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Nonparametric multivariate Polya tree EWMA
control chart for process changepoint detection*

Yunut CHEND!, MINGWEI SUNY, AND TimoTHY HANSONY

In this article, we propose a nonparametric multivari-
ate control scheme for simultaneously monitoring several re-
lated characteristics of a process in time. Through the use
of a novel weighted multivariate Polya tree, the proposed
method can quickly detect small mean and/or variance shifts
in various types of longitudinal processes, Gaussian or non-
Gaussian. Briefly, we center a weighted multivariate Polya
tree at an initial parametric model on the monitored pro-
cess, such as multivariate Gaussian; then by adding more
details via data, departures from the parametric model will
be captured and used for adjusting the initial model to ob-
tain robust estimation. By weighting the Polya tree in the
test statistic, the proposed chart thus can heighten the sensi-
tivity of detecting one or more out of control characteristics.
Examples show that our chart performs good for monitoring
a process where the normality assumption is violated. Par-
ticularly, the proposed chart is more sensitive to variance
shifts compared to the multivariate EWMA and multivari-
ate CUSUM charts.

KEYWORDS AND PHRASES: Changepoints, Control Charts,
Exponentially Weighted Predictive Densities, MCUSUM,
MEWMA, Multivariate Polya Trees, Nonparametric Mod-
elings, Statistical Process Control.

1. INTRODUCTION

Recently, the rapid growth of data acquisition technology
has led to an interest in simultaneously monitoring several
quality characteristics. Consequently, the multivariate con-
trol chart has received increasingly more attention due to
its ability to monitor several correlated characteristics. To
this point, many multivariate control schemes and their ex-
tensions, see Crosier (1988), Lowry et al. (1992), Prabhu
and Runger (1997), and Testik and Borror (2004), grouped
by the multivariate Shewhart charts (Hotelling, 1947), the
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multivariate CUSUM charts (Woodall and Ncube, 1985),
and the multivariate EWMA charts (Lowry et al., 1992)
were proposed over the last few decades. But many of them
focused on detecting only the mean shift of a multivari-
ate process. To further address the effects on charts when
changes in the covariance matrix occurred, Yeh et al. (2004)
developed a likelihood-ratio-based EWMA chart for mon-
itoring the variability shift for multivariate Gaussian pro-
cesses. Along this line, see also Huwang et al. (2007) and
Hawkins and Maboudou-Tchao (2008). To further improve
the charts for detecting changes in the mean and covariance
matrix simultaneously, Zhang et al. (2010) proposed a chart
which integrates the EWMA procedure with the generalized
likelihood ratio test to jointly monitor the multivariate pro-
cess mean and variability under the normality assumption,
see also Cheng and Thaga (2005), Zhang and Chang (2008),
Reynolds and Cho (2011), and Wang et al. (2014).
However, it’s well known that parametric control charts
may signal incorrectly when the underlying normality as-
sumption is violated. Many nonparametric charts (Wille-
main and Runger, 1996; Albers and Kallenberg, 2004;
Chakraborti and Eryilmaz, 2007; and Chen 2015) were thus
developed for robustness; however none of them can be used
for multivariate processes. To this point, Qiu and Hawkins
(2012) proposed a multivariate CUSUM procedure to de-
tect mean shift upon the cross-sectional antiranks of the
measurements (ARCUSUM); Zou and Tsung (2011) devel-
oped a method to monitor a location parameter by adapt-
ing a multivariate sign test to online sequential monitor-
ing; and Li et al. (2013) proposed two nonparametric charts
for monitoring location and scale changes separately. Other
nonparametric methods proposed for detecting mean shifts
include Liu et al. (2013), Sun and Zi (2013), and Holland and
Hawkins (2014). However, there are only few nonparamet-
ric charts proposed for monitoring the mean and variability
shifts simultaneously for multivariate processes, see Li et al.
(2014). To this end, we propose a nonparametric multivari-
ate control scheme based on the weighted Polya tree (PT)
predictive density for monitoring the mean, variability, and
overall distributional shape changes simultaneously. Briefly,
we center a multivariate Polya tree at an initial parametric
guess on the monitored process, such as multivariate Gaus-
sian; then by adding more details via data, any departure
from this guess will be captured and used for adjusting the
initial to robustly detect longitudinal changes in the process
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when the underlying normality assumption is not satisfied.
To allow the density estimate to favor more recent observa-
tions and heighten sensitivity to detect out of controls, we
weight recent observations more to obtain a novel local pre-
dictive PT density. Consequently, the proposed chart inher-
its both merits of robustness of the nonparametric models
and sensitivity of the EWMA charts.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the exponentially weighted multivariate
Polya tree priors. In Section 3, we construct a nonparametric
multivariate chart based upon the proposed weighted Polya
tree, and also develop important aspects of the chart, in-
cluding obtaining the simulated control limits based on the
in-control parameters and diagnosing distributional changes
in the process. Simulation studies are then conducted in Sec-
tion 4 and we then illustrate the use of the chart based on the
pseudo real data simulated for a healthy condition process;
finally real data on a chemical quality process are analyzed
in Section 5. Conclusions are given in Section 6.

2. EXPONENTIALLY WEIGHTED
MULTIVARIATE POLYA TREE PRIORS

The Polya trees (PT) have been used for providing flex-
ible and robust inferences in several statistical domains in-
cluding regression models (Hanson and Johnson, 2002), sur-
vival analysis (Walker and Mallick, 1999; Hanson, 2006),
time series (Denison and Mallick, 2007), analysis for trun-
cated data (Chen and Hanson, 2014a), and hypothesis test-
ing (Chen and Hanson, 2014b; Cipolli et al., 2016). Most
applications have dealt with univariate data. Recent devel-
opments on multivariate PT by Paddock (1999), Hanson
(2006), and Chen and Hanson (2014b) provide a way for
multivariate nonparametric modeling.

We start by defining a multivariate finite PT prior for a
distribution G with dimension d > 1. Analogous to univari-
ate PT priors, and like the most popular charts which have a
Gaussian underlying assumption, the centering distribution
for multivariate PT can be assumed to be a multivariate
Gaussian denoted as ®4(u, X), where p is the d x 1 location
vector and X is the d X d covariance matrix. A multivariate
PT prior for G with finite J levels is characterized by a col-
lection of increasingly refined partitions on domain R? and a
collection of conditional independent probabilities that link
a parent set in a given level and its 2¢ offspring sets in the
subsequent level. Let Iy, ..., II; denote the series of nested
partitions such that II; is a refined partition of II;_; in that
each set in II;_; is the union of 2¢ offspring sets in IL;, where
1 < j < J, and IIj represents the entire domain R,

Consider the base sets By(j; k) for the jth level starting
with Cartesian products of intervals obtained as quantiles
from the standard normal distribution, i.e.,

. d
By(j; k) = X

(@71 ((h = 1)/2)), @7 (ki /2)))
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where k = (kq,...,kq) € {1,...,27}4 with each component
ki e{1,...,29} forl =1,2,...,d. The collection of all of the
sets {Bo(j; k) : k € {1,...,27}9} thus partitions the domain
R? at the level j. Consequently, partitions at the same level
j induced by the location-scale parameters (u,3) in the
centering distribution ®4(u, ) are obtained by

B(j;k) = {n+="?2: 2 € By(j; k)}

with Il; = {B(j; k) : k € {1,...,27}4}.

