
Statistics and Its Interface Volume 11 (2018) 317–325

Interaction screening by partial correlation
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Interaction effects between predictors can play an impor-
tant role in improving prediction and model interpretation
for regression models. However, it is both statistically and
computationally challenging to discover informative inter-
actions for high dimensional data. Variable screening based
on marginal information is popular for identifying important
predictors, but it is mainly used for main-effect-only models.
In this paper, we study interaction screening for high dimen-
sional quadratic regression models. First, we show that the
direct generalization of main-effect screening to interaction
screening can be incorrect or inefficient, as it overlooks the
intrinsic relationship between main effects and interactions.
Next, we propose a main-effect-adjusted interaction screen-
ing procedure to select interactions while taking into account
main effects. This new unified framework can be employed
with multiple types of correlation measures, such as Pearson
correlation coefficients, nonparametric rank-based measures
including Spearman’s and Kendall’s correlation coefficients.
Efficient algorithms are developed for each correlation mea-
sure to make the screening procedure scalable to high di-
mensional data. Finally, we illustrate performance of the
new screening procedure by simulation studies and an ap-
plication to a retinopathy study.

AMS 2000 subject classifications: Primary 62H20,
62F07; secondary 62J05.
Keywords and phrases: High dimensional data, Interac-
tion effects, Marginal statistic, Quadratic regression, Rank
correlation, Variable screening.

1. INTRODUCTION

Interaction terms naturally appear in classical models for
experimental design and polynomial regression. In practice,
models containing interaction effects are more flexible and
powerful than main-effects-only models in capturing com-
plex data structures, as they can improve both prediction
accuracy and model interpretability. Recently, detecting in-
teraction effects for high dimensional data has received much
attention in the literature, partially due to its important ap-
plications in genetics; see [5, 17] for overviews. Interaction
selection is challenging for high dimensional data. To fa-
cilitate implementation, computationally less intensive pro-
cedures are generally preferable in practice. For example,
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two-stage approaches are popular choices ([20, 19]), mainly
due to their fast computation and effective dimension reduc-
tion. However, these procedures rely on hierarchical model
assumptions [8], which might be violated or are sometimes
hard to justify in real applications. Moreover, [1] pointed out
that it is often difficult to determine the thresholding rule
or the model size at the first stage, which is crucial to the
success of two-stage procedures. Another popular strategy is
to fit a joint model containing both main and interaction ef-
fects subject to penalty constraints; see [15, 21, 4, 1], among
others. However, these methods are typically computational
expensive or infeasible to analyze high dimensional data.

In this paper, we consider the problem of interaction
screening via marginal statistics. When the number of fea-
tures is large, one common strategy to screen out noise fea-
tures is to rank features based on their marginal statistics,
such as the marginal Pearson correlation coefficient between
each feature and the response variable. Marginal approaches
to main effects screening have gained much attention since
the seminal paper [7]. Other relevant works include but are
not limited to [22, 12, 13]. However, the problem of inter-
action screening for high dimensional data has been much
less studied. This work aims to fill the gap. One simple
and straightforward idea for interaction screening is to treat
main effects and interactions equally as separate features
and rank all the features based on their marginal statistics.
However, this naive method can be problematic in practice,
since it ignores the intrinsic relationship between main ef-
fects and interactions. In fact, we find out that it is usually
helpful to take into account parental main effects when eval-
uating the importance of interaction terms to the response.
This in turn suggests a new “marginal statistic” for inter-
action effects. Motivated by this, we propose a main-effect-
adjusted screening approach, called Interaction Screening by
Partial Correlation (ISPC), for ranking and screening inter-
action effects.

The proposed ISPC provides a general framework to en-
hance any standard correlation coefficient and make it suit-
able for assessing interaction effects. In the paper, we de-
velop the ISPC for three commonly used correlation mea-
sures, including Pearson correlation coefficient, Spearman’s,
and Kendall’s rank correlation coefficients. The advantage
of the proposed interaction screening method is twofold.
First, it is computationally scalable for big data sets with
many features. Although we need go over all the pairs, the
marginal statistic is easy and fast to calculate by using the
proposed algorithms. Its implementation never requires stor-

http://www.intlpress.com/SII/


ing the whole design matrix of interaction effects. Therefore,
the procedure contributes a convenient and effective tool for
high dimensional interaction screening. Second, by directly
screening interactions, the ISPC procedure does not require
parental main effects to be strong in order to detect impor-
tant interactions. Compared to two-stage methods reviewed
in [8], the ISPC approach does not rely on the hierarchical
model assumption and is more flexible. In particular, this
feature makes it superior to two-stage methods when the
signal carried by main effects is weak.

