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Determining the number of factors

for high-dimensional time series

Qianc Xiab%Y Rusineg Liance®, JiannoNg Wull, AND HEUNG WONG*

In this paper, we suggest a new method of determin-
ing the number of factors in factor modeling for high-
dimensional stationary time series. When the factors are
of different degree of strength, the eigenvalue-based ra-
tio method of Lam and Yao needs a two-step procedure
to estimate the number of factors. As a modification of
the method, however, our method only needs a one-step
procedure for the determination of the number of factors.
The resulted estimator is obtained simply by minimizing
the ratio of the contribution of two adjacent eigenvalues.
Some asymptotic results are also developed for the proposed
method. The finite sample performance of the method is well
examined and compared with some competitors in the ex-
isting literature by Monte Carlo simulations and a real data
analysis.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 60E99,
62H25; secondary 91B84.

KEYWORDS AND PHRASES: Autocovariance matrices, Con-
tribution ratio, Eigenvalues, Factor models, Number of fac-
tors.

1. INTRODUCTION

The availability of large or vast time series data brings
opportunities as well as challenges to time series analysts.
More and more people pay attention to the analysis of high-
dimensional time series, which will be of increased interest
and importance in the modern information age. For exam-
ple, it is key for the financial market analysts to understand
the dynamics of the returns of a large number of assets.
The study of economic and business phenomena encounters
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both large numbers of cross-section units and time series
observations frequently. Due to the large number of indices
monitored across many different locations, environmental
time series are often highly dimensional. As argued by Lam
and Yao (2012), the standard multiple time series models
such as vector ARMA models are seldom used directly in
practice due to the problem of overparametrization. More
and more people focus on factor modelling which can pro-
vide a low-dimensional and parsimonious representation for
high-dimensional dynamics. In the factor modelling for eco-
nomic or financial data with both high dimension (d) and
time series observations (n), one of the fundamental issues
is how to determine the number of common factors. Re-
cent attempts in this direction included Bai and Ng (2002),
Onatski (2010), Alessi, Barigozzi, and Capasso (2010), Ahn
and Horenstein (2013), Wu (2016), and Xia, Liang, and Wu
(2017), which mainly focused on the static factor model.
Forni et al. (2000), Hallin and Liska (2007), Amengual and
Watson (2007) and Onatski (2009), worked on the dynamic
factor model. Pan and Yao (2008), Lam and Yao (2012), Xia,
Xu, and Zhu (2015) and Chan, Lu, and Yau (2016), focused
on determining a few common factors for high-dimensional
time series.

Although the above literature has considered statistical
methodologies to determine the number of factors, their es-
timators are not directly comparable as they require dif-
ferent restrictive conditions. For example, in the frequency
domain, Forni et al. (2000) considered an information cri-
terion to estimate the number of factors based on the por-
tion of explained variances in the dynamic factor model. In
the time domain, Bai and Ng (2002) proposed the informa-
tion criteria of a model selection named panel and infor-
mation C), (PC and IC) criteria for determining the num-
ber of factors in approximate factor models but the weak
cross-sectional dependence on the idiosyncratic component
was required. Relying on the information from the auto-
covariance matrices at nonzero lag, Lam and Yao (2012)
adopted an “Eigenvalue Ratio” (ER) approach to deter-
mine the number of factors for high-dimensional time se-
ries. In a different setting, based on the variance-covariance
matrix, Ahn and Horenstein (2013) proposed the ER esti-
mator as well as “Growth Ratio” (GR) method to estimate
the number factors in approximate static factor models. In
this paper, we follow the framework of Lam and Yao (2012),
which enjoys the advantages that the idiosyncratic compo-
nent can have strong cross-sectional dependence and it al-
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lows auto-correlation and cross-correlation between factors
and idiosyncratic components. In particular, the ER esti-
mator for the number of factors by Lam and Yao (2012)
has made contributions to the associated asymptotic the-
ory which underpins the “blessing of dimensionality” phe-
nomenon observed in numerical experiments. Lam and Yao
(2012) also suggested some further problems on estimat-
ing the number of factors for high-dimensional time se-
ries.

To our knowledge, the ER estimator is not consistent. Xia
et al. (2015) suggested a ridge-type ratio estimator (RER)
to solve this problem by modifying the ER estimator. The
performance of the RER estimator, however, depends on
the selection of a positive value c. Thus, it needs to pay
more attention to determine the value of c. Moreover, a fly
in the ointment of the eigenvalue-ratio-based estimators is
the need of a two-step estimation procedure to determine
the number of factors, even when the factors are of differ-
ent degrees of strength. In practice, a problem is whether
one should use two steps to estimate the number of fac-
tors. In general, a one-step procedure is more desirable for
estimating the number of factors. Meanwhile, given the im-
portance of the problem, it is meaningful to develop a new
method which only needs one step to estimate the number
of factors in factor models for high-dimensional time series.
Based on the ratio of two adjacent eigenvalues, we can con-
sider each of its proportional values in a set of relative eigen-
values, which can be regarded as the contribution of the
eigenvalue. Therefore, we suggest a new estimator named
as “contribution ratio” (CR) of two adjacent eigenvalues.
See equation (2.6) and its explanation for the meaning of
CR.

It can be further shown that, comparing with the com-
petitors in the existing literature, the CR estimator has a
desired performance on determining the number of com-
mon factors, especially when both strong and weak fac-
tors exist in the factor models. Through Monte Carlo sim-
ulation experiments and a real data application, we find
that this new method can improve the performance of
estimation for the number of factors, meanwhile, when
the factors are of different degrees of strength in many
cases, we can determine the number of factors by one
step.

The rest of the paper is organized as follows. Section 2
introduces the methodology based on eigenanalysis for an
autocovariance matrix. Asymptotic properties of the pro-
posed estimator are investigated in Section 3. Both simu-
lation study and a real data analysis are presented in Sec-
tion 4. All technical arguments are relegated to the Ap-
pendix.