In addition to the nested partitions {IT;}7_,, the finite
multivariate PT prior for G is also defined through in-
dependent vectors of conditional probabilities denoted as
X = szl{X(j;k) ck € {1,...,27}9}. Specifically, let’s
consider an observation y = (y1,...,y4) withy | G ~ G.
Given y is contained in set B(j;k) at the jth level, then y
must belong to one of the 2¢ offspring sets in IL,; 1. Denote
those offspring sets by {B(j + 1;2k1 — s1,...,2kq — sq4) :
(50,---,54) € {0,1}%} and let the vector X(j;k) grouped
by the corresponding conditional probabilities of y being
in those 2% sets given y in their parent set B(j;k). For all
k € {1,...,27}% we model X(j;k) € X, for j =1,...,J,
with X(j; k) ~ Dirichlet(15a¢p(j)), where 1,4 is a vector
of length 2¢ containing all ones, ¢ > 0 and p(j) > 0. By
specifying that G follows the centering ®4(u, ) on the sets
at level J, then a random distribution G on (R?, B(R)) is
said to have a finite multivariate PT prior with parameters
(c,p(4), ®a(p, X)), written as G ~ PT{(c, p(j), Pa(p, X)).
Various functions for p(j) have been considered, see Lavine
(1992), Berger and Guglielmi (2001), and Branscum and
Hanson (2008), and throughout this paper, we set p(j) = 52
(Hanson, 2006; Chen and Hanson, 2014b). The parameter ¢
is used for controlling how close G is to ®4(u, X); as ¢ — 0o
the centering ®4(p, ) will be obtained. For more details
about univariate and multivariate Polya trees, see Hanson
(2006).

Let y1.; = (y1,¥2, - - .,y:)" be the first ¢ observations that
follow the nonparametric finite multivariate PT prior cen-
tered at ®4(p, ), written as
(1) LyilG A G, Gle, B ~ PTY (¢, @4(, ).
Note here, we consider p(j) = j2 and thus neglect it from
the notation for PT7(-). The predictive density for a new
observation y given y1.; (Hanson, 2006; Chen and Hanson,
2014b) is then written as

(2)
p(y|yLi, ¢ pu, B) = da(y|p, )
LGP He(yi D) = €;(yis 1. D)}

<11

T2+ 270 Y e (i B) = €1 (yii g, B)}

yi,--

where ¢4(-|p, X) is the d-dimensional Gaussian density as-
sociated with ®4(p,X), I(-) is an indicator function with



I(A) =11if A holds and 0 otherwise, and

¢yin=) H (270, [28(z)])

z = (21,...,2(1)/:2_%(}’—#)

is a d x 1 vector indicating which partition set y resides in at
the level j, here [x] is the usual ceiling function, giving the
largest integer less than or equal to . We should mention
here that there are a continuum of matrix square roots of
3. Consider the usual spectral decomposition X = MAM'.
Two obvious square roots are £~2 = MA~% (asymmetric)
or 77 = MA—:M/ (symmetric), see Chen and Hanson
(2014b). Others can be considered, e.g. ¥ = MA:O
where O is a matrix with orthonormal columns and rows
(Hanson, Monteiro, and Jara, 2011).

In the usual predictive density estimate (2), the elements
in yi.; contribute the same weight to the predictive den-
sity of y, regardless of how recently they occurred. To allow
the density estimate to favor more recent observations and
heighten sensitivity to a process that is beginning to fall
out of control, the density should weight more recent obser-
vations more highly. Following Zou and Tsung (2010), we
exponentially weight the observations, obtaining the local
predictive process written as

(3)
pA(YIy1i, ¢ e B) = galy|u, )

1‘—’[ 2+ i Hei(yi X)) = € (yri 1, 2)FA — N7k

x . —,
i it +274 o e -1 (v, B) = €1 (yis i, D) HL — )ik

where A is a smoothing parameter that satisfies 0 < A < 1.
With A = 0, an unweighted predictive density is obtained.
This density estimate eventually “forgets” observations that
occurred in the distant past, thus allowing focus to shift
onto the recent observations that we wish to classify as “in-
control” or “out-of-control”.

3. MULTIVARIATE POLYA TREE EWMA
CONTROL CHART

3.1 Test statistic

Assume sequence of observations
Yise s YmsYm+l,-.., where yi,...,¥, are known in-
control observations collected in Phase I and y,,41,-..,
are obtained as unknowns in Phase II. The ¢ observations
are collected over time and follows the change point model
characterized by a finite multivariate PT as

we observe a

iid
yi|Go “~" Gy, Goleo, p°,

2% ~ PT(co, Pa(n’, £°)),
fort=1,....mm-+1,...,n,

In-control:

Out-of-control:  y:|G; e G1, Giler, pt,
st~ PT (c1, @a(pt, 21)),
fort=n+1,...,

where 77 is the unknown change point, and Gy and G;
are the distribution functions for in-control and out-of-
control processes, respectively, with Gy # G1. To test if
t is the change point, we thus wish to test the null hy-
pothesis Hy : y¢|Go ~ Gg versus the alternative hypothesis
Hi : y¢|G1 ~ G1. An intuitive way to conduct this testing
is to compare the predictive density of y; given the obser-
vations from the Phase II to the one given the observations
from both Phases. In addition, to further allow the test to
favor more recent observations, we thus consider the test
statistic as

(4)

t , D (yz'\ym+1:i,<31iyll2\7 Ef‘)
)= Y (13" |log ),
v po (yilyi:i-1, cois 1, 27)

see Zhang (2002) and Zou and Tsung (2010), here an un-
weighted density estimate po(-) is defined in Eq. (2) and a
weighted density py(+) is given in Eq. (3); ¢1; and c¢g; are cho-
sen such that py(-) and po(-) are maximized over the grid
{exp (%(j -1) - 7) }5():1’ respectively, see Chen and Han-
son (2014b). The estimated mean and covariance for the
centering distribution in pg(-) can be obtained as the sam-
ple mean and sample covariance matrix for a multivariate
Gaussian given as

i—1 i—1
. 1 . 1 N N
N?:i—lg yx and E?:i—lg (Yk—ﬂg) (Yk_l‘?)/’
k=1 k=1

respectively. Similarly, the mean and covariance for py(-)
are estimated from the weighted sample mean and sample
covariance matrix given by

N A : .

ik *mkzgﬂ(lﬂ) “yi.

X A ‘ ik A A\
S e, 2 (0 ) (el

respectively, with the fact that ZZ:7,L+1(1_)\)i7k -

[1 (1- /\)Z’m} oy

The test statistic constructed upon the predictive densi-
ties in Eq. (4) performs in the similar way to the likelihood
ratio test but with higher weights for more recent obser-
vations. It thus provides an evidence that a new observa-
tion y¢, for t = m + 1,..., is out of control if its statistic
T)(t) > Uy, where U is chosen based on an arbitrarily pre-
selected in-control ARL and changes with ¢. Note that: as
¢ — 00, a multivariate Gaussian EWMA control chart ob-
tains, but where the density is used to determine process
control rather than the mean. The computational efficiency
is achieved by its recursive format, see Proposition 1 given
as follows.
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Proposition 1. The statistic T\(t) defined in Eq. (4) has
a recursive format

(5)

PUREDY

. =

here Ry(t) = | log AWt mirecrepy B,
A( ) g po(yelyiit—1,c0t,9,29) |7

with the initial Tx(m) = 0.