The rest of this paper is organized as follows. In Sec-
tion 2, we first consider the naive approach to interaction
screening and discuss its drawbacks. Then we propose a new
main-effect-adjusted interaction screening framework based
on a variety of correlation measures. In Sections 3 and 4,
we investigate the proposed screening procedures using nu-
merical studies. Section 5 contains final remarks. Technical
details are presented in the Appendix.

2. METHODS

2.1 Notations

Given data {(xi, yi)}ni=1, which are independent and iden-
tically distributed (IID) copies of the pair (X,Y ), where
X = (X1, ..., Xp)

� is a p-dimensional predictor vector and
Y is the response, we consider a linear model with two-way
interaction terms, or quadratic model, by assuming

Y = β0 + β1X1 + · · ·+ βpXp + γ11X
2
1 +

γ12X1X2 + · · ·+ γppX
2
p + ε.(1)

In model (1), β0, β = (β1, ..., βp)
�, γ = (γ11, γ12, ..., γpp)

�

are unknown parameters. The predictors {Xj}pj=1, {X2
j }

p
j=1,

and {XjXk}1≤j<k≤p are main effects, quadratic effects,
and two-way interaction effects, respectively. For conve-
nience, we call Xj and Xk the parents of XjXk. Let X =
(x1, · · · ,xn)

� and y = (y1, · · · , yn)� be the n × p design
matrix of main effects and the response vector, respectively.
Here we assume y is centered and X is standardized to
mean zero and variance one column-wisely. For any sub-
set A ⊂ {1, · · · , p}, XA is the submatrix of X with columns
indexed by A. In particular, Xj is the jth column vector

of X. Moreover, define X◦2 = X ◦ X as n × p(p+1)
2 matrix

consisting of all pairwise products of column vectors of X.
That is, X◦2 = (X1 ◦X1,X1 ◦X2, ...,Xp ◦Xp), where, for
column vectors, ◦ means entry-wise product. Denote by Z
the matrix obtained by standardizing X◦2 column-wisely.
We use �a� to denote the largest integer no greater than a.

2.2 Naive approach to interaction screening

In literature, a variety of screening techniques have been
recently developed, and the following is a brief review. To
start with, we first consider the Pearson correlation used
in sure independence screening (SIS) of [7]. Recall that y

is centered and Xj ’s are standardized by our convention.

So the marginal sample Pearson correlation ̂Corr(Y,Xj) is
proportional to ωj = X�

j y. Denote ω = X�y. The SIS
procedure screens variables by ranking and thresholding ω.
That is, a submodel

M̂λ = {j : |ωj | > λ}

is selected by SIS. The parameter λ can be chosen by the
order statistic |ω|(K) for a fixed model size K, (e.g., K =
�n/ logn�) or by other data-adaptive tuning criteria.

Similar to screening main effects, the goal of interaction
screening is to screen out unimportant interaction terms in
(1) while keeping important ones. A naive extension of the
SIS to interaction screening would be to screen interactions
based onΩ = (Z)�y. Note thatΩ is a p(p+1)/2 dimensional
vector with entries Ωjk = Z�

jky, 1 ≤ j ≤ k ≤ p, where Zjk

is a standardized vector from Xj ◦Xk. A direct interaction
screening (DIS) procedure selects a model

Îλ = {(j, k) : |Ωjk| > λ}.

Although the naive approach seems natural and intuitive,
it has some drawbacks. In particular, this DIS approach to-
tally ignores the intrinsic relationships between main effects
and interaction effects. In other words, when the effect of
XjXk is evaluated, the effects of its parents Xj and Xk are
not taken into account. As a result, the DIS tends to give
suboptimal screening results. For example, when the data
are skewed and Corr(Xj , XjXk) �= 0, the DIS is barely ef-
fective for interaction screening. To elaborate, consider the
following toy example.

A Motivating Example. Consider the model Y = X1 +
X2 + aX1X2 + ε, where ε is an independent noise. Further-
more, assume Xj = W 2

j − 1, j = 1, 2, where (W1,W2)
� are

jointly normal, and marginally standard normal with corre-
lation ρ �= 0. A simple calculation shows that

Corr(Y,X1X2) = c1Cov(Y,X1X2)

= c1{16ρ2 + a(20ρ4 + 32ρ2 + 4)},(2)

where c1 = [Var(X1X2)Var(Y )]−
1
2 > 0. Then there are two

facts: (i) Corr(Y,X1X2) = c116ρ
2 �= 0 when a = 0; (ii)

Corr(Y,X1X2) = 0 when

a = − 16ρ2

20ρ4 + 32ρ2 + 4
.

