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Dimension reduction for big data
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Dimension reduction is aimed at reducing the dimension
of a high dimensional vector-valued explanatory variables
and simultaneously preserves its relationship with a uni-
variate or low-dimensional real-valued response. As one of
the oldest and most well-known dimension reduction ap-
proaches, principal component analysis (PCA) has been ex-
tensively used in high dimensional data analysis in applica-
tions. Classical PCA approaches cannot be applied to big
data because of memory and storage barriers. Using a tech-
nique called scanning data by rows, the article proposes a
new PCA approach. It shows that the proposed PCA ap-
proach can provide exact solutions when the size of observed
data exceeds the memory size of a computing system.
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1. INTRODUCTION

Dimension reduction, pioneered by many authors [6, 18,
19, e.g.], is aimed at reducing the dimension of a high di-
mensional vector-valued explanatory variables and simulta-
neously preserves its relationship with a univariate or low-
dimensional real-valued response. In the past a few decades,
statistical approaches in dimension reduction have gained
considerable attention due to the rapidly increasing data
volume and dimension [7, 8, 17, 31, e.g.]. As sizes of data
grow extremely fast in recent years, a new topic, called big
data, appears. In the era of big data, the usage of traditional
dimension reduction approaches is difficult because the size
of big data is usually beyond the ability of their basic tech-
niques. The goal of the present article is to develop a new
dimension reduction approach to overcoming this difficulty.

The basic idea of our approach is developed based on the
technique of scanning data by rows [35]. The technique only
needs to load individual rows sequentially from the hard
disk to the memory of a computing system. Suppose obser-
vations of explanatory variables are expressed by a matrix.
If the matrix cannot be loaded to the memory of a single
computer, then any dimension reduction approach with the
entire matrix in its numerical algorithms cannot be used.
To solve the problem, we provide a new dimension reduc-
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tion approach which does not have the entire matrix in its
numerical algorithms. As we attempt to provide exact so-
lutions, we do not adopt the sampling technique in our ap-
proach [21]. Instead, we develop our approach based on the
technique of scanning data by rows. Using the technique of
scanning data by rows, we obtain exact solutions in a di-
mension reduction problem even if the size of observed data
exceeds the memory size of a computing system. We believe
that the technique of scanning data by rows will have great
impacts on the development of general statistical approaches
to big data.

Recently, the term big data has spread quickly in both
statistics and computer sciences. When dealing with statis-
tical approaches to big data, optimization of target functions
via traditional algorithms is often impossible because of the
memory and computational efficiency barriers [20, 23]. The
memory barrier can be partially solved using an external
memory algorithm (EMA) [32]. The size of big data can be
much higher than the storage volume of a single computer.
The input data must be stored in multiple disks and the
computations have to be distributed across many proces-
sors such that the whole job can be finished in a reasonable
amount of time [23], where the technique of MapReduce
is important [9]. MapReduce was originally developed at
Google and has been widely accepted for big data analy-
sis. An open source framework made of MapReduce, called
Hadoop, is popular not only among the academic institu-
tions but also in many areas in industries [11, 24]. From the
view of computational perspectives, if an observed data set
is successfully saved to the hard disk of a computer, then it
is possible to consider methods based on a single processor.
Otherwise, parallel computation is recommended. Therefore
for big data, algorithms based on a single processor and a
cluster of processors are both important.

We apply the technique of scanning data by rows to the
dimension reduction problem. As principal component anal-
ysis (PCA) is one of the oldest and well-known dimension
reduction approaches, we decide to focus on PCA in the di-
mension reduction problem. The major issue is to provide
a way to derive the exact solution to PCA for explanatory
variables. We note that PCA is often the first step of data
analysis. It may be followed by linear regression [28], gen-
eralized linear regression [22], discriminant analysis [5, 36],
cluster analysis [12], image analysis [4, 10, 16, 34], functional
data analysis [13], and many others [1, 3]. It is therefore im-
portant to take a few follow-up analysis approaches into ac-
count. Because of the importance of normal, binomial, and
Poisson data in applications, we focus on the linear regres-
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sion approach for the normal data, the logistic regression
approach for binomial data, and the loglinear regression ap-
proach for Poisson data in the follow-up analysis of our PCA
approach.

The remainder of this article is organized as follows. In
Section 2, we briefly review the classical PCA approach. In
Section 3, we introduce the technique of scanning data by
rows. In Section 4, we provide a new PCA approach based
on the technique of scanning data by rows. In Section 5, we
evaluate the numerical and computational performance of
our PCA approach based on three typical follow-up analyses:
the linear regression for normal data, the logistic regression
for binomial data, and the loglinear regression for Poisson
data. In Section 6, we apply our approach to a real example.
In Section 7, we provide a discussion.

2. CLASSICAL PCA

Principal Component Analysis (PCA) [15], which was
first invented by [26] and later independently developed by
[14], is an important data-processing and dimension reduc-
tion technique. PCA is a standard and popular statistical
approach that tries to explain a large number of highly cor-
related explanatory variables by a small number of compo-
nents. Each component is a linear combination of the ex-
planatory variables. Information of explanatory variables
is often reflected by a small number of components. Fi-
nal results of PCA are often easy to interpret and better
to understand than results using original explanatory vari-
ables.

Let X be an n × p matrix of explanatory variables. The
first step in classical PCA is to standardize its columns such
that their means are zero and their sum of squares of errors
are one. If X is not standardized, then one can compute its
standardization Xs by letting its (i, j)th entry be

(1) xij,s =
xij − x̄j

bj
, i = 1, · · · , n, j = 1, · · · , p,

where xij is the (i, j)th entry of X, x̄j =
∑n

i=1 xij/n is the
mean and b2j =

∑n
i=1(xij−x̄j)

2 is the sum of square of errors
of the jth column.

Let the singular value decomposition (SVD) of Xs be

(2) Xs = UDV′,

where U = (u1, · · · ,up) is an n × p orthogonal matrix
satisfying U′U = Ip, V = (v1, · · · ,vp) is a p × p or-
thogonal matrix for loadings satisfying V′V = Ip, and
D = diag(d1, · · · , dp) is a p × p diagonal matrix for sin-
gular values. The singular values are assumed to be ordered
such that d1 ≥ d2 ≥ · · · ≥ dp ≥ 0. If X is full rank, then
dp > 0; otherwise dp = 0. The columns of Z = UD are the
principal components (PCs) and the columns of V are the
corresponding loadings. The jth PC is PCj = djuj and its
sample variance is d2j/n. For any integer k ≤ p, let

(3) Xs,k =

k∑
j=1

djujv
′
j = UkDkV

′
k,

whereUk = (u1, · · · ,uk),Dk = diag(d1, · · · , dk), andVk =

(v1, · · · ,vk). The variation of Xs,k is
∑k

j=1 d
2
j/n and its

proportion to the total variation is

(4) λk =

∑k
j=1 d

2
j∑p

j=1 d
2
j

.