Throughout this paper, A’ means the transpose of the
matrix A, and || M ||lmaz and || M ||;min the positive square
root of the maximum and minimum eigenvalue of MM’
respectively. If a = O,(b) and b = Op(a), then we denote
a=b.
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2. MODELS AND ESTIMATION
METHODOLOGY

2.1 Factor models

For t = 1,...,n, let Y; be a d-dimensional multivariate
time series. As argued by Lam and Yao (2012), Y; can in-
clude two parts: a common component X; driven by a low-
dimensional process and a static idiosyncratic component &;
which is a white noise process. We then have the decompo-
sition as follows,
(2.1) YVi=AXe + &,
where X; = (214, ...,xr¢) is the r-dimensional vector of un-
observed common factors, r < d is unknown; A is a d X r
factor loading matrix; {&} is a vector white-noise process,
ie., & ~ WN(ue, Xe). It is worthy to point out that the
model (2.1) is not identified because for any r X r nonsin-
gular matrix H the observed series Y; can be expressed in
terms of a new set of factors, i.e.,

(2.2) Y, =AHH'X, +¢&.

However, the linear space spanned by the columns of A, de-
noted by M(A) and called as the factor loading space, is
uniquely defined by (2.1), i.e., M(A) = M(AH). In this
sense the factor loading matrix A is unique, once it is spec-
ified, then the factor process X; is also uniquely defined
accordingly. In this paper, we choose a half orthogonal ma-
trix A, with A’A = I,., where I,. is the r x r identity matrix.
Therefore, we can always rotate an estimated factor load-
ing matrix whenever appropriate, this helps us facilitate our
estimation for A in a simple and convenient manner.

2.2 Estimation of r

To obtain our asymptotic theory, we introduce
some regularity assumptions as follows. Denote
Zy(l) = CO/U(-Y—tJrl’}/t),EX(l) = CO?)(Xt+l,Xt), ng(l) =
cov(§i41, Xy) and Exe(l) = cov(Xy4y, &), for all [ > 1.

Assumption 2.1. 1. An arbitrary linear combination of

the components of X; is not white noise, and A’A = I,.

2. For | = 0,1,...,1g, where [y > 1, and a constant § €
[0,1], ¥x(1) is of full rank,

1 2x (1) lmaz= d"=° =] Zx (D) llmin -

3. For | > 0, ¥x¢(I) and ¢ remains bounded ele-
mentwisely, as d and n increase to infinity. Also, ||
Exe(l) lla= ofd'?).

4. The covariance matrix Xex (1) = 0 for all [ > 0.

5. The time series{Y;} is strictly stationary and 1-mixing,
where the mixing coefficients ¢(-) satisfy the condition
Sis1t0(t) < oo. Furthermore, E(| Y; [*) < oo.



Remark 2.1. Here 0 is taken as a measure of the strength
of the factor in Assumption 2.1 2. When § = 0, the corre-
sponding factors are called strong factors, and when § > 0
the factors are called weak factors, which is different from
Onatski (2012). The detailed description of factor strength
can be found in Part 3.2 of Lam and Yao (2012). Assump-
tion 2.1 3 requires that the correlation between Xy, and
€¢ 1is not too strong. Assumption 2.1 4 relaxes the tradi-
tional independent assumption between factor process and
noise process.

According to Assumption 2.1 4, we have Xy (I) =
ASx (A" + AV xe (D). Let

LSy (1)Sy (1)
:lzzl Y d2Y ,

where [y is a prescribed positive integer. Since ¥y (0) =
AY x(0)A" 4+ X¢(0) and Xy (0)B # 0, then [ = 0 is excluded
from the sum in €.

The matrix Q has the two good important properties as
demonstrated by Lam et al. (2011) and Lam and Yao (2012).
On one hand, it is a nonnegative definite matrix, of which
the eigenvalues are real and nonnegative. On the other hand,
if QB = 0, then ¥4, (I)B = 0 for all [ > 1. Based on these
two aspects, the eigenvectors of €2 corresponding to differ-
ent eigenvalues are orthogonal to each other. Therefore, the
number of factors r is the number of non-zero eigenvalues
of Q. And then the r orthonormal eigenvectors of {2 corre-
sponding to its non-zero eigenvalues are the columns of A.
Hence, to estimate both r and A, it is needed to perform an
eigenanalysis for the sample counterpart of €2 is needed as
follows,

S1S]
(2.3) Z le’
where S; = i Y —Y)(Y;—Y) and Y = E Z Y.
i=1 t=
Assumption 2.2. 6. Let Aq,..., Ay be the eigenvalues of

the matrix €, then

AM>A> >N >0= 11 ==\
Remark 2.2. Assumption 2.1 1-5 and Assumption 2.2 6

are the same as those of Lam and Yao (2012).

Since the estimates for the zero-eigenvalues of 2 are not
exactly the zero values in a finite sample, the first nonzero-
eigenvalues can not be used for the estimation of r directly.
Some available methods for determining r can be found in
the existing literature. For example, Lam and Yao (2012)
suggested the ER estimator for r. They plotted all the es-
timated eigenvalues in a descending order, and looked for a
cutoff 7 such that the 7th largest eigenvalue is substantially

larger than the (7 + 1)th largest eigenvalues. This ER es-
timator defined below benefits from the faster convergence
rates of the estimators for the zero-eigenvalues, and may be
viewed as an enhanced eyeball test

) il
(2.4) Tpp = arglgbizSnRTi arglr<nlz<nRER( i),
where 5\1 > ... > 5\d are the eigenvalues of Q, andr < R<d

is a constant.

Based on the variance-covariance matrix, Ahn and Horen-
stein (2013) also consider ER estimator by putting (2.4) up-
side down. To estimate the number factors, they use the GR
estimator, which is given by

(2.5)
ln[ Z 5\k/ Z S\k]
For = argmin = ZH h=it? =: argminGR(i),
1<i<R [E )\k/ Z Ak] 1<i<R
=i k=i+1

where m = min{d,n}. The GR estimator can also be used
for the factor model of Lam and Yao (2012).
Different from the above ER and GR estimators, we con-

~ m ~
sider a new criterion function. Because A;/ > A\ denotes
k=i

the contribution of \; for Z Ak, a contribution ratio (here-
k=i
after CR) is defined as follows,

and then we can obtain the estimator

(2.6) Top = arglgzgnRCR(z),

where m = min{d,n}.

