.0393 0.0672 0.0480 0.0492
100 0.3283 0.4297 0.4401 0.0412 0.0393 0.0390 0.0486 0.0477 0.0482
5 0.15 0.3 20 0.7307 0.7811 0.7692 0.0787 0.0731 0.0764 0.0951 0.0888 0.0879
30 0.6021 0.6428 0.6210 0.0670 0.0674 0.0717 0.0841 0.0789 08044
50 0.4556  0.5308 0.5609 0.0508 0.0464 0.0478 0.0661 0.0624 0.0643
100 0.3280 0.4727 0.4576 0.0356 0.0360 0.0357 0.0484 0.0449 0.0454
0.4 20 0.8475 0.8321 0.8692 0.0795 0.0728 0.0760 0.1086 0.0968 0.1033
30 0.6784 0.6259 0.6376 0.0678 0.0620 0.0628 0.0900 0.0845 0.0874
50 0.4933 0.5414 0.5168 0.0501 0.0482 0.0512 0.0701 0.0693 0.0673
100 0.3572 0.4165 0.3901 0.0366 0.0336 0.0360 0.0493 0.0484 0.0478
0.2 0.3 20 0.7743 0.7931 0.8125 0.0868 0.0825 0.0852 0.1034 0.0930 0.0989
30 0.6448 0.6374 0.6548 0.0703 0.0664 0.0689 0.0818 0.0776 0.0807
50 0.4933 0.5250 0.4833 0.0571 0.0551 0.0556 0.0651 0.0635 0.0631
100 0.3418 0.4149 0.4305 0.0396 0.0400 0.0411 0.0456 0.0446 0.0437
0.4 20 0.8430 0.8655 0.8489 0.0838 0.0827 0.0873 0.1016 0.0998 0.1050
30 0.7411 0.7185 0.6812 0.0719 0.0714 0.0715 0.0903 0.0776 0.0807
50 0.5663 0.5887 0.5513 0.0571 0.0392 0.0393 0.0666 0.0478 0.0497
100 0.3711 0.4050 0.3876 0.0383 0.0372 0.0383 0.0496 0.0477 0.0456
8 0.15 0.3 20 0.8810 0.9192 0.8827 0.0785 0.0764 0.0771 0.1033 0.0953 0.0988
30 0.6966 0.6863 0.6671 0.0636 0.0678 0.0725 0.0809 0.0801 0.0768
50 0.5739 0.6219 0.6352 0.0506 0.0481 0.0485 0.0650 0.0578 0.0607
100 0.3867 0.4173 0.4409 0.0364 0.0351 0.0363 0.0460 0.0477 0.0447
0.4 20 1.0159 0.9315 1.0989 0.0815 0.0716 0.0765 0.1117 0.0998 0.1006
30 0.7900 0.7604 0.7740 0.0650 0.0615 0.0643 0.0909 0.0821 0.0864
50 0.6125 0.6268 0.6218 0.0492 0.0497 0.0506 0.0686 0.0548 0.0671
100 0.4206 0.4251 0.4375 0.0359 0.0346 0.0356 0.0489 0.0487 0.0494
0.2 0.3 20 0.9317 0.9363 0.9225 0.0887 0.0796 0.0793 0.1435 0.1035 0.0961
30 0.7697 0.7881 0.7606 0.0716 0.0693 0.0689 0.0825 0.0767 0.0811
50 0.5771 0.6419 0.6321 0.0551 0.0561 0.0575 0.0642 0.0621 0.0642
100 0.4114 0.4288 0.4566 0.0403 0.0398 0.0383 0.0447 0.0442 0.0445
0.4 20 1.0770 0.9655 1.0424 0.0869 0.0819 0.0821 0.1368 0.0984 0.1042
30 0.8436 0.8287 0.8322 0.0686 0.0663 0.0663 0.0878 0.0814 0.0810
50 0.6408 0.6278 0.6439 0.0570 0.0553 0.0560 0.0705 0.0663 0.0707
100 0.4529 0.4731 0.4793 0.0384 0.0383 0.0404 0.0480 0.0481 0.0494

estimation of parameter § by ZOIP is nearly twice the es-
timation by ZIP. And the results of AIC (Akaike Informa-
tion Criterion) is presented in Table 6. The AIC value of
our results is smaller than the value of ZIP model. The re-
sults of DIC (Deviance Information Criterion) and WAIC
(Watanabe-Akaike Information Criterion) are presented in
Table 7. The criterion used by Gelman et al. [10] of DIC,
WAIC1 and WAIC? is used in our article. The results show
that ZOIP model is more appropriate than ZIP model.