Fact (i) suggests that X1X2 may be labeled as “important”
by the naive approach, when it is actually not predictive to
the response. Fact (ii) suggests that X1X2 may be labeled
as “unimportant” when it is truly important. In either case,
the naive correlation ranking for interactions does not work
even for this simple example.

In short, the naive screening procedure DIS fails to ac-
count for intrinsic correlations between interaction terms
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Figure 1. Plots of absolute correlation (AC) and absolute partial correlation (APC) with respect to the coefficient a for the
toy example. Left, ρ = 0.2 and 0.5; Right, ρ = 0.

and their parents. This motivates us to develop an alter-
native method which takes into account main effects when
evaluating interaction effects and can improve accuracy for
interaction screening.

2.3 Main-effect-adjusted interaction
screening

To improve the naive correlation ranking method, we con-
sider the partial correlation between Y and XjXk condi-
tional on Xj and Xk, denoted by pCorr(Y,XjXk|Xj , Xk),
or pCorr(Y,X2

j |Xj) for a quadratic term. Formally speaking,
the partial correlation between two random variables X and
Y given a set of q controlling variables Z = (Z1, Z2, ..., Zq),
denoted by pCorr(X,Y |Z), is the correlation between the
residuals RX and RY resulting from the linear regression of
X with Z and of Y with Z, respectively. When q = 1, it is
called the first-order partial correlation. When q = 2, it is
called the second-order partial correlation.

To see advantages of the partial correlation approach, let
us revisit the example in Section 2.2. It is easy to calculate
the partial correlation as

pCorr(Y,X1X2|X1, X2) =
a√

a2 + c2
,(3)

where c2 is a positive constant. (We refer to the ap-
pendix for the calculation of equations (2) and (3).) In
particular, pCorr(Y,X1X2|X1, X2) = 0 when a = 0 and∣∣pCorr(Y,X1X2|X1, X2)

∣∣ → 1 as |a| → ∞. This suggests
that we can eliminate the influence of parental main ef-
fects using partial correlation when conducting interaction
screening.

To make a better illustration, we compare in Figure 1 the
absolute correlation (AC) and the absolute partial correla-
tion (APC) with respect to the coefficient a in the toy exam-
ple for ρ = 0.2, 0.5 (left) and ρ = 0 (right), respectively. We

observe that the APC score is not zero as long as a �= 0, but
this does not hold for the AC score if ρ �= 0. Moreover, the
APC score is typically larger than the AC score when a is
away from zero, as shown in the right plot when ρ = 0. This
means that partial correlation is more powerful than corre-
lation for detecting signals in interaction screening. Similar
patterns also hold for quadratic effects {X2

j }nj=1.
In practice, the sample partial correlation can be cal-

culated easily. In the following, we propose a new pro-
cedure called interaction screening by partial correlation
(ISPC). Here we conduct screening for both interaction and
quadratic effects together, but one can certainly screen them
separately.

Interaction Screening by Partial Correlation
(ISPC):

1. Calculate the standardized interaction effects Z. In
other words, standardize the columns of X, calculate
interaction effects X ◦X, and standardize X ◦X to ob-
tain Z.

2. Calculate the sample partial correlation P as

Pjk =

{
̂pCorr(Y,XjXk|Xj , Xk), 1 ≤ j ≤ k ≤ p;
̂pCorr(Y,X2

j |Xj), 1 ≤ j ≤ p.
.

3. Determine a threshold λ and obtain a model

Îλ = {(j, k) : |Pjk| > λ}.

Theoretically speaking, one main advantage of the ISPC
procedure is that it conducts interaction screening by tak-
ing into account main effects, which overcomes drawbacks
of the naive approach. Furthermore, compared to two-stage
methods, the ISPC does not require the underlying model
to obey the hierarchical structure, therefore it is more flex-
ible and can be applied even when the model hierarchy is
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violated. Computationally, the ISPC is easy to implement
and the algorithm is scalable to very high dimensional data.
As shown in Section 2.4, the ISPC does not require stor-
age of the matrix Z, which makes the computation fast and
feasible.

Invariance Property of ISPC. For the DIS procedure,
it is crucial to center to main effects first before calculating
the marginal correlation of interactions. The reason is that
Corr(Y,XiXj) is not invariant with respect to translations.
That is, in general, Corr(Y,XjXk) �= Corr(Y, (Xj+aj)(Xk+
ak)) when Corr(Y,Xj)·Corr(Y,Xk) �= 0. On the other hand,
the partial correlation employed by ISPC is invariant of ar-
bitrary coding transformation Xj → bjXj + aj , bj > 0. It is
another reason why ISPC is preferable.