Ta(t) = Rx(t) + (1 = N)Tn(t — 1),

fort=m+1,...,

The proof is trivial and thus we ignore it here, but one
can refer to the article by Lowry et al. (1992) for details. By
the following theorem, we found that as m — oo and t — oo,
R\ (t) computed upon the observations collected from any
continuous underlying process will converge in probability
to Rx(t) obtained based on the observations from a Gaus-
sian process. It thus suggests an efficient way to obtain the
simulated control limits, i.e., for a large t, we could use the
value of Ry (t) just from the Gaussian underlying to help ob-
tain the test statistics for any other continuous underlying
processes.

Theorem 1. Let

pA(Yz ‘ Ym+1:i, Clis /1’1)\7 zf\)
po(yi | Y1:i-1, coi, u?, 29)

Rx(i) = |log

obtained upon observations yi,...,¥Ym,-.-,Yt,-.. from a d-
dimensional Gaussian distribution Ng. Stmilarly, let R (i)
be obtained upon observations yi,...,¥r,---,¥i,... froma
d-dimensional distribution Fyg which is different from Ng.
Given Ny and Fy are known, as i — oo, R3 (i) converges in
probability to Rx(i).

The proof is given in Appendix.

3.2 Implementation issues
Control limits

Given a false alarm rate a according to the in-control
ARLy, i.e., ARLy = 1/a, the control limit U; can be ap-
proximated (Hawkins et al., 2003; Zhou et al., 2009; and
Zou and Tsung, 2010) by

(6)
o Pr(T\(t) > UgTh(m)=0); t=m+1
Pr(Ta(t) > Uy ;2 Th(G) < Uj); t>m+1
Note, usually in order to calculate the values of U; for
m+1 <t < m+d, one could take the last d observa-
tions from the historical data as the pseudo-future obser-
vations, see Zou and Tsung (2010). Then those d histor-
ical observations together with the observations in Phase
IT are sufficiently used to obtain the control limits, U, for
t =m+1,...,. In our simulation studies, we instead simulate
in-control samples of size m+d with the extra d data points
combined with the observations in Phase II for calculating
the control limits.

In Table 1, we provide the simulated control limits for
a multivariate Gaussian process, Ny(p = 0gx1, 2 = Lixa),
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and a multivariate Student-t process, Tg(p = Ogx1, % =
Lix4,d.£.=10), based on the in-control ARLy = 200 and
the different combinations of d, A, and m, i.e., (d = 3, A =
0.05,m = 100), (d = 3,\ = 0.2,m = 300), and (d = 5,A =
0.1,m = 100). The simulated control limits are based on the
total of 10,000 in-control samples. We observed the control
limit increases as ¢t goes up till it will be fixed at a certain
t. Following the discussion in Zou and Tsung (2010), we
therefore suggest to compute the first 200 control limits and
the last one in this sequence is then used for the remains.
In addition, the control limits do depend on the in-control
mean and covariance, and thus one may need to simulate
the control limits for each particular setup to guarantee to
achieve the best performance of the chart. The control limits
for other in-control setups are available from the authors
upon request.

Diagnostic

In addition to detecting the change point of a process, in
practice, it is also critical to diagnose a change in the multi-
variate process of interest. Reynolds and Cho (2006) pointed
out that in today’s environment of multivariate monitoring,
control charts are almost always plotted by computer, so ad-
ditional control charts or other plots can be called up when
needed for diagnostic. But it is not that easy since a number
of characteristics are involved at one time and also correla-
tions exist among them. The identification of out-of-control
characteristics after warning signals has been an interesting
topic for many researchers, see Alt (1985), Jackson (1991),
Hayter and Tsui (1994), Sepulveda and Nachlas (1997), Ni-
aki and Abbasi (2005), and Zou et al. (2013). Among them,
Zou et al. (2013) presented an appealing lasso-based diag-
nostic framework for multivariate statistical process control,
which is also adaptive to our proposed chart for diagnosing
the changes. Briefly, let Z; and Zs be two sets of indepen-
dent observations before and after a parameter change in the
monitored process with the mean vector of the in-control p,
and out-of-control ., respectively. Further let g, = pq +9.
Zou et al. (2013) pointed out that in many applications,
it is rare that all parameters shift at the same time, and
thus some components of § are zero. They thus presented
a method for determining which components of § are not
zero by using a lasso-based method to shrink all nuisance
components to be exactly equal to zero. Consequently, the
non-zero components give a hint on which parameters are
shifted. For each component of 6, if one considers it either
zero or not, the full model space contains total 2% — 1 can-
didate models, where d is the multivariate dimension. Thus
they further provided a model comparison method within
the Bayesian framework based on posterior probability de-
rived from their proposed pseudo-likelihood, which eventu-
ally leads to minimize an extended family of BIC (EBIC),
see Chen and Chen (2008). For details, one can refer to
Zou et al. (2013), but this is beyond our scope for this arti-
cle.



Table 1. The Simulated Control Limits, Uy, fort =m+k and k=1,2,...,300

d=3,X=0.05,m = 100

d=3,A=0.2,m =300

d=5XA=0.1,m=100

k Ni Ta Na Ta Ny Ta
1 18.928 23.600 19.377 23.471 28.821 35.622
2 30.973 34.220 29.309 33.501 48.009 55.404
3 41.428 45.369 36.920 41.059 63.816 69.345
4 50.607 54.753 42.627 47.088 77.687 84.582
5 59.097 62.710 46.847 50.905 89.600 96.635
6 66.694 70.643 50.031 53.916 99.943 106.817
7 73.845 78.234 52.253 57.255 109.599 116.395
8 80.723 85.505 54.153 59.231 117.464 125.593
9 87.003 91.534 55.440 60.866 124.911 132.432
10 92.916 96.817 56.773 61.980 131.255 138.222
11 98.415 102.692 57.921 62.329 136.760 144.741
12 103.290 107.859 58.078 62.620 142.064 149.956
13 108.237 113.365 59.025 63.497 146.797 154.078
14 112.692 117.550 59.359 63.652 150.601 160.077
15 117.250 121.356 59.578 63.706 154.577 162.530
16 121.111 125.671 59.892 63.817 157.661 164.423
17 124.825 129.177 60.099 63.966 160.590 167.949
18 128.267 133.057 60.260 64.176 162.688 170.538
19 131.608 136.586 60.471 64.305 164.982 173.441
20 134.773 138.928 60.521 64.453 167.232 174.789
22 140.466 144.487 60.627 64.539 170.409 179.613
25 147.731 151.957 60.782 64.653 174.401 181.041
28 153.928 158.291 60.831 64.718 177.141 185.644
30 157.383 161.185 60.933 64.810 178.172 186.108
35 164.630 168.417 60.967 64.898 180.059 187.310
40 169.714 173.884 61.016 65.007 181.557 188.124
50 176.646 181.072 61.098 65.106 182.005 188.984
60 180.491 184.050 61.189 65.198 182.341 189.792
70 182.579 186.257 61.263 65.287 182.687 190.266
80 183.449 187.047 61.313 65.366 183.019 190.447
90 184.077 187.586 61.352 65.442 183.210 190.627
100 184.385 188.412 61.382 65.695 183.357 190.754
120 184.535 188.366 61.427 65.732 183.455 190.887
140 184.656 188.172 61.458 65.774 183.525 190.993
160 184.775 188.885 61.492 65.801 183.603 191.175
180 184.878 188.923 61.538 65.828 183.664 191.207
200 184.965 188.954 61.546 65.838 183.680 191.225
230 184.987 188.972 61.546 65.839 183.687 191.283
260 184.987 188.973 61.546 65.839 183.687 191.283
300 184.987 188.973 61.546 65.839 183.687 191.283

