
Statistics and Its Interface Volume 11 (2018) 327–337

Does an observed zero-total-event study contain
information for inference of odds ratio in
meta-analysis?∗
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This note is concerned with the contribution of an ob-
served zero-total-event study, defined to be a study which
observes zero events in both treatment and control arms, in
meta-analysis. It provides a comparison of two approaches,
namely the regular likelihood approach and the classical
conditional likelihood approach, from several perspectives.
This topic has long been debated, and it has received much
renewed interest recently, in part due to the divergent views
on the handling of zero-total-event studies in the high profile
publication Nissen and Wolski (2007). Following a careful
study of both approaches and an illustration of a numerical
example, we find that, when we assume the underlying pop-
ulation event rates are not zero, an observed zero-total-event
study actually contains information for inference on the pa-
rameters such as the common odds ratio in meta-analysis
and cannot be left out in our analysis. This is contrary to the
belief held by many statisticians that an observed zero-total-
event study does not contribute to meta-analysis because it
does not contain any information concerning the common
odds ratio. The latter belief is mainly formed based on con-
ditional likelihood arguments and/or that an observed zero-
total-event study alone cannot provide a meaningful confi-
dence interval for the odds ratio. Our finding should help
clarify a difficult question concerning how to deal with zero-
total-event studies in meta-analysis of rare event studies.

Keywords and phrases: Clinical trials, Conditional in-
ference, Likelihood, Meta-analysis, Rare event, Two-by-two
table, Zero-total-event study.

1. MOTIVATION AND INTRODUCTION

For a binomial experiment with an unknown event rate
π as the parameter of interest, observing a zero event out
of 1,000 trials provides a different inference about π than
observing a zero event out of 10 trials. Although the point
estimates of π are zero in both cases, the former case
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typically provides a lower upper confidence bound π (see,
for example, Hald, 1952, Sections 14.4 and 21.3) and hence
a stronger evidence showing that π is close to zero than
that from the latter case. However, when data consist of a
series of pairs of binomial variables arranged in two-by-two
tables, and one desires inference on certain parameters
comparing the event probabilities for the coupled binomial
observations, the appropriate method for using information
in tables with zero events is far from settled (see, e.g.,
Finkelstein and Levin, 2012).

In the analysis of two-by-two tables, a study is referred to
as a zero-total-event study if zero events are observed in both
the treatment and control experiments (c.f., Sweeting et al.,
2004; Bradburn et al., 2007). The parameter of interest in a
treatment-versus-control two-by-two table is often its asso-
ciated risk difference π1 − π0, risk ratio π1/π0 or odds ratio
{π1/(1−π1}/{π0/(1−π0)}. Here, π0 and π1 are the under-
lying population event rates in the treatment and control
group, respectively. As in the single binomial case, there
is some general agreement that the zero-total-event stud-
ies with different sample sizes provide different information
about the risk difference (measured by confidence bounds,
for instance), although the point estimates of the risk dif-
ference are all zero. Tian et al. (2009) provided a nice exact
inference procedure to harvest information from zero-total-
event studies to make inference for risk difference in a meta-
analysis. However, for other parameters such as risk ratio
and odds ratio, there are divergent views on what the correct
inference statement should be when zero-total-event stud-
ies are observed (cf., Finkelstein and Levin, 2012 and refer-
ence therein). In meta-analysis, in particular, the presence
of zero-total-event studies has long been considered a chal-
lenge, and how or whether these studies can be effectively
incorporated into meta-analysis has been hotly debated (see,
e.g., Cai et al., 2010; Finkelstein and Levin, 2012). This de-
bate has become even more heated in recent years, in part
fueled by the divergent views over the handling of rare event
studies in the high profile publication Nissen and Wolski
(2007). Many statisticians, scientists and policy makers have
all been actively investigating whether or not zero-total-
event studies should be included in meta-analysis. Some fa-
vor exclusion, claiming that a zero-total-event study does
not contain any information about the parameter common
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odds ratio. This policy is supported by the conditional like-
lihood formulation. Others argue for inclusion, even though
there are still no commonly-accepted approaches on how to
include the zero-total-event studies in meta-analyses. Both
views are hotly contested in the environment of clinical tri-
als in drug safety analysis, where zero-total-event studies
are common occurrences (cf. Finkelstein and Levin, 2012).
Throughout the note, the word “exclusion” does not re-
fer to physically removing the zero-total-event studies from
analysis, but to using methods which yield the same results
whether or not the zero–total-event studies are included in
the data set. Similarly, its antonym “inclusion” is used in
the same fashion.

There are two fundamental questions underlying this
debate. First, does a zero-total event study in the meta-
analysis setting, such as the one in Nissen and Wolski
(2007), indeed contain no information about the parameter
common odds ratio? If this is indeed the case, the debate
would be over. If, on the contrary, a zero-total-event study is
found to contain information about the common odds ratio,
a natural follow-up question would be how zero-total-event
studies can be effectively included in a meta-analysis. In
this note, under the common assumption that the underly-
ing true event rates are non-zero, we answer the first ques-
tion. An attempt to answer the second question using an
approach of combining confidence distributions and related
discussions can be found in Liu et al. (2014); Yang et al.
(2016). Specifically, we show in this note that the popular
conditional likelihood argument is not appropriate for an-
swering the first question, even though it provides a valid
(but conservative) inference for the common odds ratio. In
addition, by carefully studying the regular likelihood like-
lihood approach, we demonstrate that a zero-total-event
study in fact contains information even for the parameter
of common odds ratio under the common assumption that
the underlying true event rates are non-zero. Thus it should
be included in meta-analysis of two-by-two tables.