If there is a small k such that λk ≈ 1, then the dimension of
the data matrix is successfully reduced from p to k with most
variations contained in Xs,k. It is adequate to use UkDk =
(PC1, · · · , PCk) in the follow up analysis.

We have identified at least three difficulties if we want to
apply the classical PCA approach to big data. The first dif-
ficulty is the derivation of Xs. Note that Xs is not available
at the beginning of the analysis. It is important to compute
Xs in order to apply the classical PCA. If the data set is
small or moderate, then the computation of Xs is trivial,
but this is a major concern if the data set is massive. At
least two problems are found. The first problem is the size
of X: the size of X is too large to be loaded to the memory
of a personal computer, implying that (1) is hard to be ap-
plied. The second problem is the size of Xs: the size of Xs

is almost identical to the size of X, implying that it is hard
to save the result. The second difficulty is the application of
the SVD to Xs. Suppose Xs is provided and already saved
to the hard disk of a computer. To apply (2), one needs to
load Xs to the memory of the computer, which is a concern
if Xs is massive. The concern is caused by the memory bar-
rier of big data. The third difficulty is caused by the size of
U. In (2), the size of U is identical to the size of Xs, which
is also n× p; the size of D is p× p but it can be reduced to
p; the size of V is p× p which can rarely be reduced. If p is
moderate or large but n is extremely large, then the size of
U is much higher than the size of D and V, implying that
the result of the SVD in (2) cannot be stayed in memory.
In the following of this article, we attempt to provide a new
PCA approach which does not have those difficulties.

3. THE TECHNIQUE OF SCANNING DATA
BY ROWS

The technique of scanning data by rows is basically dif-
ferent from classical data analysis techniques. In classical
data analysis techniques, the first step is always reading the
entire data set to the memory of a computing system. After
that, a statistical model is considered. Based on the statis-
tical model, a numerical algorithm is carried out in memory
for the computation of estimates of model parameters and
its variance-covariance matrix. The classical technique is ef-
ficient if the data set can be successfully loaded to the mem-
ory of the computing system, but it is hard in the analysis
of big data. For example, if the data set has n = 107 rows
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and p = 103 columns, then a computer needs around 75GB
memory size for loading the entire data to memory, which is
a major concern in big data analysis. To solve the problem,
the technique of scanning data by rows is proposed [35]. This
technique only needs to load individual rows to the mem-
ory of a computer. After individual rows are loaded sequen-
tially, a set of summary information is provided. The final
result of the summary information is derived after the last
row is loaded. Based on the final result of summary infor-
mation, the estimate of model parameters and its variance-
covariance matrix are provided. In the following of this sec-
tion, we attempt to interpret the technique of scanning data
by rows based on the linear regression approach.

Assume a data set is composed of a response and
many explanatory variables. Let Zi and wi be the ith ob-
served value of the response and the ith observed (p + 1)-
dimensional vector of explanatory variables for i = 1, · · · , n,
respectively, where n is the sample size and the first com-
ponent of wi is one, representing the intercept term. If the
relationship between the response and explanatory variables
is provided by a linear model as

(5) Zi = w′
iβ + εi, εi ∼iid N(0, σ2),

for i = 1, · · · , n, then a major interest is to estimate β.
If the maximum likelihood approach is adopted, then the
major interest is to derive β̂, the MLE of β, and V̂(β̂), the

estimate of the variance-covariance matrix of β̂.
The technique of scanning data by rows can be partially

reflected by the properties of the loglikelihood function of
(5) as

(6)

�(β, σ2) =− n

2
log(2π)− n

2
log σ2 − 1

2σ2

[
n∑

i=1

Z2
i

−2

(
n∑

i=1

wiZi

)′

β + β′

(
n∑

i=1

wiw
′
i

)
β

]
.

Note that �(β, σ2) only involves szz =
∑n

i=1 Z
2
i , swz =∑n

i=1 wiZi, and Sww =
∑n

i=1 wiw
′
i, which are a univariate

value, a (p+1)-dimensional vectors, and a (p+1)× (p+1)-
dimensional matrix, respectively. Let

(7) S = (szz, swz,Sww)

be an unstructured array of the sufficient statistics of (5).
Then, S can be computed via the technique of scanning
data by rows: if sm,zz =

∑m
i=1 Z

2
i , sm,wz =

∑m
i=1 wiZi,

and Sm,ww =
∑m

i=1 wiw
′
i are derived after the mth row is

scanned, then sm+1,zz = sm,zz + Z2
m+1, sm+1,wz = sm,wz +

wm+1Zm+1, and Sm+1,ww = Sm,ww +wm+1w
′
m+1 are their

updated values after the (m+1)th row is scanned. The final
S is derived after m reaches n. Based on S, we obtain the
MLEs β̂ = S−1

wwswz and σ̂2 = (szz − s′wzS
−1
wwswz)/n as well

as V̂(β̂) = σ̂2S−1
ww, the variance-covariance matrix of β̂.

A great advantage of the technique of scanning data by
rows is that it overcomes the memory barrier. It is one of the

most important issues to be addressed in big data analysis.
In the linear regression approach, the computation of S only
needs O((p+1)2) memory size, which is irrelevant to n. The
technique can be used even if n is extremely large. Since the
time of the computation is a linear function of n, it may
take long if the size of the observed data is huge. After S is
derived, the rest computations are irrelevant to n, indicating
that they are fast. According to the properties of S, it is clear
that the technique can be successfully applied to a method
based on a single process if p is around a few thousand.
For a large p (e.g., greater than a few hundred thousand), a
technique using a cluster of processors is needed.

4. BIG DATA PCA

If data are small or moderate, then the whole data set
can be loaded to the memory of a single computer and all
computations can be carried out in its memory. However,
this is not the correct way in computations for big data as
we cannot assume that a big data set can always be loaded to
the memory of a single computer. Two important scenarios
must be addressed. In the first scenario, we assume that the
size of big data is not higher than the size of the hard disk
of a computer. We focus on methods and algorithms based
on a single processor. In the second scenario, we assume
that the size of big data is much higher than the size of the
hard disk of a single computer, where multiple disks must be
used. Then, we focus on methods and algorithms based on a
cluster of processors. For big data, methods and algorithms
based on a single processor and a cluster of processors are
both important.

4.1 Approach based on a single processor

If a data set cannot be loaded to the memory but can be
saved to the hard disk of a single computer, then we can con-
sider PCA based on a single processor. We avoid using any
standardization procedure of explanatory variables. There-
fore, we cannot use Xs in our approach. We want to derive
the value of λk for every k ≤ p. For a given k, we want
to provide Uk, Dk, and Vk for (3) such that a follow-up
analysis can be conducted.