2.4 Extension of ISPC to nonparametric
rank correlation

In the above, we proposed the ISPC based on the stan-
dard Pearson correlation coefficient, which measures the
strength of linear relationship between variables. In this sec-
tion, we will extend the ISPC idea to nonparametric corre-
lation coefficients.

Besides Pearson product-moment correlation, there are
two classical measures of association between variables,
Spearman’s and Kendall’s rank correlation coefficients.
These two nonparametric versions of correlation can achieve
about 91% efficiency of their parametric counterpart to
test whether the correlation coefficient ρ = 0 when a nor-
mal assumption is satisfied [9], and they are more robust
against heavy tailed distributions. Moreover, they are in-
variant of monotonic transformation and therefore useful
to reveal a complex relationship between the response and
covariates. For example, [12] studied Kendall’s rank cor-
relation for screening main effects, based on the model
Y = f(

∑p
j=1 βpXp + ε) with an arbitrary monotonic func-

tion f . Therefore, it is desirable to generalize the ISPC pro-
cedure to these nonparametric correlation coefficients.

For Spearman’s correlation, there is no direct nonpara-
metric interpretation for partial correlation. Since Spear-
man’s rank correlation is equivalent to Pearson’s correlation
computed with ranks of the data points [18], it is a conven-
tion to compute the sample Spearman’s partial correlation
by calculating the sample Pearson’s partial correlation of
ranks. Following this convention, we can conduct ISPC eas-
ily with Spearman’s partial correlation.

For Kendall’s correlation, [11] defined the first-order par-
tial rank correlation in the nonparametric context and
showed a surprising result that the well-known formula for
Pearson’s partial correlation still holds. That is, for three
random variables U1, U2, U3, the following holds

τ12·3 =
τ12 − τ13τ23√
1− τ213

√
1− τ223

,(4)

where τij is the Kendall’s rank correlation between Ui and
Uj , and τ12·3 is the Kendall’s partial correlation between U1

and U2 conditioning on U3. Therefore, this formula can be
iteratively used to calculate higher-order partial rank cor-
relation coefficients. For example, for four random variables
U1, ..., U4, a second-order partial correlation can be calcu-
lated by

τ12·34 =
τ12·3 − τ14·3τ24·3√
1− τ214·3

√
1− τ224·3

,(5)

where τ12·34 is the Kendall’s partial correlation between U1

and U2 conditioning on U3 and U4. If Γ is the inverse of
correlation matrix of {Uj}4j=1, an equivalent formula is

τ12·34 = − Γ12√
Γ11Γ22

.(6)

To summarize, all three versions of correlation coefficients
considered here satisfy formulas (4–6), which can be used to
calculate sample partial correlation. We employ the ISPC
by using Spearman’s and Kendall’s partial correlation co-
efficients, and call the procedures as ISPC-S and ISPC-K
respectively. Also, it is straightforward to implement DIS
with these rank correlations, which are denoted as DIS-S
and DIS-K.

3. COMPUTATION ALGORITHMS FOR
HIGH DIMENSIONAL DATA

Though it is straightforward to implement the DIS and
ISPC, it is necessary to accelerate the computation by some
techniques when the number of covariates is overwhelmingly
large. When p is really large, it may not be possible to store
the entire matrix Z due to limited computer memory, which
is a bottleneck of many interaction selection algorithms. For
the DIS or ISPC, we do not need to store Z or even the
p(p+ 1)/2 vector of all marginal statistics, say P, as it tar-
gets only on the top elements. Therefore, in the screening
process, we only need to identify and update the top K ele-
ments or those elements above a pre-specified threshold for
the marginal statistic. For example, when p is 105 or larger,
it might not be possible to store all p(p + 1)/2 marginal
statistics for a desktop. But our algorithms still work. Given
the data {X,y}, the following is the computational algo-
rithm to implement DIS, when a model size K is specified.

Computational Algorithm for DIS.

1. Let j = 1 and MS be a NULL vector to store the absolute
marginal correlation, and the threshold t= 0.

2. Calculate the absolute sample correlation between Xj ◦
X{j:p} and y, where {j : p} denotes the set {j, j +
1, ..., p}. If none of the absolute marginal correlation is
above the threshold t, go to step 4.

3. Combine MS with the absolute marginal correlation co-
efficients larger than t. Rank MS to identify the top K
elements, which are stored as the new MS. Set t as the
minimal element of MS.