6.2 US Detroit accidental death data

In this section, one accidental data set from Detroit,
Michigan is used to demonstrate the zero-and-one-inflated
Poisson model introduced in the previous section. Acciden-
tal deaths have accounted for a large proportion of deaths
in the event of death. In order to make relevant control po-
lices, it is necesssary to know the distribution of the counts
of accidental deaths. The NMMAPS data which is available
in R (NMMAPSlite package) contains daily mortality, air
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Table 2. Coverage probabilities of confidence intervals for model (4)

0 q q1 n 2 07 Or QoM qoJ QoR Q1M qiJ qiR
3 0.15 0.3 20 0.9321 0.9285 0.9197 0.8212 0.9451 0.9373 0.8913 0.9465 0.9417
30 0.9392 0.9311 0.9291 09172 0.9243 0.9372 0.9483 0.9542 0.9444
50 0.9472 0.9453 0.9529 0.9422 0.9276 0.9401 0.9445 0.9322 0.9312
100 0.9479 0.9514 0.9538 0.9311 0.9513 0.9571 0.9486 0.9627 0.9584
0.4 20 0.9361 0.9012 0.8993 0.8643 0.9414 0.9392 0.9177 0.9377 0.9517
30 0.9270 0.9219 0.9287 0.9380 0.9202 0.9217 0.9439 0.9365 0.9313
50 0.9516 0.9330 0.9409 0.9470 0.9401 0.9443 0.9404 0.9466 0.9472
100 0.9488 0.9501 0.9528 0.9380 0.9475 0.9476 0.9455 0.9564 0.9486
0.2 0.3 20 0.9247 0.8723 0.8909 0.8384 0.9473 0.9455 0.9117 0.9443 0.9544
30 0.9215 0.9336 0.9358 0.9303 0.9292 0.9224 0.9323 0.9492 0.9523
50 0.9493 0.9410 0.9497 0.9253 0.9661 0.9381 0.9273 0.9592 0.9501
100 0.9495 0.9519 0.9483 0.9318 0.9462 0.9538 0.9524 0.9353 0.9464
0.4 30 0.9243 0.8871 0.8902 0.8427 0.9514 0.9600 0.9366 0.9247 0.9535
30 0.9372 0.9268 0.9205 0.9276 0.9206 0.9310 0.9215 0.9258 0.9483
50 0.9294 0.9337 0.9411 0.9395 0.9537 0.9526 0.9504 0.9594 0.9525
100 0.9495 0.9499 0.9520 0.9296 0.9461 0.9433 0.9503 0.9512 0.9546
5 0.15 0.3 20 0.9432  0.9480 0.9398 0.8164 0.9252 0.9280 0.9275 0.9437 0.9503
30 0.9394 0.9385 0.9317 0.9244 0.9192 0.9161 0.9493 0.9611 0.9453
50 0.9493 0.9411 0.9507 0.9338 0.9281 0.9424 0.9213 0.9356 0.9497