Since the classical SVD in (2) cannot be used, we intro-
duce a new approach, called the modified SVD approach.
The idea of the approach is to use the technique of scan-
ning data by rows. Note that U is massive but D and V
are not. We decide to use the technique twice. In the first
round of scanning data by rows, we attempt to provide D
and V. After that, we compute λk for every k ≤ p. Then,
we provide an optimal k for Dk and Vk. Using Dk and
Vk in the second round of scanning data by rows, we pro-
vide Uk, which is U if we purposely choose k = p. Since
parallel computation may be involved, we decide to intro-
duce the version of the approach based on a single pro-
cessor in this subsection and the version of the approach
based on a parallel computation system in the next subsec-
tion.
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The modified SVD is developed based on a modified ver-
sion of the classical SVD in (2). It is expressed as

(8) Ss,xx = X′
sXs = VD2V′.

Observing (8), we find that V is the matrix of eigenvectors
and D2 is the diagonal matrix composed of eigenvalues of
Ss,xx. Therefore, we can obtainD andV if Ss,xx is available.
Since the computation of (8) only involves a p×p matrix, it
can be used if p is not very large (e.g., a few thousand). Since
Xs is not available, we cannot directly compute Ss,xx from
the data. We propose an indirect way. It is motivated from
the technique of scanning data by rows for linear models in
Section 3.

Let Yi be the response variable and xi = (xi1, · · · , xip)
′ be

the p-dimensional vector of explanatory variables provided
by the ith row of the data. Let wi = (1, xi1, · · · , xip)

′. Then,
a linear model for big data is derived if we set Zi = Yi

in (5). As (5) can only be used for a normally distributed
Yi, the approach introduced in Section 3 cannot be used
if Yi follows other distributions. However, we can still use
Sww =

∑n
i=1 wiw

′
i in our approach.

We provide a way to compute Ss,xx from Sww. Let
cj1j2,ww and cj1j2,s,xx be the (j1, j2)th entries of Sww and
Ss,xx, respectively. Since Sww is a (p + 1) × (p + 1) matrix
but Ss,xx is a p× p matrix, we use j1, j2 = 0, 1, · · · , p in the
definition of cj1j2,ww and j1, j2 = 1, · · · , p in the definition
of cj1j2,s,xx. Then, c00,ww = n, c0j,ww = cj0,ww =

∑n
i=1 xij

for j = 1, · · · , p, and cj1j2,ww =
∑n

i=1 xij1xij2 for j1, j2 =
1, · · · , p, implying that

(9) x̄j = c0j,ww/c00,ww

and

(10) b2j = cjj,ww − c20j,ww/c00,ww.

Comparing the relationship between cj1j2,ww and cj1j2,s,xx
for every j1, j2 = 1, · · · , p, there is

(11) cj1j2,s,xx =
cj1j2,ww − c0j1,wwc0j2,ww/c00,ww

bj1bj2

for j1, j2 = 1, · · · , p. Therefore, we can obtain Ss,xx once
Sww is available. Its computational burden is independent
of n. Using this idea, we provide an algorithm for D2 and
V below.

Algorithm 1 has three major computational stages. The
first stage is the computation of Sww given by Step 3. It
needs O((p + 1)2) memory size. The time of the computa-
tion is O(n(p+1)2), which is proportional to n. The second
stage is the computation of Ss,xx using Sww given by Step
5, which also needs O((p + 1)2) memory size. The time of
the computation is independent of n. The third stage is the
computation of D2 and V using Ss,xx given by Step 6. It
still needs O((p+1)2) memory size and the time of the com-
putation is irrelevant to n either. Therefore, the most time-
consuming stage in Algorithm 1 is the computation of Sww,

Algorithm 1 The First Round Computation Based on A
Single Processor

Input: row-by-row of the data from a hard disk
Output: Sww, D, and V

1: procedure Algorithm for λk, Dk, and Vk for every

k ≤ p
2: Let Sww be a (p+1)×(p+1) matrix with all entries equal

to zero
3: for the ith row of the data do update Sww = Sww+wiw

′
i

until the last row is scanned
4: end for
5: Compute Ss,xx using (11)
6: Compute eigenvalues and eigenvectors of Ss,xx forD2 and

V, respectively
7: Output
8: end procedure

which is the first stage. Once Sww is available, the rest com-
putations are fast. The entire algorithm needs O((p + 1)2)
memory size and O(n(p+ 1)2) computational time.

Note that D2 = diag(d21, · · · , d2p) with d1 ≥ d2 ≥ · · · dp ≥
0. Once D2 is obtained, we can easily compute λk by (4)
for every k ≤ p. After that, an optimal k, denoted by kopt,
is recommended. It is expected that kopt is small if columns
of X are highly correlated, which means that the dimension
of explanatory variables is significantly reduced. As dimen-
sion reduction is often the first step of data analysis, it is
necessary to provide both the loadings Vkopt and the princi-
pal components UkoptDkopt for the follow-up analysis. Since
Vkopt has already been derived in Algorithm 1, we focus
on the derivation of Ukopt and UkoptDkopt when we use the
technique of scanning data by rows in the second times.

Note that

(12)

UkDk =UkDkV
′
kVk

=Xs,kVk

=

⎛
⎝ k∑

j=1

djujv
′
j

⎞
⎠Vk

=

⎛
⎝ p∑

j=1

djujv
′
j

⎞
⎠Vk = XsVk

for any k ≤ p. The lth column of UkDk is

(13) PCl = Xsvl =

p∑
j=1

vjlxj,s,

where xj,s is the jth column of Xs and vjl is the (j, l)th
entry of V. The ith element of PCl is

pcil =

p∑
l=1

vjlxij,s.
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Using (1) for xij,s in above, we obtain

(14) pcil =

p∑
j=1

vjl(xij − x̄j)/bj ,

implying that the ith element of ul is

(15) uil = (1/dl)

p∑
j=1

vjl(xij − x̄j)/bj .

As vjl, x̄j , and bj are contained in Algorithm 1, we only
need to read xij from the data in the computation of pcil.
This is a major issue in the second round usage of the tech-
nique of scanning data by rows. Since a response vector
y = (y1, · · · , yn)′ may be involved in the follow-up analysis,
we also consider y in the second round usage.

Algorithm 2 The Second Round Computation Based on A
Single Processor

Input: row-by-row of the data from a hard disk with Sww,
kopt, Dkopt , and Vkopt from memory
Output: PC1, · · · , PCkopt , u1, · · · ,ukopt , and y

1: procedure Algorithm for UkoptDkopt and Ukopt

2: for the ith row of the data do compute pci1, · · · , pcikopt

using (14) and ui1, · · · , uikopt using (15)
3: write pci1, · · · , pcikopt , ui1, · · · , uikopt and yi to hard

disk
4: until the last row is scanned
5: end for
6: end procedure

The only task in Algorithm 2 is the computation of prin-
cipal components. It does not need to load the entire ob-
served data from hard disk to memory using the technique
of scanning data by rows. The algorithm needs O(kopt(p+1))
memory size and O(nkopt(p+1)) computational time, which
are lower than the memory size and computational time re-
quested by Algorithm 1. Therefore, we expect that the sec-
ond round computation is faster than the first round com-
putation. In an extreme case, if one wants to compute all
of the p principal components, then the person can pur-
posely choose kopt = p in Algorithm 2 such that the output
file contains the response variable y and all of the principal
components, which is U.