4. Let j = j + 1. Go to step 2 if j ≤ p; otherwise, stop.
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It is slightly more time-consuming to find partial correla-
tion than correlation. To further accelerate the computation
of ISPC, we can avoid calculating all second order partial
correlations. To elaborate, we first introduce a lemma, which
shows how to control the magnitude of higher-order partial
correlations by correlation. For a set of random variables
U1, U2, ..., UN , let τjk be the correlation (of possibly all
the three types considered in this paper) between Uj and
Uk, and τjk·K be the partial correlation between Uj and Uk,
conditional on {U�|
 ∈ K}.

Lemma 1. For a set of random variables U1, U2, ..., UN ,
if |τjk = Corr(Uj , Uk)| < δ for all 1 ≤ j ≤ k ≤ N , then all
the absolute mth order partial correlation can be controlled
by δ

1−mδ when (m+1)δ < 1. That is, for j, k and index set

K, where |K| = m and j, k /∈ K, |τjk·K| < δ
1−mδ .

We are particularly interested in the second-order partial
correlation pCorr(Y,XjXk|Xj , Xk) whose absolute value is
bounded by δ

1−2δ when the absolute correlation between ev-
ery pair is bounded by δ. To implement ISPC, we can first
re-rank the features by their absolute marginal correlation
coefficients with the response. The following is the compu-
tational algorithm for implementing the ISPC procedure.

Computational Algorithm for ISPC.

0. Index the features based on their absolute marginal
correlation coefficients with the response so that

|̂Corr(Y,Xj) ≥ ̂Corr(Y,Xk)| when j > k.
1. Let j = 1 and MS be a NULL vector to store the

marginal statistics, and the threshold t= 0.
2. If the absolute marginal correlation between Xj and y

is smaller than t
1+2t , then go to 2a; otherwise, go to 2b.

2a. Calculate the absolute sample correlation between Xj ◦
X{j:p} and y and find the index set of interactions
whose marginal correlation is above t

1+2t . Calculate the
partial correlation for interactions in the index set. Go
to step 4 directly if the index set is empty.

2b. Calculate the partial correlation for all interactionsXj◦
X{j:p}.

3 Combine MS with the absolute marginal correlation co-
efficients larger than t. Rank MS to obtain the top K
elements, which are stored as the new MS. Set t as the
minimal element of MS.

4 Let j = j + 1. Go to step 2 if j ≤ p; otherwise, stop.

Along the computation, the threshold t gets larger and
the marginal correlation between Xj and y gets smaller.
Once the condition in 2 holds, we can avoid calculating all
the partial correlations and save a lot of time. In many sce-
narios, this trick makes the computation time of ISPC com-
parable to that of DIS. By using these techniques, we can
implement DIS and ISPC with R program and handle quite
large data sets with a desktop. If a target threshold instead
of the model size K is given, we can set t to the threshold
directly in these algorithms.

As a final remark, the whole procedure replies only on
the marginal statistics, so parallel computing can be further
used to accelerate the computation for extremely large data
sets, which many other screening methods may not be able
to handle.

4. SIMULATION STUDIES

We demonstrate the finite sample performance of the pro-
posed ISPC procedures under a variety of settings. Further-
more, they are compared with the naive DIS methods, which
does not take into account main effects during interaction
screening. In all the tables, we denote Pearson correlation
screening methods by DIS and ISPC, Kendall’s correlation
screening methods by DIS-K and ISPC-K, and Spearman’s
correlation screening methods by DIS-S and ISPC-S, respec-
tively. Three examples are designed. In each example, we
implement all the methods with 100 replicates and report
the average performance on identifying important interac-
tions.

Example 1 (Gaussian design). Generate n IID pairs
{(xi, yi)}ni=1 based on the model

Y = X1 − 2X2 + 2X4 +X1X2 −X3X4 + ε,(7)

where xi ∼ N (0,Σ), Σ = (σjk) with σjk = ρ|j−k|, and
ε ∼ N (0, 1) is independent of all covariates. Let n = 300, ρ =
0.5, and two dimension settings with p = 600, p = 2000. The
index of important interaction effects is I∗ = {(1, 2), (3, 4)}.
Example 2 (Non-Gaussian design). Consider the same
model (7). Let X = (X1, ..., Xp)

� be a random vector with
Xj = (W 2

j − 1)/
√
2 when 1 ≤ j ≤ 10 and Xj ’s IID from

N (0, 1) when 11 ≤ j ≤ p, where W = (W1, ...,W10)
� ∼

N (0,Σ) and Σ = (σjk) with σjk = ρ + (1 − ρ)δ(j=k).
Let n = 300, ρ = 0.5, and two dimension settings with
p = 600, p = 2000.