The rest of the article is arranged as follows. In Section 2,
we consider the standard setup of meta-analysis of two-by-
two tables where the underlying events rates are assumed
non-zero, and describe approaches and issues related to rare
event studies. In Section 3, we compare the regular and con-
ditional likelihood approaches, first using a simple example
of a special case, and then in general forms to highlight the
difference of the two approaches. The comparisons show that
zero-total event studies contain information about the com-
mon odds ratio. In Section 4, we present simulation studies
to provide further support for our conclusion. Section 5 con-
tains more discussions and remarks.

2. TWO-BY-TWO TABLES, COMMON
ODDS RATIO AND META-ANALYSIS OF

RARE EVENT STUDIES

Consider K independent studies with two arms, treat-
ment versus control: Xi ∼ Binomial(ni, π1i) and Yi ∼

Binomial(mi, π0i), for i = 1, . . . ,K, where both the event
rates are non-zero π1i > 0 and π0i > 0. Assume that we are
interested in the odds ratio θi = {π1i/(1 − π1i)}/{π0i/(1 −
π0i)}. Under the common odds ratio assumption, the θi’s are
assumed to be a constant θ across allK studies, although the
rates (π1i, π0i) may or may not be the same from one study
to another. The sum of total numbers of events in the i-th
study is denoted by Ti = Xi+Yi. This setup is the classical
common odds ratio fixed-effect setup, in which we allow the
(fixed) event rates to possibly vary from one study to an-
other (cf., e.g., Breslow, 1981; Cox, 1989; Nissen and Wolski,
2007; Finkelstein and Levin, 2012; Tian et al., 2009, among
others). Note that, by allowing the (fixed) event rates to
be different in different studies, this fixed-effects model as-
sumption is weaker than a random-effects model assumption
requiring the unknown event rates to be realizations from
a single distribution; see also, e.g., Clagget et al. (2014) for
such a discussion.

The sample collected under such a setting is often ex-
pressed in a sequence of two-by-two tables:

xi ni − xi ni

yi mi − yi mi

ti (ni +mi)− ti ni +mi

for i = 1, 2, . . . ,K,

(1)

where xi and yi are the observed numbers of events
in the treatment and control arms of the i-th study,
respectively, ti = xi + yi and {xi, yi, ti} are a sam-
ple realization of their random counterparts {Xi, Yi, Ti}.
Let X = {X1, X2, . . . , XK}, Y = {Y1, Y2, . . . , YK}
and T = {T1, T2, . . . , TK}, and their realizations
x = {x1, x2, . . . , xK}, y = {y1, y2, . . . , yK} and t =
{t1, t2, . . . , tK}, respectively. In rare event studies, the ob-
served xi, yi and ti are usually very small. Those studies
with ti = 0 (i.e., both xi = 0 and yi = 0) are referred to as
zero-total-event studies. Note that, when, xi = 0 or yi = 0
or both xi = yi = 0, the sample version of the odds ratio
θ̂i = {xi/(ni − xi)}/{yi/(mi − yi)} involves (1/0) or (0/0),
and thus is undefined.

There are two independent binomial random variables Xi

and Yi in the i-th two-by-two table. The likelihood function
of the i-th table is simply

L(xi,yi)(π1i, π0i)(2)

=

(
ni

xi

)(
mi

yi

)
πxi

1i (1− π1i)
ni−xiπyi

0i (1− π0i)
mi−yi .

The joint likelihood function across all K tables is

(3) L(x,y)(π1, π0) =

K∏
i=1

L(xi,yi)(π1i, π0i),

where π1 = (π11, . . . , π1K)T and π0 = (π01, . . . , π0K)T . Un-
der the common odds ratio assumption, (π1i, π0i) satisfy
a constraint {π1i/(1 − π1i)}/{π0i/(1 − π0i)} = θ. In this
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case, we can re-express the joint likelihood function and
the likelihood function in (2) and (3) as L(x,y)(θ, π0) and
L(xi,yi)(θ, π0i), respectively, with π1i in the right-hand side
of (2) being replaced by π1i = (θπ0i)/(1 − π0i + θπ0i). The
parameters π0 = (π01, . . . , π0K)T are considered as nuisance
parameters when we carry out meta-analysis inference on θ.

Sometimes, for example in Fisher exact tests, an infer-
ence is made conditional on the given marginal total Ti.
Conditional on Ti = ti, there is only one random variable
(cell) in the two-by-two table, and the conditional distribu-
tion of Xi given Ti = ti follows a noncentral hypergeometric
distribution:

Pθ(Xi = xi|Ti = ti)(4)

=

(
ni

xi

)(
mi

ti − xi

)
θxi

/ bi∑
v=ai

(
ni

v

)(
mi

ti − v

)
θv,

for ai ≤ xi ≤ bi, where ai = max(0, ti − mi) and bi =
min(ni, ti). This is also the conditional likelihood function
of the i-th two-by-two table

(5) L̃xi|ti(θ) = Pθ(Xi = xi|Ti = ti)

and the joint conditional likelihood function for all K tables
is

(6) L̃x|t(θ) =
K∏
i=1

L̃xi|ti(θ).

The conditional likelihood function involves only the param-
eter of interest θ and not nuisance parameters. This makes
the inference based on the conditional likelihood a much
easier task.