4.2 Parallel computation with distributed
systems

Due to the reason that data grow extremely fast by
daily collection, big data are often measured in tera and
petabytes, implying that the whole data cannot be saved to
a single hard disk. Therefore, multiple disks are used. To an-
alyze this kind of data, a new concept of cluster computing
is becoming popular, in which data-parallel computations
are executed on clusters of processors by a distributed sys-
tem. The pioneer work under this concept is MapReduce
[9]. In MapReduce, same computations are applied over a

large number of records by many processors [11]. To ap-
ply the MapReduce, one must specify the Map and Reduce
functions within a job. The job usually divides the input
data into independent small data sets that are processed
in parallel by the Map tasks. Different outputs of the Map
tasks become the inputs of the Reduce task for final results.
MapReduce can handle failures of computation tasks by as-
signing pairs of jobs to different processors. An open source
framework made of MapReduce, called Hadoop, is popular
not only among the academic institutions but also in many
areas in industries [11, 24]. Besides MapReduce, a new clus-
ter computing framework called Spark appears [33]. Spark
can be deployed in a Hadoop cluster [27]. It is based on the
concept of maintaining data in memory rather than in disk.
The main abstraction is that Spark introduces an abstrac-
tion called resilient distributed datasets (RDDs), which is
a read-only collection of objects partitioned across a set of
computers that can be rebuilt if the partition is lost.

Suppose a data set is stored in H multiple disks. Let
Dh, h = 1, · · · , H, be the portion of the data stored in the
hth disk, which has nh rows. Let yh be the nh-dimensional
vector of the response variable and Xh be the nh × p-
dimensional matrix of explanatory variables in Dh. Then,
y = (y′

1, · · · ,y′
H)′ is the n-dimensional vector of the re-

sponse and X is the n × p-dimensional matrix of explana-
tory variables, where n =

∑H
h=1 nh is the sample size of the

entire data. Using

(16) Sww =

H∑
h=1

Sh,ww,

where Sh,ww = W′
hWh and Wh = (1,X), a parallel com-

putation algorithm for D and V based on a MapReduce
distributed system is proposed.

Algorithm 3 The First Round Computation in A Dis-
tributed System

Input: row-by-row of individual Dh

Output: Sww, D, and V of the entire data
1: procedure Parallel Computation Algorithm for λk,

Dk, and Vk for Every k ≤ p
2: Map tasks: Compute Sh,ww using Step 2 to Step 4 of

Algorithm 1 for h = 1, · · · , H individually
3: Reduce task: Compute Sww using (16)
4: Conduct Step 5 to Step 6 of Algorithm 1 for D and V
5: Output
6: end procedure

The main task in parallel computation (i.e., Step 2 to
Step 3) of Algorithm 3 is the derivation of Sww. Once it is
derived, the major task of the parallel computation is over.
The computational burden of the rest computations is in-
dependent of n, which are possibly carried out in a single
processor. A parallel computation algorithm is also needed
if p is extremely large (e.g., p is over a million). In this ar-
ticle, we focus on the case when the computation of Step
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4 in Algorithm 3 can be carried out in a single processor.
Then, a parallel computation version for principal compo-
nents can be proposed in Algorithm 4, where we denote
UkhDk as the portion of UkDk in Dh such that we can
express UkDk = ((Uk1Dk)

′, · · · , (UkHDk)
′)′ for the first k

principal components of the entire data.

Algorithm 4 The Second Round Computation in A Dis-
tributed System

Input: row-by-row of individual Dh with Sww, kopt, Dkopt ,
and Vkopt derived in Algorithm 3
Output: UkoptDkopt , Ukopt , and y

1: procedure Algorithm for principal components of

the entire data

2: Map tasks: Compute UkopthDkopt using Step 2 to Step
4 of Algorithm 2 for each Dh

3: Reduce task: Organize the results of map tasks for
UkoptDkopt , Ukopt , and y

4: end procedure

There are two scenarios in the result of Algorithm 4. In
the first scenario, the size of UkoptDkopt and y (or Ukopt

and y) is not significantly reduced by the PCA approach.
A large number of disks must be used to store UkoptDkopt

and y. It is almost equally difficult to use UkoptDkopt and
y in the follow-up analysis comparing to the method using
the original observed data. Then, the PCA approach is not
helpful. In the second scenario, the size of UkoptDkopt and y
is much lower than the size of the entire data. If it is possible
to store UkoptDkopt and y in a single or a small number of
hard disks, then one can consider to store them in these
disks, which makes the follow-up analysis easier than the
method using the original observed data. In practice, the
two scenarios can be determined by the property of D in
Algorithm 3.

4.3 Relation to classical PCA

Although classical PCA cannot be applied to big data, it
is still important to understand the theoretical relation be-
tween our big data PCA and the classical PCA approaches.
The main issue is to find their difference mathematically. We
assume that the result of our big data PCA is provided by
the algorithms given in Sections 4.1 and 4.2 but the result
of classical PCA is provided by a super computer such that
we can assume both results are available in the problem.
This is important in understanding the theoretical property
of our approach. We show that our approach is theoretically
equivalent to the classical PCA approach under a certain
equivalence relationship, indicating that we can classify our
big data PCA as an exact dimension reduction approach.

We use U = (u1, · · · ,up), D = diag(d1, · · · , dp), and
V = (v1, · · · ,vp) to denote the result of our big data PCA.
We use Uc = (uc1, · · · ,ucp), Dc = diag(dc1, · · · , dcp), and
Vc = (vc1, · · · ,vcp) to denote the result of the classical
PCA. Clearly, we cannot conclude that the two results are

identical as (δ1v1, · · · , δpvp) for any δ1, · · · , δp ∈ {−1, 1}
is also a solution of eigenvector matrix of Ss,xx in (8).
Therefore, we provide the following theorems to describe
the mathematical relation between our big data PCA and
the classical PCA approaches.

Theorem 4.1. D = Dc.

Theorem 4.2. If d1 > d2 > · · · > dp then there exist
δ1, · · · , δp ∈ {−1, 1} such that vj = δjvcj and uj = δjucj

for all j = 1, · · · , p.
Theorem 4.3. If dγ1−1 > dγ1 = dγ1+1 = · · · = dγ2−1 > dγ2

for some γ1, γ2 ∈ {1, · · · , p} with γ2 − γ1 ≥ 2 where d0 = ∞
and dp+1 = −∞, then there exists an orthogonal matrix Q
on R

γ2−γ1 such that (vγ1 , · · · ,vγ2) = (vcγ1 , · · · ,vcγ2)Q and
(uγ1 , · · · ,uγ2) = (ucγ1 , · · · ,ucγ2)Q.