Remark 2.3. Note that the CR estimator is about the ratio
of the two adjacent contribution ratios, which also add more
useful information based on the ER estimator. In particular,
when both weak and strong factors exist, the first eigenvalue
is too large to enable ER(1) to be the smallest. Compare to
the ER estimator, the relative contribution can weaken the
dominant position of the first eigenvalue. This is due to the
fact that

CR() = —— 7 —— = S+~
wEN A B
i
= ER(i) + —m
> Mk
k=i+1
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which also considers the contribution of 5\i+1 based on the
ER estimator at the same time, which means CR method can
be effective in the search for the useful eigenvalues. There-
fore, it can improve the performance of estimating the num-
ber of factors.

Remark 2.4. According to our experience in the simula-
tions, as d > n, the finite sample performance of ER and
GR approaches are sensitive to the choice of the possible
maximum number of factors (R), but the CR estimator is
rather robust to it because of its structure. In fact, as long
as the last few eigenvalues are excluded, bad influence can be
avoided. Hence, R = min{d,n}/2 is a good choice for ER,
GR and CR approaches in practice.

Theorem 2.1. Under Assumption 2.1 1-5 and Assump-

tion 2.2 6, as n — oo, d — oo, n = O(d**!) and

hy = dn~Y2 — 0, then CR(i) < 1, fori = 1,...,r — 1,

and CR(r) = Op(d*n=1) Lo

Corollary 2.1. Under the conditions of Theorem 2.1, then
CR(i) < GR(i) < ER(i), for

Remark 2.5. By Theorem 2.1, h, = d°n~Y2 — 0 is
needed, thus, if d < n, then § < 0.5.

t=1,..,m

To improve the rates for the estimated eigenvalues, Lam
and Yao (2012) entertained some additional conditions on
their factor model. Under these conditions, we can discuss
the asymptotic results of the CR estimator.

Assumption 2.3. 7. Let {;; denote the jth component
of &. Then ;; are independent for different ¢ and j,
and have mean 0 and common variance 02 < co.

8. The distribution of each §;; is symmetric. Furthermore,
E(&F) =0, and E(E) < (th)k for all 1 < j < d
and t,k > 1, where 7 > 0 is a constant independent of
gyt k.

9. All the eigenvalues of X¢ are uniformly bounded as d —
00.

Theorem 2.2. Under Assumption 2.1 1-5, Assump-
tion 2.2 6 and Assumption 2.3 7-8, o, = d*/*n=12 — 0
and n = O(d). Then, as n — oo, d — o0,

CR(r) = Op(d®n~") 5 0.
If in addition Assumption 2.3 9 holds, we have
CR(r) = Op(d~Y*n=1 4 m™h).
Corollary 2.2. Under Assumption 2.1 1-5, Assump-
tion 2.2 6 and Assumption 2.3 7-8, asn — 00, d — 00
and n = O(d), then
CR(r) < GR(r) < ER(r).
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Remark 2.6. Comparing with Theorem 2.1, as d < n and
all factors are weak (5 # 0), then the speed at which CR(r)
converges to zero increases. However, when all factors are
strong, i.e., § = 0, the speed at which CR(r) converges to
zero is unchangeable for d under Assumption 2.1 1-5, As-
sumption 2.2 6 and Assumption 2.3 7-8. But under Assump-
tion 2.1 1-5, Assumption 2.2 6 and Assumption 2.3 7-9,
the speed at which CR(r) converges to zero increases again
whether 6 = 0 or not.

3. SIMULATION AND APPLICATION

In this section, to investigate the overall performance of
the CR estimator, we carry out five simulation experiments
and a study based on one real data. Since the choice of [y
is not sensitive to the estimate of  (Lam and Yao, 2012),
we set lg = 1 for all simulations. The CR estimator will be
used to analyse a real data set.

Meanwhile, the IC1 estimator of Bai and Ng (2002), the
ED estimator of Onatski (2010) and the GR estimator of
Ahn and Horenstein (2013) are also used to estimate the
number of factors for this high-dimensional time series fac-
tor model (2.1). The performances of these estimators are
compared to our CR estimator, the ER estimator of Lam
and Yao (2012), and the RER estimator of Xia et al. (2015).

Remark 3.1. In fact, we can select R = min{d,n}/2 in
the simulation experiments and the real data analysis for
ER, RER, GR and CR estimators. However, the estimators
of Bai and Ng (2002) and Onatski (2010) are sensitive to
the choice of R. Small R is appropriate to them. Hence, we
include R =5 for the case with n = 50, d = 10, and R = 10
for the case with n = 100, d = 20. Other than these two
cases, we select R = 20 in the other cases in all simulations,
which is similar to Chan et al. (2016).

3.1 Simulation experiments

To highlight the asymptotic properties in the previous
section, some simulation examples, which are similar to Part
(3.3) of Lam and Yao (2012), are conducted. We set in
model (2.1) » = 3, n = 50,100,200,500 and 1,000, and
d = 0.2n,0.5n,0.8n and 1.2n. All the d x r elements of A
are generated independently from the uniform distribution
on the interval [—1,1] first, and then three factors, with
each measure of the strength J;, are made by dividing each
of them by d%/2, respectively. We generate factor z; from a
3x 1 vector-AR(1) process with independent N(0, 1) innova-
tions and the diagonal autoregressive coefficient matrix with
0.8, -0.5 and 0.3 as the main diagonal elements. We let {&;}
in model (2.1) consist of independent N(0,1) components
and they are also independent across t. For each setting, we
replicate the simulation 200 times for the following five cases
individually.