4. SIMULATION STUDIES

To investigate the performance of the proposed multi-
variate Polya tree EWMA (MPTEWMA) chart, we con-
duct simulation studies under several shifting scenarios for
multivariate Gaussian Ny(p, ) and multivariate Student-¢
Ta(p, X, d.f. = 10) processes. Let the in-control mean vector
and covariance matrix be p, and ¥y and the out-of-control
mean vector and covariance matrix be p; and ¥;. The dif-
ferent types of shifts considered here are: (a) mean shift only;
(b) variance shift only; and (c¢) mean and variance shift.

Under the scenario (a), we consider two different situ-
ations: (i) all variables have changes in the location, i.e.,

e = po + 9 (001,002,...,004)"; and (ii) we arbitrar-
ily choose to shift the location of the second variable Xs,
ie, py = po + 0 - (0,002,0,...). We set the in-control
ARL as ARL;. = 200 so that the false alarm rate o =
0.005. For comparison purposes, we also include the sim-
ulation results from two popular multivariate charts: the
multivariate EWMA (MEWMA) chart and the multivari-
ate CUSUM (MCUSUM) chart. Specifically, the MEWMA
and MCUSUM charts could be obtained by using a built-
in R function called mult.chart() in the R package MSQC
(Santos-Fernandez, 2016). For choosing the design parame-
ters of an MCUSUM chart, one can refer to the articles by
Healy (1987) and Pignatiello and Runger (1990). The sim-
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ulated ARL results based on 2,000 datasets are reported in
Table 2 with different in-control p, and ¥, for three com-
binations of d, A, and m; i.e., (d = 3, A = 0.05,m = 100),
(d =3,A=0.2,m = 300), and (d = 5,A = 0.1, m = 100).
d is considered from the set of {0,0.5,1,1.5} with § = 0 for
in-control purpose. The simulated control limits do depend
on the in-control mean and covariance, but to investigate
the effects of using the same control limits for different in-
control setups, in Table 2 [C], we report two results under
a Gaussian process for different combinations of d, A, and
m. The column labeled as Ny gives the ARLs based on the
control limits simulated upon its own in-control parameters,
ie., o = (1,4,8) and Xy = X, where

1 18 —06
= 18 4 —24 |,
—06 -24 9

and the column labeled as A; provides the ARLs obtained
upon the control limits from the in-control g, = 0gx1 and
Yo = Igxq. The ARL results shown in both columns (Ny
and N) for the MPTEWMA chart are very close to each
other when the underlying process is a Gaussian. However
we found it will not be always true for a non-Gaussian pro-
cess. Thus, we suggest, in order to better monitor a pro-
cess, one should simulate the control limits for that partic-
ular process, especially when the process is not Gaussian
distributed. Otherwise, false alarms will be triggered often.
Apparently, the MEWMA and MCUSUM charts work bet-
ter than the MPTEWMA chart when the monitored pro-
cess follows a Gaussian distribution, see the scenario (a)
[A], [B], and [C] for a Gaussian underlying. However, when
processes are non-Gaussian distributed, see the scenario (a)
[A] for a Student-t, the MPTEWMA performs better. But
it performs not as good as the MEWMA and MCUSUM
charts in the scenario (a) [B] when a mean shift occurs only
on one variable, it is possibly due to a small sample size
of Phase I since our proposed nonparametric method needs
more data to precisely estimate the chart parameters. We
also found the chart parameter A works fine when it takes a
value from the set of {0.05,0.1,0.2}. Those values are also
recommended in other articles, see Lowry et al. (1992).
Under the scenario (b), we also consider two different
situations: (i) all variables have changes in their variances,
ie., 015 = Voogs for s = 1,2,...,d; and (ii) we arbitrarily
choose that a variance change occurs at the third variable
X3, i.e., 013 = V0op3. We report the simulated ARL results
in Table 3 again with different in-control p, and 3, for
three combinations of d, A, and m. ¢ is considered from the
set of {1,2,4,6} with § = 1 for in-control purpose. Similar
to what we did for the mean shift only scenario, in Table 3
[C], we also report two results for a Gaussian process with
different combinations of d, A, and m. Again, we can observe
the same phenomenon that the ARLs of the MPTEWMA
chart are quite close to each other even if the control lim-
its are obtained from different in-control setups. As before,
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this conclusion does not usually hold for a non-Gaussian
process. From Table 3, obviously, we could tell that our pro-
posed method works the best in detecting variance shifts for
either Gaussian processes or non-Gaussian processes. This
again shows our nonparametric method can relax certain re-
strictive assumptions on the underlying processes and thus
it is more robust for various types of processes.

Under the scenario (c), we consider that the underlying
process is a multivariate Student-t, T5(u, X, d.f.=3), with
d = 5. The in-control mean vector and covariance matrix
are setup as

o = (2,5,0,10,4)" and
4 4 0 -2 64
4 16 24 4 438
=] 0 24 1 35 0 |,
-2 4 35 25 2

64 48 0 2 16

respectively. We arbitrarily choose to change the mean of
X and the variance of X5, i.e., g = pg+6-(0, 092,0,0,0),
o15 = \/(?0057 and others leave the same as the in-control
setups. We consider five different combinations of § and §*
including 6 = 0 and 6* = 1 for the in-control status. The
simulated ARL results are reported in Table 4. Obviously,
the in-control ARLs of the MEWMA and MCUSUM charts,
i.e., 88.38 and 128.68, respectively, are much smaller than
200, which suggests warning signals will be falsely triggered
often when no shift occurs. In contrast, the proposed method
works perfectly for the in-control status.

We should note that for a non-Gaussian distributed pro-
cess, the proposed chart usually takes longer to send a warn-
ing signal. For example, in Table 2 [B] for (d = 3, =
0.05,m = 100), when the mean of X5 shifts to the right
by 0.5, the ARL is 99.62 under a Gaussian process com-
pared to the value of 144.27 for a Student-t. The key reason
is that the proposed chart considered the Polya tree cen-
tered at a Gaussian, it thus can more efficiently detect the
out-of-control status for a Gaussian process. Consequently,
a pilot study on dataset is preferred in order to find a better
initial guess (the centering parametric distribution) on the
process to achieve a better monitoring.