100 0.9410 0.9490 0.9513 0.9362 0.9512 0.9535 0.9383 0.9600 0.9489
0.4 20 0.9394 0.9319 0.9275 0.8235 0.9332 0.9370 0.9323 0.9185 0.9495
30 0.9420 0.9451 0.9489 0.9318 0.9172 0.9313 0.9353 0.9384 0.9445
50 0.9574 0.9406 0.9526 0.9387 0.9351 0.9491 0.9332 0.9573 0.9633
100 0.9457 0.9528 0.9428 0.9190 0.9515 0.9412 0.9418 0.9472 0.9470
0.2 0.3 20 0.9474 0.9377 0.9302 0.9363 0.9514 0.9555 0.9515 0.9515 0.9654
30 0.9363 0.9488 0.9473 0.9502 0.9132 0.9155 0.9643 0.9562 0.9522
50 0.9387 0.9513 0.9475 0.9410 0.9543 0.9532 0.9365 0.9231 0.9294
100 0.9431 0.9551 0.9576 0.9437 0.9581 0.9600 0.9472 0.9505 0.9487
0.4 20 0.9373 0.9208 0.9243 0.8528 0.9526 0.9552 0.9293 0.9296 0.9465
30 0.9343 0.9367 0.9326 0.9454 0.9430 0.9411 0.9341 0.9163 0.9384
50 0.9442 0.9399 0.9420 0.9452 0.9574 0.9442 0.9461 0.9471 0.9497
100  0.9585 0.9543 0.9608 0.9401 0.9688 0.9546 0.9506 0.9596 0.9542
8 0.15 0.3 20 0.9526  0.9405 0.9488 0.8228 0.9372 0.9494 0.9517 0.9378 0.9479
30 0.9591 0.9467 0.9509 0.9536 0.9265 0.9213 0.9536 0.9484 0.9673
50 0.9364 0.9548 0.9562 0.9404 0.9301 0.9302 0.9394 0.9273 0.9552
100 0.9547 0.9533 0.9496 0.9283 0.9516 0.9641 0.9560 0.9538 0.9371
0.4 20 0.9383 0.9378 0.9416 0.8139 0.9575 0.9513 0.9209 0.9295 0.9501
30 0.9522 0.9365 0.9451 0.9404 0.9142 0.9355 0.9275 0.9233 0.9310
50 0.9480 0.9479 0.9402 0.9484 0.9311 0.9431 0.9498 0.9493 0.9565
100 0.9561 0.9542 0.9504 0.9418 0.9586 0.9486 0.9495 0.9537 0.9592
0.2 0.3 20 0.9433 0.9415 0.9355 0.9223 0.9463 0.9523 0.9355 0.9471 0.9387
30 0.9452 0.9493 0.9447 0.9392 0.9395 0.9107 0.9581 0.9524 0.9363
50 0.9334 0.9464 0.9512 0.9411 0.9513 0.9537 0.9458 0.9387 0.9497
100 0.9462 0.9432 0.9498 0.9408 0.9662 0.9634 0.9603 0.9483 0.9622
0.4 20 0.9446 0.9183 0.9215 0.8825 0.9660 0.9637 0.9143 0.9245 0.9483
30 0.9545 0.9394 0.9418 0.9542 0.9221 0.9318 0.9391 0.9222 0.9454
50 0.9472 0.9432 0.9468 0.9353 0.9395 0.9485 0.9421 0.9568 0.9661
100 0.9495 0.9528 0.9513 0.9402 0.9467 0.9554 0.9478 0.9607 0.9542