(l) Case 1: 51 = 52 = 53 = 0;
(ll) Case 2: 51 = 62 = 53 = 03,



Table 1. Relative frequency estimates for P(f =

3) with 200 reduplicate samples for Case 1

n d ER RER 1Cy ED GR CR
0.2n 0.570(88]0) 0.460(108]0) 0.080(1]183) 0.350(0[130) 0.695(49]12) 0.755(24]25)
50 0.5n 0.510(98/0) 0.410(118]0) 0.350(0]130) 0.350(0130) 0.660(53|15) 0.690(16/46)
0.8n 0.530(93]1) 0.445(111|0) 0.250(0]150) 0.220(0|156) 0.720(32]24) 0.720(2|53)
1.2n 0.615(77|0) 0.505(99]0) 0.210(0|158) 0.210(0/158) 0.785(13|30) 0.785(2]41)
0.2n 0.825(35/0) 0.680(64]0) 0.815(0[37) 0.730(0]54) 0.955(63) 0.960(26)
100 0.5n 0.890(22/0) 0.800(40|0) 0.580(0|84) 0.440(0[112) 0.910(2/6) 0.900(0]10)
0.8n 0.850(29]0) 0.785(43/0) 0.610(0|78) 0.355(0129) 0.925(213) 0.920(0[16)
1.2n 0.835(33/0) 0.740(50/0) 0.255(0]149) 0.085(0|183) 0.895(3|18) 0.875(0[25)
0.2n 0.995(1]0) 0.965(7]0) 0.960(0[8) 0.800(0]40) 1.000(0]0) 1.000(0[0)
200 0.5n 0.975(5/0) 0.960(80) 0.685(0|63) 0.395(0121) 0.990(0]2) 0.990(02)
0.8n 0.985(3|0) 0.945(11|0) 0.465(0|110) 0.115(0[177) 0.990(0]2) 0.985(0|3)
1.2n 0.990(2(0) 0.950(10/0) 0.260(0]148) 0.070(0|186) 0.990(0[2) 0.990(02)
0.2n 1.000(0]0) 1.000(0]0) 0.985(0]3) 0.805(0]39) 1.000(0]0) 1.000(0]0)
500 0.5n 1.000(0|0) 1.000(0|0) 0.835(033) 0.140(0172) 1.000(0|0) 1.000(0[0)
0.8n 1.000(00) 1.000(00) 0.655(0/69) 0.030(0[194) 1.000(0]0) 1.000(00)
1.2n 1.000(0]0) 1.000(0]0) 0.380(0]124) 0.000(0/200) 1.000(00) 1.000(0]0)
0.2n 1.000(0]0) 1.000(0]0) 1.000(0]0) 0.755(0[49) 1.000(0]0) 1.000(0]0)
1000 0.5n 1.000(0]0) 1.000(0]0) 0.980(0]4) 0.025(0/195) 1.000(0]0) 1.000(0]0)
0.8n 1.000(0|0) 1.000(0|0) 0.850(0|26) 0.000(0/200) 1.000(0]0) 1.000(0|0)
1.2n 1.000(00) 1.000(00) 0.560(0/88) 0.000(0|200) 1.000(0]0) 1.000(00)
Table 2. Relative frequency estimates for P(# = 3) with 200 reduplicate samples for Case 2
n d ER RER 1C4 ED GR CR
0.2n 0.290(140]2) 0.200(160]0) 0.570(8]78) 0.250(3[147) 0.430(98]16) 0.525(30]15)
50 0.5n 0.325(134/1) 0.210(158]0) 0.725(5|50) 0.595(8|73) 0.530(90|4) 0.610(66|12)
0.8n 0.310(138/0) 0.165(167]0) 0.670(2/64) 0.480(5|99) 0.530(92|2) 0.635(65/8)
1.2n 0.305(139/0) 0.210(1580) 0.685(2/61) 0.465(3|114) 0.55081(9) 0.650(5515)
0.2n 0.520(96]0) 0.320(139]0) 0.865(0]27) 0.770(0]46) 0.835(33]0) 0.900(18]2)
100 0.5n 0.605(79|0) 0.300(120/0) 0.890(0[22) 0.625(0|75) 0.870(260) 0.920(16/0)
0.8n 0.525(94]1) 0.195(151|0) 0.810(0|38) 0.455(0/109) 0.860(26|2) 0.910(13|5)
1.2n 0.485(103/0) 0.200(16010) 0.760(0[48) 0.285(0153) 0.865(27|0) 0.920(13[3)
0.2n 0.810(38]0) 0.450(110]0) 0.980(0[4) 0.800(0[40) 0.985(3]0) 0.990(1]1)
200 0.5n 0.795(41|0) 0.250(150|0) 0.860(0[28) 0.440(0|112) 0.920(6]0) 0.980(3|1)
0.8n 0.855(29]0) 0.250(15010) 0.860(0[28) 0.265(0147) 0.980(4]0) 0.990(11)
1.2n 0.750(50(0) 0.180(164/0) 0.680(0[64) 0.110(0|178) 0.970(6/0) 0.990(1]1)
0.2n 1.000(0]0) 0.640(72]0) 0.995(0]1) 0.870(0]26) 1.000(0]0) 1.000(0[0)
500 0.5n 1.000(0]0) 0.370(1260) 0.965(0]7) 0.195(0|161) 1.000(0]0) 1.000(0|0)
0.8n 1.000(0[0) 0.245(151|0) 0.940(0[12) 0.030(0|194) 1.000(0]0) 1.000(0|0)
1.2n 1.000(0/0) 0.105(179]0) 0.795(0]41) 0.000(0/200) 1.000(0]0) 1.000(0[0)
0.2n 1.000(0/0) 0.860(28]0) 1.000(0[0) 0.835(0[33) 1.000(0]0) 1.000(0[0)
1000 0.5n 1.000(0/0) 0.525(95/0) 0.995(01) 0.025(0|195) 1.000(0]0) 1.000(0|0)
0.8n 1.000(0(0) 0.250(149]0) 0.935(0|3) 0.000(0|200) 1.000(0]0) 1.000(0|0)
1.2n 1.000(0[0) 0.090(182|0) 0.870(0[26) 0.000(0/200) 1.000(0]0) 1.000(0|0)

(iii) Case 3: 1 = 62 =0, 63 = 0.3;
(iv) Case 4: 61 =0, §3 = §5 = 0.3;
(v) Case 5: 61 =0, 63 = 0.4, 63 = 0.2.