For both examples, we implement all the methods and
select K interactions with largest marginal statistics. In
particular, we have tried three different values of K =
C �n/ logn� for C =1, 2, and 3. The sure screening probabil-
ities for the interaction terms (X1X2) and (X3X4) by all the
procedures are summarized in Table 1. It is observed that,
as the value of K increases, the sure screening probabilities
for important interactions for all the methods increase a lit-
tle bit, but at the cost of an increasing false positive rate.
This pattern is expected since more terms are identified in
the screening process when a larger K is used. Since the
gain in sure screening probabilities is not that substantial
when C increases from 1 to 3, we recommend using a small
value, say, C = 1, in order to control the false positive rate
in these examples.

In Table 1, the last column “Average” is the average of
the first four columns, which is a summary of the overall
screening accuracy. Let us focus on C = 1 from now on. In
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Table 1. Sure screening probabilities for important
interactions in Examples 1 and 2.

p = 600 p = 2000

X1X2 X3X4 X1X2 X3X4 Average

DIS 96% 97% 96% 91% 95.0%
ISPC 99% 100% 100% 100% 99.8%

Example 1 DIS-K 85% 76% 75% 53% 72.3%
K = �n/ logn� ISPC-K 89% 87% 83% 70% 82.3%

DIS-S 85% 74% 72% 48% 69.8%
ISPC-S 94% 98% 92% 80% 91.0%

DIS 98% 97% 98% 92% 96.3%
ISPC 99% 100% 100% 100% 99.8%

Example 1 DIS-K 89% 78% 80% 60% 76.8%
K = 2 �n/ logn� ISPC-K 92% 92% 88% 74% 86.5%

DIS-S 88% 78% 77% 53% 74%
ISPC-S 95% 98% 94% 86% 93.3%

DIS 99% 98% 99% 93% 97.3%
ISPC 100% 100% 100% 100% 100%

Example 1 DIS-K 92% 84% 83% 64% 80.8%
K = 3 �n/ logn� ISPC-K 94% 94% 91% 77% 89%

DIS-S 90% 80% 81% 59% 77.5%
ISPC-S 97% 99% 94% 88% 94.5%

DIS 71% 28% 57% 33% 47.3%
ISPC 88% 78% 81% 74% 80.3%

Example 2 DIS-K 63% 95% 33% 87% 69.5%
K = �n/ logn� ISPC-K 58% 56% 32% 44% 47.5%

DIS-S 46% 90% 26% 83% 61.3%
ISPC-S 58% 57% 33% 42% 47.5%

DIS 76% 37% 61% 36% 52.5%
ISPC 90% 80% 84% 80% 83.5%

Example 2 DIS-K 67% 96% 40% 90% 73.3%
K = 2 �n/ logn� ISPC-K 63% 67% 40% 46% 54%

DIS-S 55% 94% 28% 86% 65.8%
ISPC-S 68% 68% 45% 48% 57.3%

DIS 78% 38% 66% 39% 55.3%
ISPC 93% 82% 85% 84% 86%

Example 2 DIS-K 71% 97% 42% 95% 76.3%
K = 3 �n/ logn� ISPC-K 68% 73% 43% 48% 58%

DIS-S 61% 95% 33% 87% 69%
ISPC-S 73% 74% 49% 48% 61%

Example 1, the ISPC-type procedure shows consistent im-
provement over the corresponding DIS-type procedures in
terms of the average sure screening probability, and the im-
provement is quite substantial for Kendall’s and Spearman’s
correlation coefficients. The ISPC works the best by achiev-
ing as high as 99.8% sure screening probability in average. In
Example 2, Pearson’s correlation works better than the non-
parametric rank correlation methods. Again, the ISPC is the
best among all by achieving in average 80.3% sure screening
probability. In Example 2, DIS is better than ISPC for rank
correlation methods in identifying X3X4. This is the only
case that DIS is better than ISPC in our entire numerical
studies, which might be due to the underlying data generat-
ing process. Overall speaking, that partial correlation based
screening methods are effective in identifying interactions.