Corollary 4.1. Assume d1, · · · , dp have q distinct values
d01, · · · , d0q given by dj1 = dj2 if γl−1 ≤ j1, j2 < γl and
dj1 > dj2 otherwise for l = 1, · · · , q, where 1 = γ0 < γ1 <
· · · < γq = p provides a partition of {1, · · · , p}. Then there
exists a blocked orthogonal matrix Q = diag(Q1, · · · ,Qq)
such that V = VcQ and U = UcQ, where Ql with l =
1, · · · , q is an orthogonal matrix on R

γl−γl−1 .

As PCA is often the first step in a data analysis proce-
dure, it is important to understand the impact of the scenar-
ios reflected by Theorem 4.2 and Corollary 4.1 in the follow-
up analysis. Suppose a generalized linear model (GLM) is
considered in the follow-up analysis. The relation between
Yi and xi is modeled by

(17) g(μi) = ηi = α+ x′
iβ, i = 1, · · · , n,

where μi = E(Yi), g is an link function, α represents the
coefficient for the intercept, and β represents the vector of
coefficients for explanatory variables. If PCA is used, then
the relationship is reduced to

(18) g(μi) = ηi = α+

k∑
j=1

pcijβj , i = 1, · · · , n,

where k ≤ p and pcij is the ith element of PCj , either
provided by our big data PCA or classical PCA. Then in
(18), PCj = Xsvj if our big data PCA is used and PCj =
Xsvcj if classical PCA is used.

Theorem 4.4. If dk > dk+1 then the MLEs of η =
(η1, · · · , ηn) using PCj = Xsvj or PCj = Xsvcj in (18)
are equal.

The conclusion of Theorem 4.4 does not hold if the con-
dition dk > dk+1 is violated. It can be shown using Corol-
lary 4.1. If dk = dk+1, then there exist γ and γ′ satisfying
γ ≤ k ≤ γ′ − 2 such that dγ−1 > dγ = · · · = dγ′−1 > dγ′ .
The dimension of span{vγ , · · · ,vk} is k−γ+1. The dimen-
sion of the eigenvector space corresponding to dk is γ′ − γ,
which is greater than k−γ+1. Therefore, span{vγ , · · · ,vk}
is a real subspace of the eigenvector space corresponding to
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dk, implying that span{PC1, · · · , PCk} may be differently
provided between our big data PCA and classical PCA ap-
proaches. However, if all of the eigenvalues are different,
then results of the two approaches are identical for every
k ∈ {1, · · · , p}.

4.4 Specification in linear regression

Assume the linear regression approach is used in the
follow-up analysis. Let the regression model be expressed
as

(19) y = 1α+Xβ + ε, ε ∼ N(0, σ2I),

where 1 is an n-dimensional vector with all elements equal
to one, y is an n-dimensional response vector, β is a p-
dimensional vector of regression coefficients for explanatory
variables, and ε is an n-dimensional error term. After PCA
approach is applied, the principal component matrix UkDk

is derived and Model (19) is approximated by

(20) y = 1αs +UkDkβs + εs, εs ∼ N(0, σ2
sI),

where βs is a k-dimensional vector of regression coefficients
for principal components. The least square estimator (LSE)
of αs is

(21) α̂s = ȳ

and its variance is V(α̂s) = σ2
s/n. The LSE of βs is

β̂s = D−1
k U′

ky

and its variance-covariance matrix is V(β̂s) = σ2
sD

−2
k . As

Xs is standardized, there is Cov(α̂s, β̂s) = 0. The mean
square error (MSE) of Model (20) is

σ̂2
s = y′(I− 11′/n−UkU

′
k)y/(n− k − 1).

Let syy = ‖y‖2 and ss,xy = X′
sy. Then

Vkss,xy =V′
kX

′
sy

=V′
k

p∑
j=1

djvju
′
jy

=V′
k

k∑
j=1

djvju
′
jy = DkU

′
ky

and

U′
ky = D−1

k Vkss,xy.

Thus,

(22) β̂s = D−2
k ss,xy

and

(23) σ̂2
s = (syy − nȳ2 − s′s,xyV

′
kD

−2
k Vkss,xy)/(n− k − 1),

implying that V̂(β̂) = σ̂2
sD

−2
k .

Theorem 4.5. It is enough to use S in the computation of
β̂s, V̂(β̂s), and σ̂2

s .

Theorem 4.5 concludes that solutions to a regression
model in the follow-up analysis can be completely obtained
once S is available, implying that we do not need to scan
the data set twice. Therefore, the computation of dimension
reduction via PCA in linear regression can be extremely ef-
ficient in practice.

5. NUMERICAL EVALUATION

We evaluated the computational advantages of our big
data PCA via simulated numerical examples. All of the com-
putations were carried out by a third generation Intel core-i7
2.8GHz processor with 16GB DDR3 memory. All of the al-
gorithms in our big data PCA were written in C++. We fo-
cused on the evaluation of the performance of our approach
based on a single processor. If a parallel algorithm is used,
then its performance can be reflected by the performance of
algorithms carried out by individual processors. Therefore,
the evaluation of algorithms based on a single processor is
basic and important in the understanding of our entire ap-
proach.

The primary interest was to demonstrate the feasibility
of the algorithms provided in Sections 4.1 and 4.2 when
they were applied to a massive data set which could not
be loaded to memory of a computing system. We assumed
that the massive data set was saved to the hard disk of the
computing system. It had n observations (i.e., n rows) and
many columns. The columns contained information of one
response and p explanatory variables. We were interested in
the case when both n and p were large. We wanted to show
that our big data PCA approach could be used if the size
of a data set was a few hundred gigabytes (GB). The data
set was generated by R, but the PCA analysis was based
on C++. The goal of the PCA analysis was to provide a
file on the hard disk such that the number of columns was
significantly reduced.

As dimension reduction is often the first step of data
analysis, we considered three approaches in the follow-up
analysis: the linear regression approach for normal data, the
logistic regression for binomial data, and the loglinear re-
gression for Poisson data. Since response variables are not
involved in PCA for explanatory variables, it is possible to
carry out the identical computational method for PCA in
the three approaches. The follow-up analysis is applied af-
ter the PCA analysis is over. As linear, logistic, and loglinear
regression models are important and often used in practice,
it is important for us to evaluate the impact of our PCA
approach based on all of the three models.