The respective frequency estimates (x) for the probability
P(# = 3), the number of underestimation (y) and overesti-
mation (z) in the 200 replications are recorded by x(y|z) in
Tables 1~5. That is to say that x is the frequency estimate
for correction identification, and 200 — y — z is the correct
number of estimation of different estimators.

When the factors are all strong, from Table 1, it seems
that the CR and GR estimates are slightly better than the
other estimators with n < 100. The CR estimate is as good
as the ER, RER and GR estimates with n > 200. In this
case, the IC1 and ED estimators do not perform well, they
seem to encounter “the curse of dimensionality”. Also, the
IC1 and ED estimators often overestimate the number of
factors, the peak of estimation for the ED estimator is at 4.

When the factors are all weak, Table 2 indicates that IC1
estimator performs better than the other estimators with
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Table 3. Relative frequency estimates for P(# =

3) with 200 reduplicate samples for Case 3

n d ER RER 1Cy ED GR CR
0.2n 0.190(162]0) 0.145(171]0) 0.490(7]95) 0.480(12[92) 0.475(103]2) 0.585(69]12)
50 0.5n 0.120(176[1) 0.085(183|0) 0.665(6/61) 0.585(3/80) 0.400(1200) 0.615(71/6)
0.8n 0.095(181|0) 0.050(190|0) 0.670(2]64) 0.525(7|88) 0.370(124]2) 0.535(88]5)
1.2n 0.070(186/0) 0.020(196/0) 0.585(1|82) 0.340(2|130) 0.335(132|1) 0.555(82|7)
0.2n 0.270(146/0) 0.130(174/0) 0.945(0|11) 0.795(2]39) 0.805(39]0) 0.900(20/0)
100 0.5n 0.180(164/0) 0.060(188]0) 0.850(4/26) 0.630(0|74) 0.760(48|0) 0.885(22|1)
0.8n 0.105(179[1) 0.015(197|0) 0.690(0|62) 0.405(0|119) 0.635(73/0) 0.835(32|1)
1.2n 0.090(182|0) 0.010(198|0) 0.660(0|88) 0.240(0152) 0.665(87/0) 0.780(42[2)
0.2n 0.340(132(0) 0.095(181|0) 0.970(0]6) 0.855(0]29) 0.965(7]0) 0.995(0[1)
200 0.5n 0.280(144/0) 0.005(199|1) 0.860(0|28) 0.465(0|107) 0.905(19/0) 0.975(4|1)
0.8n 0.130(174/0) 0.005(199]0) 0.785(0[43) 0.220(0|156) 0.860(28|0) 0.975(5/0)
1.2n 0.100(180|0) 0.000(200|0) 0.735(064) 0.100(0180) 0.865(27/0) 0.980(4|0)
0.2n 0.595(81]0) 0.015(197]0) 1.000(0]0) 0.875(0]35) 1.000(0]0) 1.000(0]0)
500 0.5n 0.430(114/0) 0.000(200|0) 0.990(0]2) 0.220(0|156) 1.000(0|0) 1.000(0|0)
0.8n 0.215(157|0) 0.245(151|0) 0.865(0/25) 0.030(0[194) 1.000(0]0) 1.000(0[0)
1.2n 0.125(175|0) 0.000(200|0) 0.800(0[40) 0.005(0[199) 0.995(1]0) 1.000(0]0)
0.2n 0.865(27]0) 0.000(200]0) 1.000(0]2) 0.775(0]45) 1.000(0]0) 1.000(0]0)
1000 0.5n 0.705(59]0) 0.000(200|0) 1.000(0]0) 0.020(0[196) 1.000(0]0) 1.000(0]0)
0.8n 0.415(117|0) 0.000(200|0) 0.0.985(0|3) 0.000(0/200) 1.000(0|0) 1.000(0|0)
1.2n 0.240(152|0) 0.000(20010) 0.870(0/26) 0.000(0[200) 1.000(0[0) 1.000(0]0)
Table 4. Relative frequency estimates for P(7 = 3) with 200 reduplicate samples for Case 4
n d ER RER 1C4 ED GR CR
0.2n 0.180(163[1) 0.100(179]1) 0.525(34[11) 0.450(13[9) 0.475(103]2) 0.495(38]13)
50 0.5n 0.095(181|10) 0.050(1900) 0.645(8(63) 0.565(3|84) 0.400(1200) 0.610(67|11)
0.8n 0.075(185/0) 0.015(197|0) 0.730(2|52) 0.570(2|84) 0.390(122(0) 0.655(64/5)
1.2n 0.045(191|0) 0.005(199]0) 0.655(3/66) 0.420(1115) 0.335(133/0) 0.580(68|16)
0.2n 0.060(1880) 0.100(198]0) 0.850(0[30) 0.765(0]47) 0.785(43]0) 0.895(165)
100 0.5n 0.075(185/0) 0.000(20010) 0.850(0[30) 0.615(0]77) 0.750(50/0) 0.890(17|5)
0.8n 0.055(189|1) 0.010(198]0) 0.785(0[43) 0.420(0|116) 0.730(54/0) 0.900(12[8)
1.2n 0.020(196/0) 0.000(20010) 0.720(0/56) 0.270(0|146) 0.655(68|1) 0.885(9]14)
0.2n 0.095(181|0) 0.000(200|0) 0.975(0[5) 0.805(0]39) 0.975(5]0) 0.990(1]1)
200 0.5n 0.025(195/0) 0.000(20010) 0.905(0[19) 0.450(0|110) 0.975(5|0) 0.990(1[1)
0.8n 0.010(198/0) 0.000(200]0) 0.825(0/35) 0.255(0149) 0.970(6/0) 0.995(01)
1.2n 0.050(199/0) 0.000(200]0) 0.715(0|57) 0.085(0183) 0.940(12(0) 0.980(1]3)
0.2n 0.150(169/0) 0.000(200]0) 0.995(0]1) 0.870(0]26) 1.000(0[0) 1.000(0[0)
500 0.5n 0.030(194/0) 0.000(200|0) 0.995(0|1) 0.200(0|159) 1.000(0]0) 1.000(0]0)
0.8n 0.005(199(0) 0.000(20010) 0.900(0[20) 0.030(0|194) 1.000(0|0) 1.000(0|0)
1.2n 0.000(200/0) 0.000(20010) 0.800(0]40) 0.005(0/199) 1.000(0|0) 1.000(0|0)
0.2n 0.270(146/0) 0.000(200]0) 1.000(0[0) 0.775(0]45) 1.000(0[0) 1.000(0[0)
1000 0.5n 0.005(199/0) 0.000(200]0) 1.000(0|0) 0.035(0/193) 1.000(0|0) 1.000(0|0)
0.8n 0.005(199]0) 0.000(200|0) 0.970(0|6) 0.000(0|200) 1.000(0]0) 1.000(0]0)
1.2n 0.000(200/0) 0.000(20010) 0.905(0[19) 0.000(0/200) 1.000(0|0) 1.000(0|0)