In the context of meta-analysis of two-by-two tables, one
makes inference on θ using information across all K tables.
Generally speaking, a meta-analysis combines the results
from multiple studies to reach an overall conclusion, and in
practice typically increases statistical accuracy or power of
inference. It has become a well-established and increasingly
important tool in medical research and other fields. Many
meta-analysis approaches have been developed and can be
applied to combine information from trials summarized by
two-by-two tables. They include the so-called model-based
methods (including both fixed and random effects mod-
els and also Bayesian hierarchical models), the combining
p-values methods, and methods developed specifically for
combining two-by-two tables such as the Mantel–Haenszel
and the Peto methods, among others. In this article, we are
specifically interested in the case of rare events where the
data in the two-by-two tables are sparse. When the data
are sparse, a single study is inadequate for drawing a reli-
able conclusion. But conclusions can often be strengthened
by using meta-analysis to synthesize findings from a num-
ber of similar studies. A challenging case, which happens
often in clinical studies concerning drug safety, is that a

non-negligible, sometimes even substantial, portion of the
studies are zero-total-event studies. In this case, the sample
odds ratio θ̂i = {xi/(ni − xi)}/{yi/(mi − yi)} is undefined
and the true parameter values of (π1i, π0i) are very close to
the boundary value 0 (although it is still a common assump-
tion that (π1i, π0i) are not equal to zero). For example, the
event rates for myocardial infarction in the Avandia studies
are around 0.5%, which is close but not equal to zero, and
as a result a number of studies are zero-total-event studies;
cf., Finkelstein and Levin (2012). The debate has been on
whether or not we should include these observed zero-total-
event studies in meta-analysis.

In the case of rare events with the true values of (π1i, π0i)
very close to the boundary value 0 but not equal to 0, meth-
ods based on large sample asymptotics generally do not ap-
ply. The reason is that, with both (π0i, π1i) not equal to
0, the probability of observing a zero-total-event study is 0
when ni → ∞ and mi → ∞. When a zero-total-event study
is observed, it is an indication that the sample sizes are not
large enough for this particular underlying set. Many con-
ventional approaches for two-by-two tables that have been
used in practice, including Mantel–Haenszel and Peto meth-
ods, either simply excluding zero-total-event studies from
analysis (e.g., Nissen and Wolski, 2007) or adding an ar-
bitrary number (often 0.5 or 0.1) to the zero cells (e.g.,
Diamond et al., 2007), are justified based on large sam-
ple asymptotics. Their practical results in meta-analysis
of two-by-two tables of rare events are mixed. Recently,
Cai et al. (2010) studied the performance of model based
meta-analysis approaches on two-by-two tables. But again
the methods rely on asymptotic justifications. Tian et al.
(2009) proposed an exact approach for meta-analysis of risk
difference by combining a sequence of confidence intervals.
Although the method by Tian et al. (2009) does not rely on
large sample asymptotics, it cannot handle the parameter of
odds ratio, because the sample version θ̂i is undefined unless
the zero-total-event studies are excluded a priori.

For the parameter odds ratio, conditional likelihood in-
ference approach has also been proposed for meta-analysis
of two-by-two tables, which is considered exact inference;
see, e.g., Cox (1989). In particular, one can make an in-
ference relying on the joint conditional likelihood function
L̃x|t(θ) defined in (6). Mehta et al. (1985) provided a com-
puting algorithm to perform exact inference based on the
joint conditional likelihood function (6). Davison (1988) pro-
vided a small sample approximation of the conditional like-
lihood based on saddlepoint approximations, which leads
to approximate inference with much less computing ef-
fort. Under the conditional inference framework, the con-
ditional likelihood function of a zero-total-event study is
L̃xi=0|ti=0(θ) ≡ 1, and thus the study does not contribute to
the inference of θ. This is perhaps the most prominent argu-
ment for excluding zero-total-event studies in meta-analysis,
because ultimately the zero-total-studies do not have impact
on the conditional likelihood function. An attractive feature
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of the conditional likelihood inference is that it does not de-
pend on nuisance parameters, which makes the analysis an
easier task.

However, in most clinical trials of safety studies such as
the case in Nissen and Wolski (2007), only the numbers of
treatments and controls (ni,mi) can be viewed as preset.
The sample realizations ti for the sums of the numbers of
events in both treatment and control arms are not fixed in
advance. In the next two sections (Sections 3 and 4), we use
simple numerical examples as well as comparisons of regular
and conditional likelihood functions in the general setting, to
show that (i) the argument based on conditional likelihood
functions, although valid in terms of ensuring the size of the
test (Lydersen et al., 2009), is conservative and thus suffers
loss of information and (ii) zero-total-event studies actually
contain information about the common odds ratio θ.

3. LIKELIHOOD VERSUS CONDITIONAL
LIKELIHOOD

3.1 A simple illustrative example

We begin with a simple example which shows that the
inferences based on the regular likelihood and the infer-
ence based on the conditional likelihood are very different in
meta-analyses of two-by-two tables. Note that, in the gen-
eral setup of two-by-two tables (1), we assume only that
the odds ratios are the same; the underlying binomial rates
(π0i, π1i) are not zero and they may or may not be the same
from one study to another. For simplicity, we further as-
sume in this simple example that the underlying event rates
(π0i, π1i) are also the same across the K studies, which is a
special case of the setup (1). This simple example suffices to
make our point without clouding the comparison with other
complications. The mathematical insight behind this simple
example can be generalized to the general situations.