Table 2. Average true positive rate (TPR) and standard
errors for Example 3

p = 600 p = 2000

TPR SE TPR SE

DIS 0.51 0.21 0.36 0.17
ISPC 0.59 0.22 0.44 0.21

DIS-K 0.78 0.11 0.73 0.11
ISPC-K 0.84 0.10 0.77 0.11

DIS-S 0.77 0.10 0.71 0.11
ISPC-S 0.84 0.10 0.76 0.11

Example 3 (A Challenging Example). Consider a complex
data generation process where the number of important in-
teraction terms is not fixed, but instead, it varies from one
data set to another. The purpose of this example is to evalu-
ate the performance of the proposed procedures throughout
different scenarios. The design matrix is the same as in Ex-
ample 2. Let S = {1, 2, 3, 11, 12, 13}. Consider the model

Y =
∑
j∈S

βjXj +
∑

j≤k∈S
γjkXjXk + ε,(8)

where all the coefficients {βj |j ∈ S} and {γjk|j ≤ k ∈ S} are
independently chosen from {−1, 0, 1} with equal probability.
That is, there are up to 21 nontrivial interaction effects in
the data generating process. Let n = 1000, p = 600 or 2000.
We fix the model size K = �n/ logn� for all methods.

Given any data set, for each screening procedure, de-
fine its true positive rate (TPR) as the ratio of the number
of selected important interactions over the total number of
important interactions. Table 2 presents the average TPR
over 100 data sets and the corresponding standard error, for
three DIS-type and three ISPC-type procedures. It is ob-
served that each ISPC procedure performs better than its
DIS counterpart by achieving a higher TPR. In this case,
nonparametric rank partial correlation works significantly
better than Pearson partial correlations. And the ISPC-S
and ISPC-K appear to be equally best among all the proce-
dures.

5. REAL DATA EXAMPLE

It is very challenging to identify predictive interaction ef-
fects for modern high dimensional and complex data. To il-
lustrate our proposed methods, we analyze a rat microarray
expression data set [16], which has been analyzed by [10, 6].
For this data set, 120 12-week-old male rat offsprings were
selected for tissue harvesting and microarray analysis. The
microarrays used to analyze the RNA from the eyes of these
animals contain more than 31,000 different probes. For each
probe set, the intensity values were normalized to obtain
summary expression values. Following [16, 6], we focused on
only the 18,976 probes that are expressed in the eye tissue.
In [10, 6], they were interested in identifying the genes that
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Table 3. Sure screening probabilities of interaction effects

p = 400 p = 2000

X1X2 X3X4 X1X2 X3X4 Average

DIS 33% 25% 13% 16% 21.8%
ISPC 44% 47% 38% 28% 39.3%

Analysis 1 DIS-K 39% 40 % 13% 24% 29.0%
(K = 25) ISPC-K 41% 49% 27% 23% 35.0%

DIS-S 32% 39% 13% 20% 26.0%
ISPC-S 51% 57% 28% 31% 41.8%

DIS 40% 42% 21% 23% 31.5%
ISPC 52% 55% 49% 40% 49.0%

Analysis 2 DIS-K 54% 55% 26% 32% 41.8%
(K = 120) ISPC-K 64% 69% 38% 39% 52.5%

DIS-S 48% 55% 21% 30% 38.5%
ISPC-S 68% 76% 49% 46% 59.8%

are relevant to the gene TRIM32, which has been found to
cause Bardet-Biedl syndrome [3].

In general, the underlying important interaction effects
are unknown, so we analyze this data set in the following two
ways. First, we simulate a response Y using a known model.
Since the true model and important interaction terms are
known, we can compare the ISPC and the DIS performance
in terms of their interaction screening accuracy. Generate
the response Y using the real data and by a quadratic
model, so that we can test the sure screening property. To
be more precise, we first standardize the data set and obtain
a 120 × 18,976 matrix. Then we randomly choose p = 400,
or 2,000 probe sets from 18,976 ones for each replicate, and
generate response Y by the same quadratic model consid-
ered in Example 1. We repeat 100 times and report the sure
screening probabilities for important interaction terms in
Table 3. We use K = �n/ log n� = 25 and K = n = 120 for
all the methods.

Overall speaking, the ISPC-type procedures consistently
give better performance than the DIS-type procedures, for
both Pearson correlation and nonparametric correlations.
Though the sure screening probabilities are not so high as
in simulations, the performance is still reasonable given that

the sample size n = 120 is very small. In order to improve
the coverage probability further, we may lower the threshold
or use iterative screening method etc. One limitation is that
there are so many spurious interactions on the top, which is
not surprising given the huge number of total interactions
versus the small sample size.

Second, we analyze the raw data where the truth is un-
known. We report the interaction terms selected by the
screening procedures, which provide a short list for scien-
tists to conduct further validations. We treat gene TRIM32
as the response variable and try to identify top interactions
associated with it by all six screening procedures. The analy-
sis is based on the entire data set, which contains p = 18,976
genes of n = 120 samples. The total number of gene interac-
tion pairs is p(p+1)/2 = 180,053,776 ≈ 1.8× 108, therefore
the total dimension is ultra-high.