n = 50, while the CR estimator works equally well or better

effective with small d (=

0.2n). The IC1 estimator performs

than the other estimators with n > 100. The RCR and ED
estimators are not performing satisfactorily, and they face
easily “the curse of dimensionality” in Case 2.

In Case 3 and Case 4, there are two strong factors and one
weak factor (or one strong factor and two weak factors) in
the factor model. From Table 3 and Table 4, we can see that
the ER and RER estimators are not effective. The peak of
their estimations is at 1 (or 2). The ED estimator is always
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better than the other estimators with n = 50, while the CR
estimator outperforms the others with n = 100 and 200.
When n > 500, the CR and GR estimators perform better
than the other estimators. The ED estimator still runs into
“the curse of dimensionality” easily in these two cases.
When the strengths of all factors are different in Case 5,
Table 5 tells us that the CR estimator outperforms the other
estimators with n < 200. When n > 500, the performance



Table 5. Relative frequency estimates for P(# =

3) with 200 reduplicate samples for Case 5

n d ER RER 1C4 ED GR CR
0.2n 0.135(173[1) 0.090(182]0) 0.550(3]82) 0.555(9]30) 0.380(103[2) 0.575(73[12)
50 0.5n 0.075(1850) 0.035(1930) 0.645(7(64) 0.500(2(98) 0.370(1200) 0.660(67|11)
0.8n 0.065(187(0) 0.025(1950) 0.585(3(80) 0.465(1|106) 0.360(1280) 0.610(64/5)
1.2n 0.025(195/0) 0.015(197]0) 0.465(3]104) 0.320(1|135) 0.285(141[2) 0.590(58/24)
0.2n 0.110(1780) 0.045(1910) 0.875(0]25) 0.770(0[46) 0.700(59]1) 0.905(11[8)
100 0.5n 0.020(196/0) 0.005(1990) 0.675(0/65) 0.450(0|110) 0.650(70|0) 0.865(11/16)
0.8n 0.025(195(0) 0.000(200]0) 0.615(1|76) 0.320(1[135) 0.665(67|0) 0.930(59)
1.2n 0.010(1980) 0.000(200]0) 0.435(0[113) 0.135(0[173) 0.585(812) 0.900(3[17)
0.2n 0.075(185|0) 0.005(199]0) 0.950(0]10) 0.785(0[43) 0.970(6]0) 1.000(0[0)
200 0.5n 0.025(195|0) 0.000(200]0) 0.815(0[37) 0.390(0[122) 0.965(7|0) 0.995(0]1)
0.8n 0.010(1980) 0.000(2000) 0.665(0|67) 0.170(0|166) 0.905(19|0) 0.990(0|2)
1.2n 0.000(20010) 0.000(200]0) 0.510(0/98) 0.025(0[195) 0.905(19]0) 0.975(0|5)
0.2n 0.075(185/0) 0.000(200|0) 1.000(0]0) 0.795(0[41) 1.000(0]0) 1.000(00)
500 0.5n 0.020(1960) 0.000(200/0) 0.910(0|18) 0.165(0|167) 1.000(0|0) 1.000(0|0)
0.8n 0.000(200|0) 0.000(200|0) 0.800(0[40) 0.000(0|200) 1.000(0]0) 1.000(0]0)
1.2n 0.000(2000) 0.000(2000) 0.645(0|71) 0.000(0|200) 1.000(0[0) 1.000(00)
0.2n 0.290(142|0) 0.000(200]0) 1.000(0]0) 0.765(0[47) 1.000(0]0) 1.000(0]0)
1000 0.5n 0.015(197/0) 0.000(200|0) 0.985(03) 0.020(0|196) 1.000(00) 1.000(00)
0.8n 0.005(199]0) 0.000(200/0) 0.920(0|16) 0.000(0/200) 1.000(0|0) 1.000(0|0)
1.2n 0.000(200|0) 0.000(200|0) 0.840(0[32) 0.000(0|200) 1.000(0]0) 1.000(0]0)
of GR estimator is as good as the CR estimator, which per- ER() RER() Ic1)
forms better than the other estimators. 2 - o — -
Through these simulation results, the CR estimator has 5 %6 00° %% i o 200500 %00 1
an advantage in determining the number of factors over the 2 \O/ o @ | D/ ’ e 0
ER, RER, IC1, ED and GR estimators. In particular, when K _ W
both weak factors and strong factors are in the factor model, o @ g | &
the CR estimator only needs to utilize the one-step proce- / " Oo°
dure for determining the number of factors. The ER and 1o ¢ / 1l o
RER estimators tend to underestimate the number of fac- D° DIO f \0°oo°oo
tors, while the IC1 and ED estimators tend to overestimate. T T T T LI B
Also, when both weak and strong factors exist in the fac- P P ponoa
tor model, the ER and RER estimators tend to identify the @ 0 e
strong factors by the one-step procedure, and the ED esti-
mator is prone to encounter “the curse of dimensionality”. ED() GR() CR()
3.2 A real data example i1 N T S Y
We study the real data set about the daily returns of 123 “1 o I / D\OIDD ’ \oo' 0 I / I\ D\oo'D
stocks in the period 2 January 2002 to 11 July 2008, which afo : 0 °] /o ’
was firstly analyzed by Lam and Yao (2012). Those stocks 2 ol o g1 o
were selected among those included in the S&P500 and were ot 51 b
traded every day during the period. The log-returns were o ;N . \
multiplied by 100 based on the daily close prices. We have in : o Y s
ol 00000000000000000 o1 0 o

total n = 1,642 observations with d = 123. Firstly, we apply
the eigenanalysis to the matrix Q defined in (2.3) with I =
1. The relevant ER, RER, IC1, ED, GR and CR estimators’
values with R = 20 are plotted in Figure 1. From which, we
can see the estimated results of ER, RER, IC1, ED, GR and
CR estimators. It is clear that the ER and RER estimators
indicate 7 = 1, the IC1 estimator shows 7 = 7, while the
ED, GR and CR estimators suggest 7 = 3. According to the
simulations, we believe that the final estimate should be 3
for the number of factors.