To better illustrate our proposed method also suitable
to moderate dimensions, we give one more simulation with
the dimension d = 20 and the underlying process follows a
Student’s t-distribution with the degree of freedom equal to
10. We choose A = 0.1 and m = 100. The covariance ma-
trix is set up such as the diagonal entries equal to 1 and
the off-diagonal entries is obtained by cov(i,j) = 0.5,
where cov(i,j) denotes the entry of the covariance matrix
at the row i and the column j. We arbitrarily choose to
shift the variance of Xy by 5 = /doo with § = {1,2,3,4}.
The ARL results are given in Table 5. Again, the proposed
method performs the best. In other words, compared to the
MEWMA and MCUSUM charts, the proposed method can



Table 2. Scenario (a): Mean Shift Only

[A]: Mean Shift On All Variables: g, = 04x1 and 2o = Lgxa

d=3,X=0.05,m = 100

MPTEWMA MEWMA MCUSUM
0 Na Ta Na Ta Na Ta
0.0 200.16 201.12 201.64 202.87 198.99 201.64
0.5 27.28 60.34 13.00 83.53 12.55 74.68
1.0 7.18 13.38 4.01 24.81 4.23 24.89
1.5 3.66 6.87 2.25 7.67 2.31 7.71
d=3,A=0.2,m =300
MPTEWMA MEWMA MCUSUM
5 Na Ta Na Ta Na Ta
0.0 199.45 200.28 198.63 203.39 198.34 202.32
0.5 20.54 61.13 15.16 80.05 11.72 73.39
1.0 6.14 15.58 4.21 25.06 4.01 24.41
1.5 3.08 6.23 2.35 7.73 2.13 7.61
d=5,A=0.1,m =100
MPTEWMA MEWMA MCUSUM
1) Ny Ta Ny Ta Na Ta
0.0 200.48 200.49 199.66 201.95 203.02 202.78
0.5 23.56 99.58 10.99 101.54 10.24 101.11
1.0 6.68 22.40 3.41 24.04 3.38 24.11
1.5 3.70 9.50 1.80 10.28 1.83 10.32
[B]: Mean Shift Only On Xa: g1y = Ogqx1 and o = Iixa
d=3,A=0.05,m =100
MPTEWMA MEWMA MCUSUM
1) N Ta N Ta Na Ta
0.0 200.13 200.17 202.44 199.44 199.27 203.87
0.5 99.62 144.27 31.20 94.57 36.54 80.34
1.0 22.30 126.85 9.83 31.12 10.40 31.63
1.5 9.73 46.27 5.14 8.85 5.21 9.06
d=3,2=0.2,m =300
MPTEWMA MEWMA MCUSUM
1) Ny Ta N Ta Na Ta
0.0 199.36 199.41 203.51 199.45 198.73 202.87
0.5 97.57 179.01 41.976 85.67 33.21 84.14
1.0 27.24 135.04 11.494 33.92 9.29 30.46
1.5 9.81 68.55 5.44 9.36 5.24 8.81
d=5A=0.1,m =100
MPTEWMA MEWMA MCUSUM
1) Na Ta N Ta Na Ta
0.0 199.82 200.57 201.53 198.01 202.67 197.44
0.5 144.25 178.02 51.92 107.76 42.52 105.73
1.0 61.30 154.94 12.70 34.55 12.86 33.24
1.5 19.05 110.98 6.19 10.30 6.17 10.20
[C]: Mean Shift Only On Xa: py = (1,4,8)" and o = 3§
d=3,A=0.05,m =100 d=3,A=0.2,m =300
MPTEWMA MEWMA MCUSUM MPTEWMA MEWMA MCUSUM
1) Na N Na Ny Na N Na N
0.0 199.94 197.31 201.89 198.79 200.24 205.23 200.01 202.68
0.5 12.30 12.26 6.25 6.51 12.31 12.33 6.66 6.43
1.0 3.64 3.63 2.14 2.37 2.87 2.88 2.05 2.25
1.5 1.97 1.97 1.24 1.33 1.54 1.55 1.22 1.34
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Table 3. Scenario (b): Variance Shift Only

[A]: Variance Shift On All Variables: py = 0gx1 and X = Lixa

d=3,A=0.05,m = 100

MPTEWMA MEWMA MCUSUM
Vo Ny Ta Ny Ta N T
;; 1 200.05 200.35 202.39 202.85 199.42 203.88
V2 20.04 30.79 28.27 39.57 22.04 31.05
V4 5.18 8.07 5.72 8.77 5.54 8.19
V6 3.24 4.69 3.53 4.73 3.27 4.70
d=3,)=0.2,m =300
MPTEWMA MEWMA MCUSUM
Vo Na Ta Na Ta Ny Ta
;; 1 199.76 200.48 201.15 195.55 198.36 201.64
V2 14.65 25.74 17.42 25.87 19.12 25.02
V4 4.36 7.23 4.86 7.99 4.56 7.91
V6 2.78 4.31 3.20 4.55 3.29 4.51
d=51=0.1,m =100
MPTEWMA MEWMA MCUSUM
Vo Na Ta Na Ta Ny Ta
;; 1 200.11 200.25 203.66 203.68 201.37 204.73
V2 14.17 32.10 16.17 32.81 20.91 33.77
V4 3.89 7.46 4.20 8.11 4.15 7.55
V6 2.45 4.38 2.80 4.78 2.66 4.64
[B]: Variance Shift Only On X3: py = Ogx1 and 3o = Iixq
d=3,A=0.05,m =100
MPTEWMA MEWMA MCUSUM
V6 Ny Ta N Ta Ny Ta
V1 199.64 200.33 202.97 202.64 202.77 203.60
V2 73.86 97.79 94.81 102.87 80.16 105.72
V4 15.93 34.55 25.72 36.26 22.23 36.68
V6 8.97 18.15 14.62 18.74 10.91 19.17
d=3,)=02,m =300
MPTEWMA MEWMA MCUSUM
V6 Ny Ta Ny Ta Ny Ta
;; 1 200.20 200.72 200.18 197.10 202.53 200.82
V2 53.02 87.67 61.56 99.27 58.78 96.96
V4 12.18 32.98 14.3 41.61 18.75 41.12
V6 7.12 15.62 8.47 17.42 10.22 17.03
d=5Xx=0.1,m = 100
MPTEWMA MEWMA MCUSUM
V5 Na Ta Na Ta Na Ta
V1 199.94 200.76 201.36 201.54 203.86 199.53
V2 92.14 103.73 94.51 119.22 95.76 108.74
V4 28.42 69.31 33.75 76.49 36.02 75.12
V6 13.23 43.30 17.36 50.95 17.64 44.48
[C]: Variance Shift Only On X3: p, = (1,4,8)" and g = §
d=3,A=0.05,m =100 d=3,A=02,m =300
MPTEWMA MEWMA MCUSUM MPTEWMA MEWMA MCUSUM
Ve Ny Nj Ny Na Ng Nj Na Ny
V1 199.70 198.69 201.65 202.17 200.21  204.55 196.78 203.02
V2 66.19 65.57 68.63 69.98 40.99 42.65 45.04 47.54
V4 13.73 13.49 18.42 15.75 10.00 10.02 10.14 14.15
V6 7.58 7.57 10.72 8.93 5.33 5.32 6.72 6.67
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Table 4. Scenario (c): Mean and Variance Shift

A]: Mean Shift On X5 and Variance Shift On X5: =(2,5,0,10,4)" and Xy = X3*
Ho

d=5X =0.1,m =100

(6,V/6%) (0, V1) (0.5,v2) (0.5,6) (1,V4) (1.5,v2)
MPTEWMA-ARL 199.67 45.09 29.96 24.78 11.37
MEWMA-ARL 88.38 9.16 3.82 2.85 2.11
MCUSUM-ARL 128.68 13.43 7.74 5.66 4.46

Table 5. A Moderate Dimension
d=20,A=0.1,m = 100

v6 MEWMA MCUSUM MPTEWMA
V1 202.31 201.56 203.91
V2 121.43 135.44 117.14
V3 67.59 84.70 57.58
V4 43.29 60.38 35.05

quickly trigger a warning signal when an out-of-control oc-
curs.