In Table 4 we list top 5 pairs of gene interactions by
six screening procedures. We observe that there are some
variations in the top lists, which is not surprising consid-
ering an extremely large number of interactions and high
correlations among genes. Among all the identified interac-
tions, some pairs are selected frequently by multiple pro-
cedures, so they are deemed more “interesting”. For exam-
ple, two pairs of interactions, 1373599 at*1374388 at and
1370952 at*1373599 at, are both identified by four screen-
ing procedures out of six. Furthermore, we notice that gene
1373599 at is very active in working with other genes, as it
is involved with many interactions in the top lists. We point
out that these findings are just based on statistical analy-
sis, and they need to be further validated by scientists in
labs. On the other hand, the screening procedure is helpful
to narrow down the number of research targets to a few top
ranked pairs from 1.8× 108 candidates.

6. DISCUSSION

Marginal screening is a powerful and computationally ef-
ficient technique for variable screening in high dimensional
data analysis. Its effectiveness depends on many factors in-
cluding distribution tails of the covariates and the noise, the

Table 4. Top interactions associated with gene TRIM32

DIS DIS-K DIS-S

1371995 at*1387793 at 1372260 at*1373599 at 1373599 at*1374388 at
Top Selected 1371995 at*1384708 at 1373599 at*1374388 at 1372260 at*1373599 at
interactions 1372369 at*1386344 at 1370952 at*1373599 at 1370952 at*1373599 at

1377455 at*1383417 at 1371578 at*1377887 at 1369583 at*1373599 at
1371995 at*1398873 at 1369583 at*1373599 at 1371578 at*1377887 at

ISPC ISPC-K ISPC-S

1367746 at*1370303 at 1377455 at*1391190 at 1377455 at*1391190 at
Top Selected 1371995 at*1391643 at 1370952 at*1373599 at 1370952 at*1373599 at
interactions 1372318 at*1391628 at 1387393 at*1391932 at 1375233 at*1381886 at

1370266 at*1372318 at 1372260 at*1373599 at 1373599 at*1374388 at
1398859 at*1384620 at 1373599 at*1374388 at 1373599 at*1388145 at
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correlation structure among covariates, and the true model
sparsity. In this paper, we discuss how to use the model
structure to enhance effectiveness of interaction screening.
We find that it is helpful to utilize the hierarchical structure
when conducting interaction screening, and the screening
procedure based on partial correlation outperforms simple
correlation ranking. The proposed strategy is widely appli-
cable to complex models. As a conclusion, we suggest that
one take parental effects into account when calculating a
marginal statistic of an interaction effect during screening.

APPENDIX SECTION

A.1 Calculation of (2) and (3)

Simple calculation shows that

E(Xm) = 0, E(X2
m) = 2, m = 1, 2; E(X1X2) = 2ρ2,

E(X2
1X2) = E(X1X

2
2 ) = 8ρ2, E(X2

1X
2
2 ) = 4+32ρ2+24ρ4.

It follows that

Cov(Y,X1X2)

= Cov(X1, X1X2) + Cov(X2, X1X2) + aVar(X1X2)

= 8ρ2 + 8ρ2 + a(4 + 32ρ2 + 24ρ4 − (2ρ2)2)

= 16ρ2 + a(20ρ4 + 32ρ2 + 4),

which leads to (2).
To calculate (3), we first write

X1X2 = b1X1 + b2X2 + T,

where Cov(Xm, T ) = 0, m = 1, 2. So Y = (1 + ab1)X1 +
(1 + ab2)X2 + aT + ε, and the partial correlation

pCorr(Y,X1X2|X1, X2)

=
Cov(T, aT + ε)√
Var(T )Var(aT + ε)

=
aVar(T )√

Var(T )(a2Var(T ) + Var(ε))

=
a√

a2 + Var(ε)
Var(T )

,

which leads to (3). In particular,

Var(T ) = 20ρ4 + 32ρ2 + 4− 64ρ4

1 + ρ2
.

A.2 Proof of Lemma 1

For the first-order partial correlation,

|τjk·�| =

∣∣∣∣∣∣ τjk − τj�τk�√
1− τ2j�

√
1− τ2k�

∣∣∣∣∣∣

≤ δ + δ2

1− δ2

=
δ

1− δ
= δ1.

By the same technique, all second-order partial correlation
is no more than δ1

1−δ1
= δ

1−2δ . And Lemma 1 holds by in-
duction.
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