Example 1 Suppose that we have a total of 40 individuals,
20 of them receive a treatment and the other 20 are the
controls. The event rate for the treatment is π1 and the
rate for the control is π0. The 40 individuals are randomly
assigned to 10 studies of sizes ni = 2 versus mi = 2. We
further assume that we observe a sample realization of three
two-by-two tables of type-A and seven tables of type-B as
shown below:

1 1 2
0 2 2
1 3 4

0 2 2
0 2 2
0 4 4

(7)

type-A type-B

A type-B table is a zero-total-event study. From (2), the
corresponding likelihood function of the type-A tables is
2π1(1−π1)(1−π0)

2 and the likelihood function of the type-
B tables is (1 − π1)

2(1 − π0)
2. Thus, the joint likelihood

function is

L
[split]
(x,y) (θ, π0) = 23π3

1(1− π1)
3(1− π0)

6(1− π1)
14(1− π0)

14

= 8π3
1(1− π1)

17(1− π0)
20,

(8)

where π1 = (θπ0)/(1 − π0 + θπ0). Note that the likelihood
function of the type-B zero-total-event study is (1−π0)

2(1−
π1)

2 = (1 − π0)
4/(1 − π0 + θπ0)

2, which is not a constant
and depends on both π0 and θ. Such studies contribute to
the inference on both θ and π0 when we use the regular
likelihood function.

Suppose now that we pool the 10 two-by-two tables into
a single table for all 40 individuals:

3 17 20
0 20 20
3 37 40

.(9)

The likelihood function corresponding to the pooled table is

(10) L
[whole]
(x,y) (θ, π0) = 1140π3

1(1− π1)
17(1− π0)

20,

which is the same as L
[split]
(x,y) (θ, π0) in (8), up to a constant.

Clearly, the inference based on these two versions of regu-
lar likelihood functions does not change, regardless whether
the data are pooled in one table or separated into several
independent tables. This is not surprising, since in this ex-
ample the 20 individual samples from either the control or
the treatment group are i.i.d. samples, and our inference
should not depend on how we split the overall table into sev-
eral small tables. In this case, regardless whether we present
the data in a single table or randomly separate them into
10 tables, the information contained in the data does not
change. This statement is backed up by the joint likelihood
functions of the full parameters (θ, π0) that are the same

L
[split]
(x,y) (θ, π0) ≡ L

[whole]
(x,y) (θ, π0), up to a constant.

Now, let us study the behavior of the conditional likeli-
hood inference, which turns out to be quite different. Based
on equation (4), the conditional likelihood function of the
type-A tables is log θ/(1 + log θ) and the conditional likeli-
hood function of the type-B tables is the constant 1. So the
joint conditional likelihood function of the 10-table sample
realization in (7) is

(11) L̃
[split]
x|t (θ) = θ3/(1 + θ)3.

But the joint conditional likelihood function of the pooled
table (9) is

(12) L̃
[whole]
x|t (θ) = θ3

/(
1 +

9

2
θ +

9

2
θ2 + θ3

)
.

Clearly, (11) and (12) are different. In addition, if we ignore
the seven zero-total-event studies of the type-B tables in (7)
and pool the three not-zero-total-event studies of the type-A
tables, we obtain a two-by-two table:
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3 3 6
0 6 6
3 9 12

.(13)

The conditional likelihood function of table (13) is

L̃
[whole.no.zero]
x|t (θ) = e3θ

/(
1 +

10

3
θ +

10

3
θ2 + θ3

)
.

These three conditional likelihood functions L̃
[split]
x|t (θ),

L̃
[whole]
x|t (θ) and L̃

[whole.no.zero]
x|t (θ) are all different. This is not

surprising, since these conditional likelihood functions de-
pend on their respective table margins.

In this special example of 20 i.i.d samples from
Bernoulli(π0) and 20 i.i.d samples from Bernoulli(π1), it
is desirable to reach the same inference conclusions regard-
less of whether we split them into separate tables or not.
The regular likelihood approaches support this statement
exactly. But, in comparison, the conditional likelihood ap-
proach would reach different conclusions depending on dif-
ferent splitting and table margins.

In a more general setup, the event rates (πi0, πi1) may
be different from one study to another (even though the

odds ratio are identical). In this case, L
[split]
(x,y) (θ, π0) and

L
[whole]
(x,y) (θ, π0) may be different. The appropriate inference

should be based on L
[split]
(x,y) (θ, π0) and it is not appropri-

ate to pool all 40 individual results into one single table

and use L
[whole]
(x,y) (θ, π0), since π10, . . . , πK0 do not share the

same value and pooling introduces bias. Note that the dif-

ference between L
[split]
(x,y) (θ, π0) and L

[whole]
(x,y) (θ, π0) in this case

is caused by the change of event rates (πi0, πi1) from one
table to another. This is not the same as the cause of the
three different results in the conditional likelihood inference
in the illustrative example discussed in this subsection – the
different realizations of the table margins ti. In the more
general setup with the event rates (πi0, πi1) being differ-
ent from one study to another, the different realizations of
the table margins ti still affect conditional likelihood infer-
ences, in addition to the change of event rates (πi0, πi1) of
different tables. In any case, it is not appropriate to use ei-

ther L̃
[whole]
x|t (θ) or L̃

[whole.no.zero]
x|t (θ). Although an inference

based on L̃
[split]
x|t (θ) still provides a valid inference (in terms

of ensuring the size of the test) as shown in Lydersen et al.

(2009), it is conservative and not as efficient as L
[split]
(x,y) (θ, π0).

This point will be further elaborated in the remainder of this
section and also the remainder of this paper.

3.2 A difference between the regular
likelihood function and the conditional
likelihood function

We now proceed in the general setup of the given design
in Section 2 to examine further the difference between the

joint regular likelihood function L(x,y)(θ, π0) in (3) and the

conditional likelihood function L̃(x|t)(θ) in (6). We use here
the strong likelihood principle, namely, all information from
the data relevant to the inference is contained in the regu-
lar likelihood function (cf., e.g., Berger and Wolpert 1988).
Keep in mind that both the underlying true event rates are
non-zero π1i > 0 and π0i > 0.