pollution, and weather data originally assembled as part of
the National Morbidity, Mortality, and Air Pollution Study
(NMMAPS). The data have been updated and are available
for 108 United States cities for the years 1987-2000. Here
we apply our model in the study of the daily accidental
deaths data of Detroit in the year 1994 available from the
NMMAPS database. The original study examined 90 major
cities for the years 1987-1994, including Detroit. The fit-
ted frequency distributions based on the MLE of a Poisson
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model and zero-inflated Poisson model and Bayesian esti-
mation of Xu et al. (2014) are presented in Table 8 and the
MLE and Bayesian estimation results of ZOIP model (4) are
presented in Table 9.

According to the fitted frequency shown in Table 9, the
frequency of one is underestimated overall and the frequency
of two is overestimated by ZIP model (the estimated value
of two is nearly double of the true frequency). By ZOIP
models, both the MLE and Bayesian estimation for all fre-



Table 3. The point estimation comparision between MLE and Bayes

sample size  estimator 51 B2 Y11 Y12 Y1 Y21
Mean 1.4822 -1.9683 1.1284 -2.1071 1.2092 -1.2119
MLE Median 1.4903 -2.0125 1.0692 -2.0422 1.1156 -1.1940
RMSE 0.5462 0.5492 0.6793 0.9789 0.9003 1.2722
100
Mean  1.4834 -1.8274 0.9611 -1.8294 1.3606 -0.9079
Bayes Median  1.4847 -1.9253 0.9868 -1.8747 1.4349 -1.1560
RMSE 0.6036 0.7030 0.7705 1.2853 0.9103 1.1949
Mean  1.4867 -1.9700 0.9533 -2.0693 1.1540 -0.8603
MLE Median 1.5152 -1.9921 1.0977 -2.1176 1.2136 -1.2195
RMSE 0.5174 0.5239 0.5585 0.6580  0.5979  0.8738
200
Mean 1.4880 -1.9670 1.0288 -2.1297 1.1572 -1.2638
Bayes Median 1.4905 -2.0360 0.9661 -1.9004 1.1431 -1.0781
RMSE 0.6148 0.5069 0.6582 0.9266 0.9595 1.1045
Table 4. Fitted frequencies and estimation of 6 and qo in Xu et al. (2014), Legionellosis data

Frequency estimation
Count of legionellosis cases

0 1 2 3 4 Estimation of Estimation of qo
Observed frequency 36 23 3 0 1 PE 95% CI PE 95%CI
MLE(Poisson) 34 14 3 0 0 0.423 (0.246,0.600)
MLE(ZIP) 36 11 4 1 0 0.675 (0.160,1.190) 0.692 (0.567,0.818)
Bayess 35 11 4 1 0 0.725 (0.291,1.328) 0.682 (0.553,0.799)
Bayesr 36 11 4 1 0 0.725 (0.291,1.328) 0.689 (0.559,0.805)

Table 5. Fitted frequencies and estimation of qo, g1 and 0 using ZOIP model (4), Legionellosis data

Frequency estimation
Count of legionellosis cases

0 1 2 3 4 Estimation of 6 Estimation of ¢ Estimation of ¢1
Observed frequency 36 23 3 0 1 PE 95% CI PE 95%CI PE 95%CI
MLE(ZOIP) 36 23 3 1 0 1.229 (0.294,2.165) 0.571 (0.449,0.693) 0.365 (0.246,0.483)
Bayes.(ZOIP) 35 23 3 1 0  1.242  (0.366,2.168)  0.561  (0.441,0.680)  0.361  (0.249,0.480)
Bayesr(ZOIP) 36 23 3 1 0 1.242 (0.366,2.168) 0.566 (0.445,0.683) 0.365 (0.252,0.484)

Table 6. AIC comparison

AIC MLE
YAl 66.18
ZOIP  40.53

quencies are closer to the true values. And the results of
AIC is presented in Table 10. The AIC value of our results
is also smaller than the value of ZIP model. The results of
DIC and WAIC are presented in Table 11. The results show
that ZOIP model is more appropriate than ZIP model.

In this paper, the covariates of day of week, maximum
temperature, minimum temperature, mean relative humid-
ity, and the difference between mean temperature and dew
point temperature are considered. The covariate of day of
week equals —1 when the day is Saturday or Sunday and

Table 7. DIC, WAIC1 and WAIC2 comparison

ZIP Bayes Bayesr ZOIP Bayes;  Bayesr
DIC -92.658 -92.544 DIC -93.744 -93.528
WAIC1 1003.454  1002.881 WAIC1 987.142 984.356
WAIC2 1019.303 1014.649 | WAIC2 992.581  994.208

equals 1 when the day is from Monday to Friday. The reason
why the covariate of the difference between mean tempera-
ture and dew point temperature is considered is it is related
to the formation of fog. Here we set Z = W7 = Wh
(21, 22, 23, 24, 25). The covariates (z1, za, 23, 24, 25) Tep-
resent day of week, the difference between mean tempera-
ture and dew point temperature, mean relative humidity,
maximum temperature and minimum temperature respec-
tively. We assume Bg = Yoo = ~o1 = (0,0,0,0,0) and
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Table 8. Fitted frequencies and estimation of 6 and qqg in Xu, Xie and Goh(2014), accidental death data

Frequency estimation
Count of accidental deaths

0 1 2 3 4 5 6 7 Estimation of 0 Estimation of go
Observed frequency 181 122 28 25 5 2 1 1 PE 95% CI PE 95%Cl1
MLE(Poisson) 132 53 14 3 0 0 0 0 0.8110 (0,2.5760)
MLE(ZIP) 181 105 54 19 5 1 0 0 1.0402 (1.0236,1.0568) 0.4959 (0.4945,0.4972)
Bayesr 181 104 54 19 5 1 0 0 1.0416 (1.0094,1.0718) 0.4962 (0.4943,0.4974)
Bayesr 181 105 54 19 5 1 0 0 1.0397 (1.0098,1.0704) 0.4960 (0.4943,0.4976)