5.1 Linear regression

It is common to use the linear regression approach when
the response variable is continuous, where one can simply
assume the response variable is normally distributed. If the
relation between the response and explanatory variables is
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linear, then the linear regression approach can be applied.
In the simulated example for normal data, we assumed that
the true relation between y and X is described by Model
(19) but it was approximated by (20) via PCA for a certain
k 	 p. Based on the ith row of the data, the true model
was expressed by (5) with Zi = Yi and w′

i = (1,xi)
′, where

Yi was the ith element of y and xi was the ith row of X.
As dimension reduction is often used to highly correlated

explanatory variables, we used

(24) xi ∼iid N(ν,Σ)

to generate explanatory variables. We chose ν as a 1000-
dimensional vector with all of its elements equal to 0.1 and
Σ = 0.05R, where R was the correlation matrix of xi.
To derive a highly correlated R, we first generated 1000
points in [0, 1] and then defined rij = (e−dij + e−2dij )/2,
where dij was the distance between the points. To derive
the regression coefficients, we generated β independently
from N(0.02, 0.012). After ν, Σ, and β were derived, we
fixed their values in the simulation of xi and Yi. We gen-
erated xi identically and independently from N(ν,Σ). For
each i, we generated Yi independently from Model (5) with
α = 5.0 and σ2 = 4. We generated n = 107 samples from
the model. Finally, we obtained a data set with n = 107 and
p = 103. With the response variable, the data set contained
1001 columns and 107 rows. Its size was around 173GB.
If each floating number needed 8 bytes, a computer should
have at least 75GB memory size to load the entire data set
to its memory, which was greater than the memory size of
the computer that we used.

According to Theorem 4.5, we did not consider the sec-
ond round usage of scanning data by rows reflected by
Algorithm 2. To apply Theorem 4.5, we computed S =
(syy, swy,Sww) using the technique of scanning data by
rows, where we modified Step 3 of Algorithm 1 by updat-
ing S = S + (Y 2

i ,wiYi,wiw
′
i). After S was derived, we

first computed Ss,xx using (11) and then computed D and
V via its eigenvalue and eigenvector decomposition. After
that, we obtained λk for every k ∈ {1, · · · , p}. To carry
out the dimension reduction strategy, we chose the optimal
value kopt of k such that λkopt−1 < 0.95 but λkopt ≥ 0.95.
It meant that the previous k principal components con-
tained at least 95% total variations of explanatory vari-
ables. We had kopt = 6. Therefore, we decided to consider
the model with the previous six principal components. Fi-
nally, we applied (22) and (23) to compute β̂s, σ̂2

s , and

V(β̂s). We had R2 = 0.7670, σ̂2
s = 2.000912, β̂s = (447.145,

2.369, 41.082, 6.111, 10.768,−7.782)′ with standard error

vector s(β̂s) = (0.0780, 0.1554, 0.2559, 0.3646, 0.4693,
0.5876)′, indicating that all of the six principal components
were significant. Since σ̂2

s was close to the true σ2 value,
we concluded that the PCA approach successfully reduced
the dimension of explanatory variables from one thousand
to six. The time taken of the computations provided by
C++ showed that the computation of S cost 129,318 sec-

onds (around 35.92 hours), the computation of Ss,xx from
Sww cost less than one second, the computation of eigen-
value and eigenvector decomposition of Sww cost about ten
seconds, and the rest computations cost less than one sec-
ond.

5.2 Logistic regression

Logistic regression is popular in the analysis of binomial
data. Suppose the response variable is provided by (Yi,mi),
where Yi is the number of successes and mi is the number of
trials provided in the ith row of the data. If Yi ∼ Bin(mi, πi)
independently, then a logistic regression model is

(25) log[πi/(1− πi)] = α+ x′
iβ, i = 1, · · · , n.

To generate binomial data, we also used (24) to gener-
ate explanatory variables in (25). We chose ν as a 1000-
dimensional vector with all of its elements equal to 0.0005
and Σ = 0.00025R, where the correlation matrix R was
generated in the same way as we did in Section 5.1. We gen-
erated β independently from N(0.03, 0.0032). After ν, Σ,
and β were derived, we fixed their values. For each i, we
generated xi and then computed πi by (25) with α = 0.1.
Next, we generated mi from Poisson(1000) and then gen-
erated the binomial response Yi. All of the rows were gen-
erated independently. We still chose n = 107 and finally we
obtained a data set with n = 107 rows and p + 2 = 1002
columns, where the response variable was represented by
two columns. The size of the data set was around 173GB. A
computing system needed at least 75GB to load the entire
data set to its memory.

As Theorem 4.5 could not be used to binomial data, we
decided to consider both Algorithms 1 and 2 in our PCA
approach, where kopt was still selected by the minimum k
containing at least 95% total variations of the explanatory
variables. In our approach, we computed Sww using Step 3 of
Algorithm 1. We derived D and V by computing Ss,xx and
its eigenvalue and eigenvector decomposition. We obtained
kopt = 6. Using k = kopt = 6, we obtained the formulae of
the first six principal components, which were provided by
the first six columns of V. After that, we carried out Algo-
rithm 2 for the second usage of the technique of scanning
data by rows. The algorithm provided a file in hard disk. It
had two columns for the response variable and six columns
for the principal components. The size of the file was about
0.81GB. To load the file, a computing system needed about
0.6GB memory size. After columns were reduced by PCA,
the size of the data was not large. We decided to carry
out a further analysis for (18) via R. The result provided

β̂s = (47.1968, 0.8605, 4.3765, 0.2027,−1.1300, 0.02854)′

with its standard error vector s(β̂s) = (0.0026, 0.0051,
0.0081, 0.0151, 0.0150, 0.0188)′. The residual deviance of the
model was G2 = 10,010,607 and the residual degree of free-
dom was 9,999,993, implying that the model fitted the data.
The time taken of Algorithm 1 was 134,076 seconds (about
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37.24 hours). The time taken of Algorithm 2 was 70,358
seconds (about 19.54 hours).

5.3 Loglinear regression

Loglinear regression is the most popular approach in the
analysis of Poisson data when observations are indepen-
dently collected. If the ith response variable Yi follows a
Poisson distribution with mean λi, then a loglinear regres-
sion can be proposed as

(26) log λi = α+ x′
iβ, i = 1, · · · , n.

To generate the Poisson data, we still used (24) to gener-
ate explanatory variables in Model (26), where we chose ν
as a 1000-dimensional vector with all of its elements equal to
0.03 and Σ = 0.001R, where the correlation matrix R was
generated in the same way as before. We generated β in-
dependently from N(0.003, 0.0062). After ν, Σ, and β were
derived, we fixed their values. We generated xi fromN(ν,Σ)
and then computed λi with α = 5 via (26). After that, we
generated Yi. All of those were derived independently. We
also used n = 107 and finally we obtained a data set with
107 rows and 1001 columns, where the response was repre-
sented by one column. The size of the data was also around
173GB. A computing system also needed at least 75GB to
load the entire data set to its memory.