Since
∏K

i=1 P (Xi = xi, Ti = ti) =
∏K

i=1 P (Xi = xi|Ti =

ti)
∏K

i=1 P (Ti = ti), it follows immediately that

(14) L(x,y)(θ, π0) = L̃(x|t)(θ)Dt(θ, π0),

where the ratio difference of the regular and conditional like-
lihood functions L(x,y)(θ, π0)

/
L̃(x|t)(θ) is

Dt(θ, π0) =

K∏
i=1

P (Ti = ti)

=
∏

{i: ti �=0}
P (Ti = ti)

∏
{i: ti=0}

P (Ti = ti)

=
∏

{i: ti �=0}

ti∑
a=0

(
ni

a

)
πa
1i(1− π1i)

ni−a

×
(

mi

ti − a

)
πti−a
0i (1− π1i)

mi−ti+a

×
∏

{i: ti=0}
(1− π1i)

ni(1− π0i)
m
i .

In the special example studied in Section 3.1, the term

Dt(θ, π0) = L
[split]
(x,y) (θ, π0)

/
L̃
[split]
(x|t) (θ) =

{
(1 − π1)

2π0(1 −
π0)

1 + π1(1 − π1)
2(1 − π0)

2
}3{

(1 − π1)
2(1 − π0)

2
}7

=

(1−π1)
17(1−π0)

17
{
(1−π1)π0+π1(1−π0)

}3
. This term, as

a function of θ and π0, is plotted in Figure 1 (a). The plot
clearly shows that the ratio difference Dt(θ, π0) depends on
both π0 and θ. So, the conditional inference conditional on
the marginal total Ti, although simple for making inference
of the parameter of interest θ, typically is different than
that based on the regular likelihood function. Following the
strong likelihood principle that all information is contained
in the regular likelihood function, the difference would sug-
gest that the conditional likelihood approach can incur omis-
sion or distortion of information (even though such an omis-
sion or distortion could be minor in some situations).

Furthermore, the contribution of the total-zero-event
studies to the joint regular likelihood function is

C0(θ, π0) =
∏

{i: ti=0}
(1− π1i)

ni(1− π0i)
mi .

In the special example studied in Section 3.1, this term is
C0(θ, π0) = (1−π1)

14(1−π0)
14 and we plot it as a function

of π0 and θ in Figure 1(b). Again, C0(θ, π0) clearly depends
on both π0 and θ too. However, this part of information from

Does an observed zero-total-event study contain information for inference of odds ratio in meta-analysis? 331



Figure 1. Plots of (a) Dt(θ, π0) and (b) C0(θ, π0), as
functions of π0i and θ.

C0(θ, π0) is not utilized in the conditional likelihood infer-
ence for θ. In other words, the conditional inference may
distort or omit information about θ. Consequently, conclu-
sions reached under conditional likelihood inference where
the zero-total-event studies are ignored may suffer loss of
efficiency.

Finally, we examine Fisher information under the general
setting of two-by-two tables (1). The Fisher information ma-
trix is

In = −E

{
∂2

∂(θ, π0)T∂(θ, π0)
logL(x,y)(θ, π0)

}
.

We denote by the information matrix by the conditional
inference method given t = (t1, . . . , tK),

Ĩn(t) = −E

{
∂2

∂θ2
log L̃(x|t)(θ)

∣∣∣∣t
}
.

Based on (14) and a direct calculation, we can relate In(t)
to In:

In =

(
EĨn(t) 0

0 0

)

+
K∑
i=1

E

{
− ∂2

∂(θ, π0)T∂(θ, π0)
logP (Ti = ti)

}

≥
(
EĨn(t) 0

0 0

)

The (1, 1) element of In is
(15)

I(1,1)n = EĨn(t) +

K∑
i=1

E

{
− ∂2

∂θ2
logP (Ti = ti)

}
≥ EĨn(t),

and the strict inequality holds typically when π1i > 0 and
π0i > 0 for all i. Apparently, the information matrices Ĩn(t)
and In are different and, when average over all possible t

margins, I
(1,1)
n − Ĩn(t) is greater than zero.

In particular, the information difference I
(1,1)
n −Ĩn(t) con-

tributed by a single study is

ET

{
− ∂2

∂θ2
logP (T = t)

}
(16)

=
n+m∑
t=0

{
− ∂2

∂θ2
logDt(θ, π0)

}
·Dt(θ, π0).

To numerically evaluate this difference, we let ψ = 1− π0 +
θπ0 and write

Dt(θ, π0) =
πt
0(1− π0)

n+m−t

ψn

t∑
a=0

(
n

a

)(
m

t− a

)
θa.

Therefore

− ∂2

∂θ2
logDt(θ, π0) = −

∂2

∂θ2Dt(θ, π0)

Dt(θ, π0)
+

{
∂
∂θDt(θ, π0)

Dt(θ, π0)

}2

,

where

∂

∂θ
Dt(θ, π0)

=
πt
0(1− π0)

n+m−t

ψn

t∑
a=0

(
n

a

)(
m

t− a

)(
a− nπ0

ψ

)
θa−1

and

∂2

∂θ2
Dt(θ, π0) =

πt
0(1− π0)

n+m−t

ψn+2
×

t∑
a=0

(
n

a

)(
m

t− a

) {
(aψ − nπ0θ)

2 − aψ2 + nπ2
0θ

2
}
θa−2.