Table 9. Fitted frequencies and estimation of qo, q1 and 6 using ZOIP model (4), accidental death data

Frequency
estimation Count
of accidental deaths

0 1 2 3 4 5 6 7 Estimation of 6 Estimation of qo Estimation of ¢1

Observed frequency 181 122 28 25 5 2 1 1 PE 95% CI PE 95%ClI PE 95%C1
MLE(ZOIP) 181 122 31 19 8 3 1 0 1.8168 (1.4225,2.2111) 0.4959 (0.4446,0.5472) 0.3342 (0.2859,0.3826)
Bayes j(ZOIP) 181 122 31 19 9 3 1 0 1.8261 (1.3866,2.2957) 0.4948 (0.4441,0.5462) 0.3335 (0.2857,0.3829)
Bayesr(ZOIP) 181 122 31 19 8 3 1 0 1.8128 (1.3728,2.2659) 0.4954 (0.4457,0.5474) 0.3340 (0.2865,0.3828)

Table 10. AIC comparison Table 11. DIC, WAICI and WAIC2 comparison
AlIC MLE 71P Bayes;  Bayesr Z0OIP Bayes;  Bayesr
Z1P 918.52 DIC -83.599  -83.054 DIC -85.217  -86.342
ZOIP 913.65 WAIC1  951.773  953.098 | WAIC1 905.620  907.121
WAIC2 952.512 950.060 WAIC2 906.355 909.890
0[23 = J?m = U,le = 1000. The results of ZOIP regression

model is presented in Table 12. In this table, the subscript
M and B represent the maximum likelihood estimation and
Bayesian estimation respectively. The estimations of 81, B3
and (5 are negative which shows the day of Saturday and
Sunday, the lower mean relative humidity and the lower min-
imum temperature lead to the higher the accidental deaths
rate. And the estimation of 84 is positive which shows the
higher maximum temperature lead to the higher the acci-
dental deaths rate. The smaller the difference between mean
temperature and dew point temperature is easier to lead to
a fog, however the sign of the difference is not changeless.
Low humidity is more likely to trigger a fire. The signs of vg
and ~; are almost opposite of 3 except the variable of the
difference between mean temperature and dew point tem-
perature.

7. CONCLUSIONS

In this paper, we have listed two forms of zero-and-one-
inflated Poisson models. The Jeffreys prior and reference
priors of the second form are derived. Both of them are
shown to be second order matching priors and the posterior
distributions based on these priors are proper under a rel-
atively mild condition. The Bayesian method is compared
with MLE via Monte Carlo simulation. Simulation results
show that the Bayesian estimates perform slightly better
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when the sample size is small or moderate. The zero-and-
one-inflated Poisson regression model is also discussed. Two
real data sets are analyzed using both MLE and Bayesian
estimates. AIC, DIC and WAIC criterion show that ZOIP
model performs better than ZIP model (adopted by Xu et
al. [29]) in explaining the data.

APPENDIX: PROOFS OF LEMMAS AND
THEOREMS

Proof of Theorem 2.1. Let v (0) =
Se? —(n— 8 —Sy—51)0+S. Then,

(TL—S() —81)960 -

v (0) = (n—Sy—51)0e’ +(n—S—Sy—S1)e’
—(TL—S—SO—Sl),
0" (0) = (n — Sp — S1)0e? + (2n — S — 28, — 28;) €.

According to the definition of S and the condition that
n—Sp—S1 > 0, we have (2n— S —25; —25p) < 0. It imme-
diately follows that v”(f) > 0 when § > S+25:4250=2n ;4

n—So—Sl
v"(0) < 0 when § < 5+251£250=2n g, 4//(§) is decreasing on
(0 S+2514+2S0—2n
9,

n—So—=S1
e h ) and increasing on (%W,Jroo).
Additionally, it can be easily verified that v'(0) = 0 and
v'(400) > 0. Therefore there exists a; > 0 such that v'(6) <