5. EXAMPLES

5.1 A simulated example

In this section, we will illustrate the proposed chart for
monitoring the health condition of human beings. We as-
sume that we are interested in monitoring four character-
istics: RBC (Red Blood Corpuscle) Count, MCHC (Mean
Corpuscular Hemoglobin Concentration), VA (Visual Acu-
ity), and BUN (Blood Urea Nitrogen). Briefly, RBC count
measures the number of red blood cells, and the normal
RBC range is 4.2 — 6.1 x 10'° cells/cL (cells per centiliter).
Their logarithm values are thus in the range of 24.4 — 24.8.
MCHC measures the concentration of hemoglobin in a given
volume of packed red blood cells, and its normal range is
3.0 — 3.6 x 10* mg/dL (milligrams per deciliter). We also
consider the values of their logarithm in our model, i.e.,
10.3 — 10.5. VA commonly refers to the clarity of vision
and usually is measured as a fraction from the eye chart.
BUN provides the important information for one’s kidney
and liver function, and the normal range for the amount of
urea nitrogen in blood is 9 — 20 mg/dL.

According to the illustration on the above four charac-
teristics, we simulate 300 data points from a multivariate
Student-t underlying, T4(u, ¥, d.f.=12), for Phase I using
the in-control mean vector and covariance matrix as

25 18 0 —6
18 16 0 —4

po = (246,104,216, 0= | | 5 |
-6 -4 02 4

respectively. Based on the facts, we assume a positive rela-
tionship between the pairs of RBC count and MCHC, and

VA and BUN, a negative relationship between the pairs of
RBC count and BUN, MCHC and BUN, and no relationship
between the pairs of RBC count and VA, MCHC and VA
in the covariance matrix. The testing sample of size 100 in
Phase 11 is generated the same way as the first 80 data points
from the in-control process, and starting from the 81st data
point, changes in the location of RBC count occur, which
means an unhealthy condition is observed. We further as-
sume RBC count increases by 0.20 = 0.24/25 = 1 on the
logarithm scale. As usual, the in-control ARL are set as 200
and let A = 0.1. The control limits of the proposed chart
are obtained based on 10,000 in-control samples, and the
control limits of MEWMA and MSEWMA are 12.723 and
11.896, respectively. To investigate the performance of the
proposed chart (MPTEWMA), we compare it to the multi-
variate EWMA (MEWMA) chart by Lowry et al. (1992) and
the multivariate sign EWMA (MSEWMA) chart by Zou and
Tsung (2011) and report the results in Figure 1, Figure 2,
and Figure 3.

Obviously, compared to the MEWMA and MSEWMA
charts, the proposed chart performs the best in the sense
that it can quickly detect the changes and thus send signal
warnings when an operation problem occurs in the process.
Specifically, from Figure 3, the proposed chart starts to cor-
rectly send warnings from the 84th observation. However, in
contrast, the MEWMA chart can not detect any shift and
thus no signal is triggered, see Figure 1. Instead of warning
the out-of-control status, the MSEWMA chart actually has
two false nuisance alarms for the 27th and the 76th obser-
vations, see Figure 2.

5.2 Real data application

In this section, we use the proposed chart to monitor a
real chemical process (Montgomery, 2009). We are interested
in simultaneously monitoring four characteristics. 20 data
points are collected in Phase I, see Table 6, and the in-
control mean vector and correlation matrix are

o = (9.955,20,14.68,15.765)
1.0000 0.9302 0.2060 0.3595
s 0.9302 1.0000 0.1669 0.4502
o 0.2060 0.1669 1.0000 0.3439 |’
0.3595 0.4502 0.3439 1.0000

respectively. Following the discussion in Montgomery
(2009), the underlying process is assumed to be a multivari-
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Figure 1. MEWMA. Figure 2. MSEWMA. Figure 3. MPTEWMA.
Table 6. Chemical Process in Phase |
Observation T1 Ta T3 T4 Observation T1 To T3 T4
1 10 20.7 13.6 15.5 11 10.5 20.3 17 16.5
2 10.5 19.9 18.1 14.8 12 9.2 19 11.5 16.3
3 9.7 20 16.1 16.5 13 11.3 21.6 14 18.7
4 9.8 20.2 19.1 17.1 14 10 19.8 14 15.9
5 11.7 21.5 19.8 18.3 15 8.5 19.2 174 158
6 11 209 103 13.8 16 9.7 20.1 10 16.6
7 8.7 18.8 16.9 16.8 17 8.3 18.4 125 14.2
8 9.5 19.6 13.6 14.5 18 11.9 21.8 14.1 16.2
9 10.1 194 16.2 15.8 19 10.3 20.5 15.6 15.1
10 9.5 19.6 13.6 145 20 8.9 19 8.5 14.7
Table 7. The Fitted Control Charts
MPTEWMA MEWMA MSEWMA
t T1 T2 T3 T4 U TA(t) th Qt
1 9.9 20 15.4 159 27.877 13.865 0.033 0.760
2 8.7 19 9.9 16.8 43.188 30.355 2.162 0.010
3 11.5 21.8 19.3 12.1 55.994 53.262 4.668 0.624
4 159 246 14.7 15.3 67.599 82.978 21.473 2.058
5 12.6 239 17.1 14.2 76.412 386.325 245.867 4.009
6 14.9 25 16.3 16.6 84.863 365.050 161.950 7.046
7 9.9 23.7 11.9 18.1 92.138 344.028 34.664 2.890
8 12.8 26.3 13.5 13.7 98.733 327.653 80.557 2.284
9 13.1  26.1 10.9 16.8 103.933 310.868 170.454 2.328
0 9.8 25.8 14.8 15 109.197 296.950 424.396 4.438

*

ate Gaussian; we thus use the Henze-Zirkler’s approach to
test the normality assumption and obtain the p-value equal
to 0.974, which again supports Montgomery’s discussion. We
further compare the proposed chart to the MEWMA and
MSEWMA charts with the smoothing parameter A = 0.1
and the in-control ARLg = 200. The fitted results along
with the 10 observations in Phase II are reported in Ta-
ble 7.

Obviously, the proposed chart starts to trigger warn-
ings from the 4th observation, coincides with the fact that
the process went out-of-control starting from the 4th one.
The same situation is also observed from the MEWMA
chart with its control limit 12.723. It turns out that for
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The control limits for the MEWMA and MSEWMA charts are 12.723 and 11.896, respectively.

a multivariate Gaussian process, the proposed nonparamet-
ric chart can perform as well as the parametric MEWMA
chart. However, in contrast, the nonparametric MSEWMA
chart fails to detect changes with all test statistics smaller
than its control limit 11.896. This shows that the pro-
posed nonparametric chart is more stable compared to the
MSEWMA chart when the in-control sample has a small
size.