T T T T T T T T T T T T
5 10 15 2 5 10 1B 2 5 10 15 2

@ G] U
Figure 1. Plots of ER (a), RER (b), IC1 (c), ED (d), GR (e)
and CR (f) for the real data set.

Meanwhile, we will check whether the estimation results
are sensitive to the choice of R. For R = 60,100, the ER
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and RER estimators always gives # = 1, while the IC1 es-
timator always gives # = 7. But the ED estimator is easily
influenced by R, because it finds 4 factors when R = 60; 5
factors when R = 100. Although the GR and CR estimators
still give 7 = 3, comparing with the CR estimator, the dis-
criminations between the second and third positions of the
ratio are not obvious for the GR estimator. This can be seen
from Figure 1 with R = 20, which is similar to the cases of
R =60, 100.

4. CONCLUSION

In this paper, based on the information of the autocovari-
ance matrices at nonzero lags, we have introduced a new CR
estimator to determine the number of common factors for
the factor model of Lam and Yao (2012). Through some
simulation experiments conducted to compare with ER es-
timator of Lam and Yao (2012), RER estimator of Xia et al.
(2015), IC1 estimator of Bai and Ng (2002), ED estimator
of Onatski (2010) and GR estimator of Ahn and Horen-
stein (2013), we found the CR estimator is easy to com-
pute and can improve the performance of correctly estimat-
ing the number of factors for high-dimensional time series.
When factors in the factor model are all strong or weak, the
simulation results indicate that the CR estimator can per-
form equally to or better than the other estimators. The CR
estimator, however, outperforms the competing estimators
when the factors are of different degrees of strength.
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APPENDIX SECTION

Lemma 1. Under Assumption 2.1 1-5 and Assump-
tion 2.2 6, and hy, = d°n~"2 = 0. As n — co and d — 00,
then

(i) | Xi = Xi |= Op(d=on=12) fori=1,..,r,
(i) | Ai |= Op(n~Y) fori=r+1,..,d, and
(iti) ER(i1) =< 1 for i = 1,..,r — 1, and ER(r) =
Op(d26n_1).

Proof. Firstly, some elementary calculations lead to the fol-
lowing decomposition:

lo

N 1

[Q-Q| < EE (IS ==y |
=1

+2 [ Sy (1) 1l St = Sy (1) |1 ]-

Since A is assumed to be a half orthogonal matrix in
model (2.1), by Assumption 2.1 2 and 3, we have

ISyl = [ASx(DA + AXxe(l) ||
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Also, by Lemma 2 of Lam et al. (2011), we have

IS =Sy | < [13x0) —Ex@) |+ 1| Ze@) |
+2 || Sxe(l) — Sxe(l) = Opdn™/?),

< x|+ 1 Exe) lI=d' .

where $x (1) and S xe(l) are the sample variances of ¥ x (1)
and (1), and || Se(l) <)) Se() |r = Op(dn~1/2) with
| $e(l) [|r= trace(Xe(1)X%(1)). Then, we have

12 =0 ||=0p(d"n""2).

Moreover, it holds that A”QA = D, where D is diagonal
with the presentation:

lo
D= % ST Ex (WA + Sxe(D)] [Sx (DA + ASxe(1)] .
=1

If B is an orthogonal complement of A, then QB = 0, and

A D 0
plow m=[7 )
with sep(D,0) = A\pnin(D). Furthermore, following the proof
of Theorem 1 of Lam et al. (2011), it holds that d=2° =
i 4109
Op(Amin(D)), and || A— A < 22221
(D), amd | A= A< SEE
Set A = (v1,...,7) and A = (41,...,4,), then we have
Ai = Qv and A, = 4/Q%;. Since || i — v |<|| A— A ||=
O,(d®n~%/?). For i = 1,...,r, similar to the proof of The-
orem 1 of Lam and Yao (2012), we decompose Ai— A\ =
A5 — 7L, then we can obtain

| Ai = A\ |= Op(d—on~1/2).

O, (don=1/?).

Also, similar to the proof of Theorem 1 of Lam and Yao
(2012), we also have | B—B ||= 0,(d’n~'/2), where B is the
orthogonal complement matrix. Set B = (y,41,...,74) and
B= (Frs1y -y Ja). For i = r+1,...,d, we also decompose

Xi = 409 = My + My + Ms + My,
where M = (% — ) (2 — Q) (% — 7i), M2 = 2(%; — %) (2 —

Q)vi, Mz = (5 — ) QUYi — 71), My = (2 — Q)vi, then we
can prove easily

| Xi |[= Op(nh).