As an illustration, we set n = m = 2 in the setting of Ex-
ample 1 and examine the size of (16) when varying values of
θ and π0. The numerical result in Part I of Table 1 suggests
that for any given value of the odds ratio θ, the information
loss by the conditional inference is always positive, but it
tends to be less when the baseline probability π0 is getting
smaller. A similar pattern is observed in Part II of Table 1
where n = m = 100.
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Table 1. Part I. Numerical evaluation of the information difference (16) when n = m = 2

Odds ratio θ
π0 1/5 1/4 1/3 1/2 1 2 3 4 5
0.1 0.97 0.62 0.36 0.19 0.09 0.05 0.04 0.03 0.03
0.2 4.18 2.48 1.26 0.50 0.16 0.09 0.07 0.06 0.04
0.3 11.04 6.30 2.96 0.98 0.21 0.12 0.09 0.07 0.06
0.4 23.96 13.22 5.85 1.67 0.24 0.14 0.11 0.09 0.07
0.5 47.31 25.25 10.53 2.63 0.25 0.16 0.13 0.10 0.08

Part II. Numerical evaluation of the information difference (16) when n = m = 100

Odds ratio θ
π0 1/5 1/4 1/3 1/2 1 2 3 4 5

0.01 17.11 9.95 4.81 1.68 0.49 0.57 0.66 0.71 0.74
0.02 67.83 38.76 17.98 5.43 0.98 1.58 2.09 2.34 2.47
0.05 438.62 247.23 111.03 29.74 2.37 7.06 10.12 11.31 11.62
0.10 1900.53 1061.38 467.76 117.91 4.50 22.98 32.27 34.22 33.31
0.20 9095.37 5005.49 2149.83 508.91 8.00 72.67 92.35 88.84 79.61

3.3 Frequentist interpretations of regular
and conditional likelihood approaches

In this subsection, we use frequentist interpretations to
explain the regular and conditional likelihood approaches,
respectively. In these interpretations, we highlight the con-
ditions under which the regular and conditional likelihood
inference are developed. The comparison provides yet an-
other angle and an additional reason that the conditional
likelihood approach is different than the regular likelihood
approach. It highlights that the conditional likelihood ap-
proach is a valid but conservative method for the meta-
analysis considered in this article.

Consider two types of probability formulations, which we
refer to as the unconditional probability formulation if our
probability statements are based on random sample (X,Y);
and as the conditional probability formulation if our proba-
bility statements are based on the conditional distribution
of (X,Y) conditional on fixed (realized) margins T = t.
We interpret results from the regular and conditional like-
lihood approaches based on these two different probability
formulations.

• Regular likelihood approach under the uncon-
ditional probability formulation When we apply
the regular likelihood approach to two-by-two tables to
draw inference, say Statement S, our probability for-
mulation is based on random sample (X,Y). So it is
understood that this inference is done based on K in-
dependent Binomial distributions where only side mar-
gins (ni,mi) are preset. Moreover, using the frequentist
interpretation and the standard 95% confidence level as
an example, this inference procedure is interpreted as
if one repeats the experiment under the same Binomial
setting (with only fixed (ni,mi)’s), Statement S is cor-
rect 95% of the time.

• Conditional likelihood approach under the con-
ditional probability formulation When we apply

the conditional likelihood approach to two-by-two ta-
bles to draw inference, say Statement S′, our probabil-
ity formulation is based on the conditional distribution
of (X,Y) conditional on fixed (realized) margins T = t.
A strict interpretation of this conditional probability
formulation should follow the fact that our statement is
obtained conditioning on the observed (a specific set of)
margins ti, in addition to the preset margins (ni,mi).
Based on this fact and using the standard 95% confi-
dence level as an example, the frequentist interpretation
of the result from the conditional likelihood inference
procedure is then: if one repeats the experiment under
the exact same setting (including both the fixed specific
table margins ti and the margins (ni,mi)), Statement
S′ is correct 95% of the time.

• Conditional likelihood approach under the un-
conditional probability formulation For a hypoth-
esis testing problem, say with a null hypothesis H0,
Lydersen et al. (2009) showed that any conditional test
(developed assuming that both (ni,mi) and ti are fixed)
preserves test size for the setting of only fixing side
margins (ni,mi) but not the side margins of Ti,. The
justification is based on the following inequality:

(17)

P(Xi,Yi)(Reject H0|H0)

=
∑
ti

P(Xi,Yi)|Ti=ti(Reject H0|ti, H0)PTi(ti|H0)

≤
∑
ti

αPTi(ti|H0) = α
∑
ti

PTi(ti|H0) = α.

Here, P(Xi,Yi)( · |H0) is the joint probability statement
on (Xi, Yi), P(Xi,Yi)|Ti=ti( · |ti, H0) is the conditional
probability statement on (Xi, Yi) given Ti = ti and
PTi( · |H0) is the marginal probability statement on Ti,
assuming H0 is true and for each i. A similar statement
can be developed for confidence intervals, due to the
well-known duality between tests and confidence sets in
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which one can be derived from the other and vice-versa.
Thus, a conditional likelihood approach can also be jus-
tified under the general unconditional probability for-
mulation: if one repeats the experiment under the same
Binomial setting (with only fixed (ni,mi)’s), Statement
S′ is correct at least 95% of the time. Note that the
validity justification of conditional inference under the
unconditional probability formulation is based on in-
equality (17). The use of such an inequality spells out
exactly the conservative nature of a conditional infer-
ence. This message matches with what we have reached
by directly comparing the regular and conditional like-
lihood functions in the earlier sections. The same mes-
sage was also presented in the simulation studies by
Lydersen et al. (2009).