6. CONCLUSIONS

We proposed a multivariate nonparametric control chart
for detecting changes in the process using a novel weighted



Polya tree. Simulation results and examples showed that
the proposed chart performs well to detect various types of
shifting for Gaussian or non-Gaussian processes. However,
one disadvantage of the proposed chart is that the chart
itself is nonparametric instead of distribution-free. Thus, we
suggest: to better screen a process, one should simulate the
control limits for each monitored process, especially when
the process is not Gaussian distributed.

In addition, there are several issues that are not thor-
oughly addressed in this paper, which could be appealing in
practice. For example: (1) although the proposed chart can
quickly detect changes for mean and variance shifts in the
monitored characteristics, it does not clearly address which
one or more characteristics contribute to signal warnings;
(2) we assume that the observations in a process is stochas-
tically independent in our simulation studies, but we are
not sure the use of the chart for monitoring the autocor-
related process since it is well known that the traditional
charts designed for stochastically independent observations
may signal incorrectly and thus weaken the effectiveness of
detecting shifts when the underlying process is autocorre-
lated (Chen, 2017; Chen and Hanson, 2017); and (3) our
proposed chart is constructed for single change-point cases,
however, we don’t clearly know if this chart is also suitable
to multiple change-point cases which are quite common in
these days. We need do more research to investigate this
situation.

APPENDIX

Proof. Given Ny and F,; are known, it is equivalent to m
being sufficiently large. Let € > 0, we then have

lim Pr(|R>\ — R\(i)| > e)
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Let ¢4(-) and f4(-) be the true density functions of Ny and
Fy, respectively. Based on the Polya tree properties, when
m — oo and ¢ > m,

(st(Y’i)a
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Therefore,
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theorem. 0

ACKNOWLEDGEMENTS

Chen’s research was supported in part by 2015 Research
Grants Committee, the University of Alabama.

Received 14 October 2016

REFERENCES

ALBERS, W. and KALLENBERG, W. (2004). Empirical non-parametric
control charts: estimation effects and corrections. Journal of Applied
Statistics, 31, 345-360. MR2061387

Avrt, F. (1985). Multivariate quality control. In Encyclopedia of sta-
tistical science. Edited by Kotz, S., Nelson, N., New York: Wiley.

BERGER, J. and GUGLIELMI, A. (2001). Bayesian testing of a paramet-
ric model versus nonparametric alternatives. Journal of the Amer-
ican Statistical Association, 96, 174—184. MR1952730

BraNnscuM, A. and HANSON, T. (2008). Bayesian nonparametric meta-
analysis using Polya tree mixture models. Biometrics, 64, 825-833.
MR2526633

CHAKRABORTI, S. and ERYILMAZ, S. (2007). A nonparametric
Shewhart-type signed-rank control charts based on runs. Commu-
nications in Statistics-Simulation and Computation, 36, 335—356.
MR2370905

CHEN, J. and CHEN, Z. (2008). Extended Bayesian information criteria
for model selection with large model spaces. Biometrics, 95, 759—
771. MR2443189

CHEN, Y. (2015). A new type of Bayesian nonparametric control
charts for individual measurements. Journal of Statistical Theory
and Practice, 10, 226-238. MR3453038

CHEN, Y. (2017). EWMA control charts for multivariate autocorrelated
processes. Statistics and Its Interface, 10, 575-584. MR3662773

CHEN, Y. and HANsON, T. (2014a). Bayesian nonparametric density
estimation for doubly-truncated data. Statistics and Its Interface,
7, 455-463. MR3302374

CHEN, Y. and HANSON, T. (2014b). Bayesian nonparametric k-sample
tests for censored and uncensored data. Computational Statistics
and Data Analysis, 71, 335-346. MR3131974

CHEN, Y. and HANSON, T. (2017). Semiparametric regression control
charts. Journal of Statistical Theory and Practice, 11, 126-144.
MR3606924

CHENG, S. and TwHaca, K. (2005). Multivariate max-CUSUM
chart. Quality Technology Quantitative Management, 2, 221-235.
MR2222007

CreorLl, W., HANSON, T., and McLAIN, A. (2016). Bayesian nonpara-
metric multiple testing. Computational Statistics € Data Analysis,
101, 64-79. MR3504836

292 Y. Chen, M. Sun, and T. Hanson

CROSIER, R. (1988). Multivariate generalizations of cumulative sum
quality control schemes. Technometrics, 30, 291-303. MR0959530
DENISON, D. and MALLICK, B. (2007). Analyzing financial data using
Polya trees. In Bayesian statistics and its application. Edited by
Upadhyay, S., Singh, U. and Dey, D., New Delhi: Anamaya Pub-

lishers.

HANSON, T. (2006). Inference for mixtures of finite Polya tree models.
Journal of the American Statistical Association, 101, 1548-1565.
MR2279479

HANSON, T. and JOHNSON, W. (2002). Modeling regression error with
a mixture of Polya trees. Journal of the American Statistical Asso-
ciation, 97, 1020-1033. MR1951256

HaNnsoN, T., MONTEIRO, J., and JARA, A. (2011). The Polya tree
sampler: towards efficient and automatic independent Metropolis-
Hastings proposals. Journal of Computational and Graphical Statis-
tics, 20, 41-62. MR2816537

HAwkINs, D. and MABouDOoU-TcHAO, E. (2008). Multivariate expo-
nentially weighted moving covariance matrix. Technometrics, 50,
155-166. MR2439876

Hawkins, D., Qiu, P., and Kanag, C. (2003). The changepoint model
for statistical process control. Journal of Quality Technology, 35,
355-366.

HAYTER, A. and Tsui, K. (1994). Identification and qualification in
multivariate quality control problems. Journal of Quality Technol-
ogy, 26, 197-208.

HEALY, J. (1987). A note on multivariate CUSUM procedures. Tech-
nometrics, 29, 409-412.

HoLLAND, M. and HAWKINS, D. (2014). A control chart based on a
nonparametric multivariate change-point model. Journal of Quality
Technology, 46, 63-77.

HOTELLING, H. (1947). Multivariate quality control-illustrated by the
air testing of sample bombsights. In Techniques of Statistical Anal-
ysis. Edited by Eisenhart, C., Hastay, M. and Wallis, W., New York:
McGraw Hill.

HuwaNg, L., YEH, A., and Wu, C. (2007). Monitoring multivariate
process variability for individual observations. Journal of Quality
Technology, 39, 258—-278.

JACKSON, J. (1991). A user guide to principal components. New York:
Wiley.

LAVINE, M. (1992). Some aspects of Polya tree distributions for statisti-
cal modeling. The Annals of Statistics, 20, 1222—-1235. MR 1186248

L1, J., ZHANG, X., and JESKE, D. (2013). Nonparametric multivariate
CUSUM control charts for location and scale changes. Journal of
Nonparametric Statistics, 25, 1-20. MR3039967

L1, Z., DaA1, Y., and WANG, Z. (2014). Multivariate change point con-
trol chart based on data depth for phase I analysis. Communi-
cations in Statistics-Simulation and Computation, 43, 1490-1507.
MR3215788

L L., Z1, X., ZHANG, J., and WANG, Z. (2013). A sequential rank-
based nonparametric adaptive EWMA control chart. Communi-
cations in Statistics-Simulation and Computation, 42, 841-859.
MR3039617

Lowry, C., WoopaLL, W., Cuamp, C., and RiGDON, S. (1992). A
multivariate EWMA control chart. Technometrics, 34, 46-53.