0 when 0 € (0,a1), and v'(0) > 0, when 6 € (a1, +00). Now



Table 12. The parameter estimation of ZOIP regression model

ZOIPy  ZOIPg ZOIPy  ZOIPg ZOIPy  ZOIPg
B -3.6952  -4.1455 411 5.9440 6.4126 o1 3.9052 4.2338
Bo 1.4016 1.1055  7v12 2.6594 2.9803  y2 -1.7878  -1.2560
B3 -5.7981  -5.0282 13 7.2280 8.1645 723 3.3588 3.5141
Ba 4.1642 4.3041  ~vy14  -3.1861  -3.3418 24 -4.9368  -5.3248
Bs  -0.1988  -0.2267 15 2.8411 3.2901 o5 4.3301 3.6788

that we can obtain the trend of v (+) on (0, +00), and it can
be further shown that v(0) = 0 and v (4+00) > 0. With the
continuity of the function v (-), the result is derived that
there is only one solution for Equation (9).

Proof of Lemma 3.1. It is easy to see that the denominator
of k (0) is positive. Denoting the numerator by f (6), then
we only need to prove f(6) > 0.

Simple calculation yields

f'(6) = e?(2¢?

Let g(6) = 2¢? — 62 — 20 —2. Noting that g’ (§) > 0 for 6 > 0
and ¢’ (0) = 0, we have ¢’ (#) > 0 for # > 0, which combining
with ¢ (0) = 0 yields g (¢) > 0 for § > 0. Thus f'(9) > 0
for # > 0. Also it can be easily verified that f(0) = 0. So
f(8) >0 for & > 0 holds.

Proof of Lemma 3.2. It is clear that
E'[log |hy(n)||m1] = log |h1(n)|.

The result is immediate from (12). This lemma is a special
case of Lemma 2.1 in Berger and Bernado [3].

— 6% — 20 —2).

Proof of Theorem 3.1. Suppose that (qo,q1) are the pa-
rameters of interest while 6 is a nuisance parameter. Set
n = (qo,q1,9), m1 = (qo,q1) as the first group, and 1 = 0
as the second group. Then the corresponding Fisher infor-
mation matrix for (n;,7,) is

hy O
Hl(q[)aqlae) = (01 h2> 9

where hy and hg are given in (10). Further calculation yields
1 1-q1 1
/ / qudQI = 271-’
Vaoa (1 —qo — q1)
log(1—qo — q1)

1—q1
// Vaoqi (1 —qo — q1)

Let ©'(qo,q1,0) ={0 < qo < 1,0 < 1 < 1—qo,0 € [},20]},
I =1,2,.... Then {©'1 =1,2,...} is a nested sequence of
compact subsets such that Uf;l@l = 0O. It is easy to find
that |h1(n)| depends only on 1. It follows from Lemma 3.2
that,

qudql = —4m.

ler(n).

iy KO 1
() [ k(0)d0 27\/q0q(1—q0 — 1)

According to the algorithm above, the reference prior

Tr(N) x llim 7'(n). So we can obtain
— 00
1/2 (11)—1/216(9)1/27

- —1/2
ﬂ-R(Qanlae)O(qO q1 /(1—%—

with 0 >0,0< ¢ <1l,and 0< ¢ <1—qq.
If 6 is the parameter of interest, we set 71 = 6 and 12 =
(go,q1). Then the corresponding Fisher information matrix

for (ny,m,) is

h 0
H2(Q07Q179) = (02 h1> )

where hy and hy are the same as above, which are given in
(10). Choose the same nested sequence of compact subsets
of © as the above case. Then for each [ € N T,

1

my(n2lm) = Iei(m),
’ Am\/qoq1 (1 — qo — 1)
E'[log(ha(n)|m)] = log k(6) + 2
It immediately follows that
1 k(0)?
7Tl = Y] ( ) ey (77)
2\/ 01 (1 — @0 — @1) [+ k(0)do

Obviously, we can derive the same reference prior as in the
first case.

Proof of Theorem 3.2. Let

h1/2

k() ~1/? = (1—qo — q1)"/?k(0)"/>.