Finally, similar to the proof of Corollary 1 of Lam and
Yao (2012), on one hand, from the above proof, we have
d=2 = Op(Amin(D)) = A, and on the another hand,

lo
1 _
A<h =l 53 I () IP=0d™).
=1

Then, we have \; < \; < d~2° for i = 1, ..., r, hence,
ER(i) <1 for and
ER(r) = Op(d®n71). O

1=1,..,r—1,



Proof of Theorem 2.1. By the above proof of Lemma 1, for
i=1,..

r, we have

/A\i = Ai = d_25,i = 17...,7‘.
Then,
> M)

k=i+1

QIO
k=1

R@)(1L+ X/ zm: Ak),

k=i+1

When md?*n=1 — oo or md®n=1 = 0,14+X;/ > Ap = 1.

k=it1
Also, ER(i) < 1 for i = 1,...,7 — 1. Hence,
CR(i) <1 for i=1,..,7r—1.
Further, as n = O(d**1), then
CR(r) = ER(r)(1+ XA/ Y Ax)
k=r+1
= O0p(d®n~' +m™1) = Op(d®’n71). O

Proof of Corollary 2.1. As n — oo, d — oo and n =
O(d?**1), by the proof of Theorem 2.1, we have

CR(i) < ER(i) for i=1,..,r—1,
and
CR(r) _
ER(r) Op(1)

By the inequalities ¢/(1 +¢) < In(1+¢) < ¢, for ¢ > 0,
we have

DS A

k=i+42

ER(i) < GR(i) < ER()[1+ (A + A

Thus, asi=1,...,
ER(i) < GR(i) < ER(i) - Op (1 + (1 + d**)™1),

r — 2, we have

asi=r—1,r, we have

ER(i) < GR(i) < ER(i) - Op(1+ d~2°).
Hence,

GR(r) < ER(r) for i=1,..,r.

This completes the proof of Corollary 2.1. O

Lemma 2. Under Assumption 2.1 1-5, Assumption 2.2 6,
and Assumption 2.3 7-8, and o0, = d*/?*n=1% — 0 and
n=0(d). Asn — oo and d — oo, then

(i) | X=X |= op(d%gn) fori=1,..r,
(ii) | Ai |= Op(d=on=1) fori=r+1,.. (o +1)r,
(iii) | Ni |= Op(n=2) fori= (lo+1)r+1,..,d, and
(iv) ER(i) <1 fori=1,...,r—1, and ER(r) = Op(d’n™").

If in addition Assumption 2.3 9 holds, the rate in (ii) above
can be further improved to

| A |=0p(d 277 h), i=r+ 1, (o + Dr,
and
ER(r) = Op(d~

Proof. Under Assumption 2.3 7-8, from the proof of The-
orem 2 of Lam et al. (2011), || ¥¢(I) ||= Op(dn='). Then,
similar to the proof of Lemma 1, we have
1Q=Q = 0y(d 2@ **n 2 4+ dn ™)) =
For i =1,...,7, from the proof of Lemma 1, we have
| i = Xi |= Op(| @ = Q|]) = Op(d™ 0n),

which is Lemma 2 (i). Similar to the proof of Lemma 1, we
also have || B — B ||= Op(on), then, by the decomposition
of i = 4%

1/2+6n—1/2).

0,(d"*0,).

— viQy;, we can obtain

Ai=0,(d°n™t) for j=r+1,..,(+1)r
which is Lemma 2 (ii).
To prove Lemma 2 (iii), we set Ey(lp) =
Ey(1),...3y (o)) and Ey(lp) = (Zy(1),...,2yv (o)),
then, we have

1
Q= 2 —8y(l0)E (lo) and Q=

Also, we set Ex(lo) = (Ex(1),. .,zx(zo)),A Exe(lo) =
Exe(lo)); Eex(lo) = (Bex (1), Zex (lo)) and
(ZE< )5 - 2e(lo)), then, we obtain

By (lo) = A(Ex (lo) (L, ® A") + Exe(lo))
+Eex (1) (L, ® A') + Ee(lo),
where @ denotes and Kronecker product. )

It is obvious that rank(A(Zx (lo) (L, ® A') + Exe(lo)) +
ng(lo)([l()@/l/)) < (lo+1)’l", thus, O (A(EX(ZO)(IZO ®A/)—|—
Exe(lo)) +Zex (o) (L, ® A')) =0fori = (lp+1)r+1,...d,
where o;(M) denotes the i-th largest singular value of a

matrix M.

Hence, for i = (Ip + 1)r + 1, ..., d, we have

(1)) < o} (5 Ee(10))

1 R
S & Z | Ze(l)
i—1

According to the above conglusion, we have 5\1 =\ <
d=% for i = 1,..,r, and Ay = O,(d~°n~1), and
Lemma 2 (iv) can be easily proved.

Finally, if Assumption 2.3 9 holds, we will prove | ); |=
Op(d=2=9n=Y), i =r+1,..,(lp + 1)r. By Lemma 3 of
Lam et al. (2011), with the same technique as in the proof
of Theorem 1 in their paper, we have

B=(B+AP)(I+P'P)"'/? with

() = (diE

I P [|= Op(en)-
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According to the definition of B as in Lemma 1, then ;\T+1 is
the (1,1) element of the diagonal matrix D = B'Q)B, where
QOB = BD. Thus, we have (I+P'P)Y/2B'QB = D. Further,
| P ||= Op(on) = 0p(1), hence, the rate of Arg1 can be
obtained using the (1,1) element of B'Q}(B + AP). Similar
to the proof of Theorem 2 of Lam and Yao (2012), the (1,1)
element of B'Q(B + AP) has rate Op(d—'/2=9n~1). Thus,

| X |= Op(d™ /32071,

Proof of Theorem 2.2. Similar to Theorem 2.1, if Assump-
tion 2.1 1-5, Assumption 2.2 6, and Assumption 2.3 7-8
hold, we have

i=r+1,..,(lo+r. O

CR(r) = ER(r)(1 + A/ i Ax) = Op(d®n~t +m™h).
k=r+1

If n = O(d) and d > n, then we have

CR(r) = ER(r)(1 + A/ i S\k) = Op(d°n~1).
k=r+1

Furthermore, if in addition Assumption 9 holds, then

CR(r) = ER(r)(1 + ),/ Zm: Ar)
k=r+1

:OP(d71/2+5n71/2+m71)' O
Proof of Corollary 2.2. By Corollary 2.1, we have

ER(i) < GR(i) < ER@)[1+ (\i + A1)/ i el
k=i+2

and then, as ¢ = 1,...,r — 2, we have
ER(i) < GR(i) < ER(i) - Op(1 + (1 +d°)7"),
asi=r—1,r, we have
ER(i) < GR(i) < ER(i) - Op(1 +d~?%).
Hence,

GR(r) < ER(r) for i=1,..,r

the proof of Corollary 2.2 is completed. O
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