MONTGOMERY, D. (2009). Introduction to statistical quality control.
6th ed., Hoboken: John Wiley & Sons Inc.

N1AKI, S. and ABBASI, B. (2005). Fault diagnosis in multivariate con-
trol charts using artificial neural networks. Quality and Reliability
Engineering International, 21, 825-840.

PADDOCK, S. (1999). Randomized Polya trees: Bayesian nonparamet-
rics for multivariate data analysis. Doctoral dissertation, Duke Uni-
versity. MR2699876

PIGNATIELLO, J. and RUNGER, G. (1990). Comparisons of Multi-
variate CUSUM Charts. Journal of Quality Technology, 22, 173—
186.

RABHU, S. and RUNGER, G. (1997). Designing a multivariate EWMA
control chart. Journal of Quality Technology, 29, 8-15.


http://www.ams.org/mathscinet-getitem?mr=2061387
http://www.ams.org/mathscinet-getitem?mr=1952730
http://www.ams.org/mathscinet-getitem?mr=2526633
http://www.ams.org/mathscinet-getitem?mr=2370905
http://www.ams.org/mathscinet-getitem?mr=2443189
http://www.ams.org/mathscinet-getitem?mr=3453038
http://www.ams.org/mathscinet-getitem?mr=3662773
http://www.ams.org/mathscinet-getitem?mr=3302374
http://www.ams.org/mathscinet-getitem?mr=3131974
http://www.ams.org/mathscinet-getitem?mr=3606924
http://www.ams.org/mathscinet-getitem?mr=2222007
http://www.ams.org/mathscinet-getitem?mr=3504836
http://www.ams.org/mathscinet-getitem?mr=0959530
http://www.ams.org/mathscinet-getitem?mr=2279479
http://www.ams.org/mathscinet-getitem?mr=1951256
http://www.ams.org/mathscinet-getitem?mr=2816537
http://www.ams.org/mathscinet-getitem?mr=2439876
http://www.ams.org/mathscinet-getitem?mr=1186248
http://www.ams.org/mathscinet-getitem?mr=3039967
http://www.ams.org/mathscinet-getitem?mr=3215788
http://www.ams.org/mathscinet-getitem?mr=3039617
http://www.ams.org/mathscinet-getitem?mr=2699876

Qiu, P. and HAwWKINS, D. (2012). A rank-based multivariate CUSUM
procedure. Technometrics, 43, 120-132. MR1954134

REYNOLDS Jr, M. and CHO, G. (2006). Multivariate control charts
for monitoring the mean vector and covariance matrix. Journal of
Quality Technology, 38, 230-253.

REYNOLDS JR, M. and CHO, G. (2011). Multivariate control charts for
monitoring the mean vector and covariance matrix with variable
sampling intervals. Sequential Analysis, 30, 1-40. MR2770703

SANTOS-FERNANDEZ, E. (2016). R package MSQC.

SEPULVEDA A. and NACHLAS, J. (1997). A simulation approach to mul-
tivariate control. Computers and Industrial Engineering, 33, 113—
116.

SuN, G. and Z1, X. (2013). An empirical-likelihood-based multivariate
EWMA control scheme. Communications in Statistics-Theory and
Methods, 42, 429-446. MR3005788

TESTIK, M. and BORROR, C. (2004). Design strategies for the multi-
variate exponentially weighted moving average control chart. Qual-
ity and Reliability Engineering International, 20, 571-577.

WALKER, S. and MALLICK, B. (1999). Semiparametric accelerated life
time model. Biometrics, 55, 477-483. MR1705102

Wang, K., YEH, A., and L1, B. (2014). Simultaneous monitoring of
process mean vector and covariance matrix via penalized likelihood
estimation. Computational Statistics and Data Analysis, 78, 206—
217. MR3212167

WILLEMAIN, T. and RUNGER, G. (1996). Designing control charts using
an empirical reference distribution. Journal of Quality Technology,
28, 31-38.

WoopaLL, W. and NCUBE, M. (1985). Multivariate CUSUM quality
control procedures. Technometrics, 27, 285-292. MRO797567

YEH, A., HUWANG, L., and Wu, Y. (2004). A likelihood-ratio-based
EWMA control chart for monitoring variability of multivariate nor-
mal processes. IIE Transactions, 36, 865-879.

ZHANG, G. and CHANG, S. (2008). Multivariate EWMA control charts
using individual observations for process mean and variance moni-
toring and diagnosis. International Journal of Production Research,
46, 6855-6881.

ZHANG, J. (2002). Powerful goodness-of-fit tests based on the likelihood
ratio. Journal of the Royal Statistical Society: Series B, 64, 281—
294. MR1904705

ZHANG, J., L1, Z., and WANG, Z. (2010). A multivariate control chart
for simultaneously monitoring process mean and variability. Com-
putational Statistics and Data Analysis, 54, 2244-2252. MR2720485

Zuou, C., Zou, C., ZHANG, Y., and WANG, Z. (2009). Nonparametric-
control chart based on change-point model. Statistical Papers, 50,
13-28. MR2476166

Zou, C., JiaNG, W., and TsuNg, F. (2013). A LASSO-based diagnos-
tic framework for multivariate statistical process control. Quality
control and applied statistics, 58, 33-36. MR2867503

Zou, C. and TSUNG, F. (2010). Likelihood ratio-based distribution-free
EWMA control charts. Journal of Quality Technology, 42, 174-196.

Zou, C. and TSUNG, F. (2011). A multivariate sign EWMA control
chart. Technometrics, 53, 84-97. MR2791949

Yuhui Chen

Department of Mathematics

The University of Alabama
Tuscaloosa, AL

USA

E-mail address: ychen164@ua.edu

Mingwei Sun

Department of Mathematics
The University of Alabama
Tuscaloosa, AL

USA

E-mail address: msun@crimson.ua.edu

Timothy Hanson

Department of Statistics

The University of South Carolina
Columbia, SC

USA

E-mail address: hansont@stat.sc.edu

Nonparametric multivariate Polya tree EWMA control chart for process changepoint detection 293


http://www.ams.org/mathscinet-getitem?mr=1954134
http://www.ams.org/mathscinet-getitem?mr=2770703
http://www.ams.org/mathscinet-getitem?mr=3005788
http://www.ams.org/mathscinet-getitem?mr=1705102
http://www.ams.org/mathscinet-getitem?mr=3212167
http://www.ams.org/mathscinet-getitem?mr=0797567
http://www.ams.org/mathscinet-getitem?mr=1904705
http://www.ams.org/mathscinet-getitem?mr=2720485
http://www.ams.org/mathscinet-getitem?mr=2476166
http://www.ams.org/mathscinet-getitem?mr=2867503
http://www.ams.org/mathscinet-getitem?mr=2791949
mailto:ychen164@ua.edu
mailto:msun@crimson.ua.edu
mailto:hansont@stat.sc.edu

	Introduction
	Exponentially weighted multivariate Polya tree priors
	Multivariate Polya tree EWMA control chart
	Test statistic
	Implementation issues

	Simulation studies
	Examples
	A simulated example
	Real data application

	Conclusions
	Appendix
	Acknowledgements
	References
	Authors' addresses