When Jeffreys prior is used, set n = (6, qo,q1) and let

2 71/2(

-1 —
K(q,q1) =05 %, 12,

1—qo—q1)

Then the Jeffreys prior (11) is a second-order matching prior
for . When the reference prior with 6 as the interesting
parameter is used, let

1/2 71/2( 1

K(q.q1) =qy "¢ ""(1—qo— q1)

Then, according to Lemma (3.3), the reference prior (16) is
a second-order matching prior for §. When ¢q is the param-
eter of interest ¢p and (g1, ) are not orthogonal. According
to Equation (32) given in Peers [25] or Equation (2.7) given
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in Mukerjee and Ghosh [22], it is easy to find that the Jef-
freys prior and reference prior are not second-order matching
prior when ¢ is the parameter of interest. When ¢; is the
parameter of interest, the result is similar to ¢q.

Proof of Theorem 3.3. According to Theorem 1 in Yang
[30], when @ is the parameter of interest, the reference prior
for (6, po, p1) can be calculated as follows,

8(95 q0, QI)
8(0ap0apl)

~1/2
)]

WR(gapoapl) :7TR(97QO7(]1)

= [pop1e? + (1 —po

[po(1 = p1)e? + (1 — po)6]
(1—po)~"2po (¥ — 0 — 1) k(0)"/2.

~1/2

Proof of Theorem 3.4. It is easy to prove that

bt So—3 Si—3 n—Sp—=S1
0< % ¢ *(1—q—q) dgodqy
0 0

< +00

and
1 rl—qo
So—1 g§,-1 _Sn—G, 1
0</ / a%° 2qy F(1—qo—q)" 5 " 2dgodg
o Jo

< +o0.
As we all know, ; lim i—:; = 0, for any given m € R. And it
—+o0

is easy to see that
05 e20 — 02¢% —2e% +1 1/2 o §S—3
e9—9—1( O(e? — 0 —1)2 ) N e?

(0 — +00).
Then we have

/+°° 03 e20 — 92¢% — 2¢% 41
| f(e? — 6 —1)2

1/2
) df < +o0.

Using Taylor expansion, we have e/ = 1+6+ % +0(6%)(0 —
0). There exists a sufficiently small neighborhood U™ (0) and
a positive number M such that any point  within the neigh-
borhood satisfies

5-3 s 20 p2,.0 _ 9.0 1/2
tQM Se@—09—1<e e(eiie—QiPH) <M67E
When S < 2,
! 6° e?0 —p%e? —2¢% +1 1/2
/0 e9—9—1< B —6—1)? ) 0= oo,
When S > 2,
! 0° 02 _ 920 — 960 1 1\/?
/0 e9—9—1( 0(e9—0—1)2+ ) 40 < oo

Combining the above results, we can find that the posterior
of (qo,q1,0) with either the Jeffreys or reference prior is
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proper when S > 2 and vice versa. This condition is weak
since it will be met if there exist at least one sample larger
than one.

Proof of Theorem 3.5. The likelihood functions of

(p()apla 0) is

L (po,p1,0]Y) o [pop1e’ + (1 — po)]
[po (1 —p1)e? + (1 —po)f]
X (1 — o)™~ %0751 gl

According to the likelihood function (22) and the reference
prior (21), when 6 is the parameter of interest, the posterior
distribution of (0, pg,p1) is

So

S1

(22)

_p1So—1/2
7r(0,p0,1]Y) = [pop1 + (1 — po)e ?]™" /

[po(1 —p1) + (1 — po)fe™?]
(1 —po)" =505 =1 2pg(e? — 0 — 1)
k(9)1/295e_(“_50_Sl+1)9.

—1/2

It suffices to prove that

o0 1 1
_p1So—1/2
/ //[pop1+(1—po)e 0%~
0 0 0

[po(1 —p1) + (1 — po)fe?]
(1—po) =505 2pg(e? — 0 — 1)
k(0)1/295 e~ (n=S0=514D0 g dp, df < oo.

—1/2

With the following transformation

gotq—(1+0)e”?

Do = - (1+0)e 7
23 _ 20—(1—po)e”
( ) P = 0 pOO )
0=0,

the above integrand becomes

o) 1 1—qo 1 1
So—5 Si—35 —S5—S8,—1
/ // 0@ ) P(l—qo—qu)t e
0 0 0

05
(ee _ 9 _ 1)”—80—51

The proof of this integrand is the same as Theorem 3.4.

k7 (0)dgodqrdf < oco.
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