For a clinical trial, one typically presets the total sample
sizes ni and mi in treatment and control, but definitely not
the marginal total ti = xi + yi in any table. So for an ap-
proach to be valid under the typical meta-analysis setting
of clinical trials, it needs to be justified under the interpre-
tation of the unconditional probability formulation stated
above. Clearly, the underlying requirement in the regular
likelihood approach matches the typical clinical trial setup
and thus justifies the approach. On the other hand, the un-
derlying requirement in the conditional likelihood approach
does not match the typical setting of clinical trials, even
though it can be justified as a valid approach in the un-
conditional setting using inequality (17). Such reliance on
inequalities subsequently causes the conditional likelihood
approach to lose power. Again, we cannot rely on a con-
ditional likelihood statement to determine whether a zero-
total-event study contains any information about the com-
mon odds ratio θ or any other parameters.

4. SIMULATION STUDY

We conduct simulation studies to numerically examine
the impact of zero-total-event studies. In accordance with
the theoretical examinations in earlier sections, we consider
the setting of meta-analysis of independent two-by-two ta-
bles, assuming that each table (study) shares a common
odds ratio and its event rates are non-zero. We consider the
two-sided hypothesis testing problem H0 : θ = 1 versus
H1 : θ 	= 1 for the common odds ratio. We perform analy-
sis using the conditional likelihood method and also several
variants of likelihood ratio tests based on the regular likeli-
hood function.

Specifically, we compare analysis results obtained from
the following approaches:

1. The conditional likelihood approach. This approach con-
ditions on both the row totals (ni,mi) and the column
totals (ti, ni +m−ti) in each table (1). Given both the
row and column totals, the table layout solely relies on
Xi which follows the hypergeometric distribution (4).
Therefore, exact inference can be drawn from the exact

distribution of
∑K

i=1 Xi, conditional on all the marginal
totals of the 2 × 2 tables (Mehta, Patel, and Gray,
1985). We implement the analysis using SAS PROC
FREQ with specification of the COMOR option in
the EXACT statement. The computing of this exact
method is based on Vollset, Hirji, and Elashoff (1991).
In this approach, zero-total-event studies do not have
impact on the inference and are in effect excluded in
the meta-analysis.

2. The likelihood ratio test (LRT) approaches. The likeli-
hood ratio test statistic is

(18)

ZLR =2

{
max

(π1i,π0i, i=1,...,K)

K∑
i=1

logL(π1i, π0i)

−max
H0

K∑
i=1

logL(π1i, π0i)

}
,

where L(π1i, π0i) has the expression as shown in (2).
The calculation of the test statistic zLR involves K un-
known nuisance parameters π0i’s. In addition, the null
distribution of ZLR does not have a closed form. De-
pending on how we estimate the nuisance parameters
and how we simulate data under the null so as to render
the null distribution of ZLR, we consider the following
three variants of the LRT approach:

– The LRT-true-MC method uses the true values
of the nuisance parameters π0i for calculating the
test statistic zLR and also for simulating data un-
der the null to render the null distribution of ZLR

in (18). Specifically, under the null hypothesis
H0 : θ = 1 and with the true parameters π0i, we re-
peatedly simulate R = 10,000 sets of samples and
compute the corresponding ZLR values. The em-
pirical distribution of the R = 10,000 ZLR values
are used as an approximate to the null distribu-
tion of ZLR. Since the true values of parameters
are unknown, the method is applicable only in sim-
ulations. Nevertheless, it provides a reference for
our study.

– The LRT-beta-MC1 method uses a set of empirical
estimates of the nuisance parameters π0i for calcu-
lating the test statistic zLR but use the true values
of π0i for simulating data to render the null distri-
bution of ZLR. To obtain the empirical estimates,
we impose a working assumption that π0i follow
a Beta(β1, β2) distribution. The beta distribution
family is broad enough to capture or approximate
a wide range of distributions with support on the
interval [0, 1]; cf Appendix in Liu et al. (2014) for
details. The unknown parameters (β1, β2) are esti-
mated by maximizing the likelihood function cal-
culated under the model with the working assump-
tion. Since we use the true values of π0i for simu-
lating the null distribution of ZLR, this method is
only applicable in simulation studies.
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Figure 2. Comparison of power for testing the two-sided hypothesis H0 : θ = 1 versus H1 : θ 	= 1 for the common odds ratio
at the level α = 0.05. Included are the conditional likelihood approach and the three variants of the LRT approaches described

in Section 4. The results are obtained from analyzing 6 contingency tables with the event rates being
{0.1, 0.1, 0.05, 0.05, 0.01, 0.01} in the control arms. A dashed horizontal line at y = 0.05 is drawn for reference.

– The LRT-beta-MC2 method uses the empirical
estimates of the nuisance parameters π0i men-
tioned in the LRT-beta-MC1 method for calcu-
lating the test statistic zLR and also for simulat-
ing data to render the null distribution of ZLR.
Since it does not require knowledge of the true pa-
rameter values, this method can be implemented
in real data applications. To save computational
time, we use the Monte-Carlo method to simulate
R = 1,000 sets of samples to obtain the null dis-
tribution for ZLR.

For all the above three variants of the LRT approach,
zero-total-event studies contribute to the likelihood and
thus the test. The true values of (π0i, π1i) are posi-
tive by model assumption. To ensure that the empir-
ical estimates (π̂0i, π̂1i) are positive in methods LRT-
beta-MC1 and LRT-beta-MC2, a beta distribution is
imposed on π0i to serve as a catalyst to borrow infor-
mation from other studies to estimate the event rates
in zero-total-event studies. The numerical studies in
Liu et al. (2014) showed that the empirical estimates
perform much better than the simple sample mean es-
timates (xi/ni, yi/mi) (which result in (0,0) for zero-
total-event studies).