We carried out exactly the same procedure as we did
for the binomial data, where kopt also was selected by
the minimum k containing at least 95% total variations of
the explanatory variables. We also considered both Algo-
rithms 1 and 2. After Algorithm 1 was over, we obtained
a data file on the hard disk, which had 107 rows and 7
columns, where one column represented the response and
the other six columns represent the principal components.
The size of the data was about 0.75GB. We also carried
out a further analysis for (18) via R. The results provided

β̂s = (95.2614,−0.7691, 9.1421,−0.0875, 1.3755, 0.4385)′

and s(β̂s) = (0.0026, 0.0051, 0.0083, 0.0188, 0.0155, 0.0193)′.
The residual deviance was G2 = 10,000,825 and the resid-
ual degree of freedom was 9,999,993, indicating the model
fitted the data. The time taken of Algorithm 1 was 130,767
seconds (about 36.32 hours). The time taken of Algorithm
2 was 71,565 seconds (about 19.88 hours).

6. APPLICATION

We applied our approach to the 1999 KDD (Knowledge
Discovery in Databases) data set, which can be downloaded
from the website of the University of California Irvine (UCI)
Machine Learning Repository. The 1999 KDD data set, pre-
pared by [29], was built based on data captured in an intru-
sion detection system (IDS) evaluation program. The IDS
monitors the security status of networks and detects ab-
normal behaviors. The 1999 data set contains four differ-
ent types of attacks. The DOS (denial of service) is a class

of attacks in which an attacker makes computing or mem-
ory resources too busy to handle legitimate requests. It can
cause denies of legitimate users. The U2R (user to root)
is a class of attacks using normal accounts to access the
root of the system. The R2L (remote to local) is a class
of attacks for unauthorized accesses via remote machines.
R2L attacks may contain guessing passwords. The probing
is a class of attacks of gathering information for the pur-
pose of circumventing security controls (e.g., port scanning).
The 1999 data set was previously discussed by may authors
[29, 30, e.g.]. It was one of the mostly widely used data sets
for evaluation of anamaly detection methods in network se-
curity.

The 1999 KDD data set contained 4,898,431 records for
types of attacks, including normal users. It had 3,883,370
(79.28%) DOS attacks, 52 (< 0.01%) U2R attacks, 1,126
(0.02%) R2L attacks, 41,102 (0.84%) probing attacks, and
972,781 (19.86%) normal users. As most of the attacks were
DOS, we defined a binary variable for whether records were
DOS or not. We chose the binary variable as the response
variable. Besides the response, the data set also contained
41 explanatory variables. Thirty-eight of those were continu-
ous and the other three were categorical. As four continuous
explanatory variables were almost kept at same values, we
decided to exclude them from our analysis. Then, at most 34
continuous explanatory variables could be used to account
for the response variable. After continuous explanatory vari-
ables were determined, we also studied the three factor (i.e.,
categorical explanatory) variables. As the service type was
more important and more interesting than the other two,
we decided to use service type as the only factor in our ap-
proach. Therefore, our analysis involved 34 continuous ex-
planatory variables and one factor variable.

We used logistic regression to analyze the data. Assume
the factor variable has J levels. Let Yij be the ith value of
the response variable and xij be the ith vector of the con-
tinuous explanatory variables at the jth level of the factor
variable, where Yij = 1 if the attack is DOS and Yij = 0
otherwise. If Yij ∼ Bernoulli(πij) independently, then a lo-
gistic regression model with the interaction effect between
the continuous and factor variables is expressed as

(27) log[πij/(1− πij)] = β0j + x′
ijβj ,

for i = 1, · · · , nij and j = 1, · · · , J , where nij , β0j , and
βj represent the sample size, the intercept term, and the
slope vector of the continuous explanatory variables at the
jth level of the factor variable. The total sample size is n =∑J

i=1 nij . A main effect model is derived if βj are all equal.
We investigated possible ways for fitting (27) to the 1999

KDD data. We noted that the factor variable (i.e., service
type) had 70 levels. Many of them contained a few hundred
observations or less. After these levels were combined, the
factor variable still had 16 levels (i.e., J = 16). To fit (27),
one should open at least one matrix with n = 4,898,431
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rows and 16 × 35 = 560 columns. To load the matrix, a
computer should have at least 20GB memory size (assuming
each floating number is 8 bytes). As a fitting procedure often
needs to open several matrices with this size, the memory
need is often a few times higher than 20GB, indicating that
we cannot apply (27) to the original observed values of the
1999 KDD data.

We carried out a dimension reduction approach to reduce
the number of columns in our analysis. The approach was
only applied to the continuous explanatory variables. We
considered Algorithms 1 and 2 in the same way as we did
for the logistic regression in Section 5.2. Our results of Al-
gorithm 1 indicated that the first six principal components
could account for around 70% of the total variation. We de-
cided to apply Algorithm 2 with kopt = 6. We obtained a
data set with 8 columns, including the response variable, the
factor variable, and six principal components. The size of the
data set was about 0.6GB. The time taken of Algorithm 1
was 1,978 seconds (about 32.97 minutes). The time taken of
Algorithm 2 was 1,600 seconds (about 26.67 minutes).

After results of dimension reduction were derived, we car-
ried out a further analysis using the glm procedure in R. As
a factor variable was involved, we did not use (18). Instead,
we studied a few options of logistic regression models. If the
interaction effect between the factor variable and principal
components were involved, then an interaction effect model
was obtained as

(28) log[πij/(1− πij)] = β0j +

K∑
k=1

pcij,kβjk,

for i = 1, · · · , ni, j = 1, · · · , J , and K ≤ 6, where pcij,k
was the ith value of the kth principal component at the jth
level of the factor variable. We attempted to fit (28) with
K = 1, · · · , 6. We obtained results of (28) with K = 1, 2, 3.
When we fitted (28) withK = 4, the glm procedure was out-
of-memory. To check the reason, we monitored the memory
record of the R procedure with K = 3 via the Windows
Task Manager. It reported that the maximum memory size
occupied by R was over 15GB, which was just slightly lower
than the memory size (16GB) of our machine. Therefore, we
concluded that fitting (28) with four principal components
was impossible in our machine.

We also studied the main effect model. We removed inter-
action effect from (28) when K = 3 and obtained the main
effect model as

(29) log[πij/(1− πij)] = β0j +

3∑
k=1

pcij,kβk,

for i = 1, · · · , ni and j = 1, · · · , J . The model contained the
main effect of the factor variable (defined by β0j) and the
main effect of the first three principal components (defined
by βk with k = 1, 2, 3). It was derived by letting βjk = βj′k

for all j, j′ = 1, · · · , J in (28). To compare, we considered
two other models. In the first, we removed the factor vari-

able from (29) by letting β0j all equal and obtained the
model with only the first three principal components. In
the second, we removed the main effects of the principal
components from (29) and obtained the model with only
the factor variable. The residual deviance of the model with
k = 3 in (28) was G2

Int = 164,627. The value of its model
degrees of freedom was 59. The value of its residual degrees
of freedom was 4,898,317. Using the null deviance value
G2

Null = 4,998,871, we concluded that the model accounted
for about 96.7% total deviance value using only 59 degrees
of freedom (i.e., 96.7% = (G2

Null−G2
Int)/G

2
Null). The resid-

ual deviance of (29) was G2
Main = 195,305. It accounted

for about 96.1% total deviance value using 17 degrees of
freedom. In the comparison between the two models, we
concluded that the interaction effects between the factor
variable and the first three principal components were sig-
nificant (p-value less than 10−16). The residual deviance of
the model with only the first three principal components
was G2

Prin = 460,245. It accounted for about 90.8% to-
tal deviance value using 3 degrees of freedom. The resid-
ual deviance of the model with only the factor variable was
G2

Fac = 789,376. It accounted for about 84.2% total de-
viance value with 15 degrees of freedom. Our results showed
that all of the main and interaction effects were important.
It was enough for us to use the first three principal com-
ponents and service types to model whether the network
attack was DOS or not.

7. DISCUSSION

As the first step of classical PCA approaches is to load
the entire data set to memory, they cannot be applied if
the size of data exceeds the memory size of a computer. To
solve the problem, we propose a new PCA approach, where
the basic idea is to use the technique of scanning data by
rows. We demonstrate that our PCA approach can be ap-
plied even if the size of data is higher than the memory size
of the computer. As the technique of scanning data by rows
can be used either in an individual way or a parallel way,
our PCA approach can be applied to a personal computer or
a distributed computing system. If a personal computer is
used, then all of the computations are carried out in a single
processor. The approach can be applied if the observed data
can be saved to the hard disk of a personal computer. If a
distributed computing system is used, then the computa-
tions are carried out in many processors. The approach can
be applied if the observed data cannot be saved to the hard
disk of a personal computer. Therefore, the application of
our PCA approach relies on the hard disk size but not the
memory size of a computing system.

In classical PCA, loadings, singular values, and principal
components are treated equally important. A classical PCA
approach often attempts to provide all of these via singular
value decomposition of a standardized matrix of explanatory
variables. In big data analysis, standardization of a matrix
itself is a concern and should be avoided in the computation,
implying that many classical statistical approaches cannot
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be used, where PCA for dimension reduction is just one
of those. In our PCA, we treat loadings and singular val-
ues more important than principal components. We show
that it is not necessary to provide principal components if
the linear regression approach is considered in the follow-up
analysis. However, we should provide principal components
if other approaches are considered. Therefore, in dimension
reduction for big data, the choice of the follow-up analysis
is also important.

More importantly, our research provides a novel way in
understanding new statistical challenges in big data anal-
ysis. In classical statistics, computational efficiency is of-
ten studied after the entire data set is completely loaded to
memory of a computer. Statistical and computational meth-
ods are compared according to their time usages in memory,
where the way of reading data is often ignored. This is not
a concern in the analysis of small or moderate data but it is
a concern in the analysis of big data. Based on our research,
we find that the way of reading data significantly affects
the computational efficiency of the entire data analysis pro-
cedure. It is possible to provide exact solutions even if the
data set is extremely large. This is an important property in
PCA for big data when generalized linear models are used in
the follow-up analysis. It will have great impacts on future
statistical research on big data.
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APPENDIX A. PROOFS

Proof of Theorem 4.1: As Xs = UsDsV
′
s and Ss,xx =

X′
sXs = VD2V′, there is VsD

2
sV

′
s = VD2V′. Using the

uniqueness of eigenvalues in the eigenvalue and eigenvector
decomposition approach for a real symmetric matrix, there
is D2 = D2

c . As both D and Dc are diagonal matrices com-
posed of nonnegative real values, there is D = Dc.

Proof of Theorem 4.2: If eigenvalues of Ss,xx are all differ-
ent, then the dimension of eigenvector space corresponding
to each eigenvalue of Ss,xx is one. Using the uniqueness of
eigenvector space of a real symmetric matrix, we conclude
vj = vcj or vj = −vcj for every j = 1, · · · , p. By the defi-
nition of uj given by (14), we further conclude uj = ucj if
vj = vcj or uj = −uj if vj = −vcj .

Proof of Theorem 4.3: The eigenvector space of Ss,xx

corresponding to dγ1 , · · · , dγ2−1 is spanned by their eigen-
vectors vγ1 , · · · ,vγ2−1. It is unique and its dimension
is γ2 − γ1. For any orthogonal matrix Q on R

γ2−γ1 ,
there is span{vγ1 , · · · ,vγ2−1} = span{(vγ1 , · · · ,vγ2−1)Q},
implying that (vγ1 , · · · ,vγ2−1)Q also provides eigenvec-
tors corresponding to those eigenvalues. Therefore, there
exists an orthogonal matrix Q on R

γ2−γ1 such that
(vγ1 , · · · ,vγ2) = (vcγ1 , · · · ,vcγ2−1)Q. Using (14), we con-
clude (uγ1 , · · · ,uγ2) = (ucγ1 , · · · ,ucγ2−1)Q.

Proof of Corollary 4.1: By applying the conclusion of
Theorem 4.3 to each eigenvector space spanned by eigen-
vectors of distinct d0l, l = 1, · · · , q, we obtain Ql for each
l = 1, · · · , q. Since eigenvector spaces of distinct eigenval-
ues of a real symmetric matrix are orthogonal, we conclude
Q = diag(Q1, · · · ,Qq) is also an orthogonal matrix, imply-
ing the conclusion of the Corollary.

Proof of Theorem 4.4: If dk > dk+1, then we can find
an a ∈ {1, · · · , q} such that dk = d0a > dk+1 = d0(a+1),
implying that (Xsv1, · · · ,Xsvk) = (Xsvc1, · · · ,Xsvck)Qk,
where Qk = diag(Q1, · · · ,Qa) is uniquely determined the
eigenvector space spanned by eigenvectors corresponding
to d01, · · · , d0a. Therefore, the MLE of η is solution of
μ = (μ1, · · · , μn) by maximizing the likelihood function of
the data. Since the design matrix (1, PC1, · · · , PCk) of (18)
is full rank, the MLE of η is unique [25], implying the con-
clusion of the Corollary.

Proof of Theorem 4.5: Let sj,wy and ss,j,xy be the jth
element of swy and ss,xy, respectively, where we use j =
0, 1, · · · , p for swy and j = 1, · · · , p for ss,xy. Then, ss,j,xy =
(sj,wy − nx̄j ȳ)/bj , implying that one can derive ss,xy once
S is available. The conclusion is drawn as U is not used in
(22) or (23).

Received 5 August 2016
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