As the first part of our simulation study, we generate
K = 6 contingency tables (1). Each of the simulated K = 6
tables is a summary of two independent binomial trialsXi ∼
Binomial(ni, π1i) and Yi ∼ Binomial(mi, π0i), one for

treatment and the other for control. In the control arms, the
sample sizes are {25, 25, 30, 20, 30, 20} and the correspond-
ing event rates are {0.1, 0.1, 0.05, 0.05, 0.01, 0.01}. In the
treatment arms, the sample sizes are {25, 25, 20, 30, 30, 20}
and the corresponding event rates are determined by
logit(π1i) = log(ψ)+ logit(π0i) for a fixed odds ratio θ. This
simulation setting ensures low event rates across all the stud-
ies and a non-negligible probability of observing zero-total-
event studies. To understand the impact of zero-total-event
studies, we analyze the simulated 2×2 tables and make infer-
ence on the common odds ratio using the four approaches
described above. Specifically, over a range of θ values, we
compute the power of the four approaches for testing the
two-sided hypothesis H0 : θ = 1 versus H1 : θ 	= 1 at
the level α = 0.05. The results based on 1,000 simulation
replicates are summarized in Figure 2.

Figure 2 shows that the conditional likelihood approach
exhibits the lowest power among all the approaches under
comparison. It suggests that the conditional likelihood ap-
proach bears an appreciable power loss compared to the
three LRT approaches. Since the working assumption of the
Beta distribution of π0i is not met in our simulation setting,
the latter two LRT approaches may have already suffered
weakened inference power. Nevertheless, they both still have
shown more power than the conditional likelihood approach.
In comparison with the LRT-true-MC approaches where the
true values of the nuisance parameters are used, the power
loss of the conditional likelihood approach is considerable.
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We note that even though the LRT-true-MC approach is not
applicable in real data analysis, it provides an upper bound
of the power curve for any approach.

As the second part of our simulation study, we follow
the numerical studies in Tian et al. (2009) and Liu et al.
(2014) and mimic the setting of the Avandia data as exam-
ined by Nissen and Wolski (2007). Specifically, we generate
K = 48 contingency tables (1) with the sample sizes be-
ing the same as those in the Avandia data (see Table 3 in
Nissen and Wolski 2007). For each of the K = 48 tables
(studies), the event rate π0i in the control arm is gener-
ated from a uniform distribution U(0, 0.01), and the event
rate in the other arm is determined by the fixed odds ra-
tio θ. This simulation setting ensures low event rates across
all the studies and a non-negligible probability of observ-
ing zero-total-event studies. (Here, the true event rate π0i is
“exchangeable”; cf., e.g., Zhang et al., 2014.) The analysis
results are similar to those in Figure 2 (and thus omitted),
with only a change that the power of the conditional likeli-
hood approach is closer to that of the LRT-beta approaches.
This change is due to the increase of the study sample sizes
(ni,mi) and also the number of K = 48 studies in the co-
hort. The simulation result suggests that in the rare events
setting, even though ni’s and K are large, conditional infer-
ence still suffers loss of information.

5. CONCLUDING REMARKS

In this note, we are able to demonstrate that a zero-
total-event study contains information for the inference on
the parameters of the common odds ratio in meta-analysis
when the underlying true events rates in the study are not
zero. This is done by examining the difference between like-
lihood and conditional likelihood methods, the information
matrices, and through numerical examples. We have also
compared and contrasted the frequentist interpretation, as
well as conditions under which the regular likelihood and
conditional likelihood methods apply. The conditional like-
lihood method is derived under the assumption that the
observed margins totals ti are fixed (pre-specified), which
is different from the typical setup of clinical trial as dis-
cussed in Nissen and Wolski (2007). The conditional likeli-
hood method is appropriate for applications where the mar-
gins totals ti are also pre-specified. For the trials often used
in clinical studies where the margins totals ti are not pre-
specified, the validity of the conditional likelihood method
can only be justified as a conservative method that ensures
the correct testing size but with possible loss of power. This
finding is contrary to a common belief held by many statisti-
cians that was inappropriately justified by conditional like-
lihood arguments. We hope our finding here will help stop
perpetuating the debate on whether or not a zero-total-event
study contains information for meta-analysis.

The conclusion applies whenever we observe zero-total
event studies, regardless of whether or not the event rates
(π0i, π1i) are very small. The setting of interest, however,
is rare event studies, since there is a great chance to ob-

serve zero-total event studies in rare event studies but the
chance to observe such studies is small when (π0i, π1i) are
not small. Although it is not the focus of this note, the
question on how to effectively use a zero-total-event study
in meta-analysis for the common odds ratio is also very im-
portant. In our simulation studies, LRT-beta-MC2 is pro-
posed as a practical method to use the information, where
a working assumption on the event rates for control π0i is
imposed. In literature, there are also some attempts (e.g.,
Liu et al. (2014); Yang et al. (2016)). However, to fully ad-
dress this question, more research is needed. One may also
use a Bayesian approach or a random effects model (e.g.,
an exchangeable model) to study these questions concerning
zero-total-event studies. We can demonstrate that zero-total
event studies typically still contribute to the inference in the
Bayesian and analysis random effects model too. However,
the use of priors imposes an additional model assumption on
the problem and it “may raise more questions than they set-
tle” (cf., Finkelstein and Levin, 2012). The same statement
can be applied to a random-effects model too.
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