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Analysis of longitudinal data under nonignorable

nonmonotone nonresponse

PuvyING ZHAO, LEI WANG*, AND JUN SHAO

We consider identification and estimation in a longitudi-
nal study with nonignorable nonmonotone nonresponse in
responses. To handle the identifiability issue, we use a base-
line covariates named as nonresponse instrument that can
be excluded from the nonresponse propensity conditional on
other observed covariates and the variables subject to non-
response. The generalized method of moments is applied
to estimate the parameters in the nonresponse propensity.
Marginal response means and the parameters defined via
regression models between responses and baseline covari-
ates can be estimated by inverse probability weighting us-
ing the estimated propensity. Alternatively, we derive an
augmented inverse probability weighting estimator and ap-
ply the importance sampling technique for its computation.
Consistency and asymptotic normality of the proposed es-
timators are established under possibly misspecified mod-
els. Simulations are performed to evaluate the finite sample
performance of the estimators. Also, a real data example is
presented to demonstrate the proposed methodology.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62H12,
62G05; secondary 62G20.

KEYWORDS AND PHRASES: Generalized method of mo-
ments, Identifiability, Instrument, Misspecified models,
Nonignorable nonmonotone nonresponse, Robustness.

1. INTRODUCTION

In survey sampling, social science, epidemiology studies
and many other statistical problems, data are often collected
from every sampled subject at multiple time points, which
are referred to as longitudinal data. Missing data are often
encountered in longitudinal studies, due to drop-out, mist-
imed measurements, subjects being too sick to visit the clinic
(Ibrahim and Molenberghs, 2009). Missingness is ignorable
or at random if the missing data mechanism/propensity de-
pends on observed data only (Little and Rubin, 2002), and
is monotone if a datum is missing at time ¢ implies that
all data at time s > ¢ are missing. When missing data are
ignorable and/or monotone, Laird (1988) and Little (1995)
present some well-established methods. In practice, however,
missing data are often nonignorable and nonmonotone, i.e.,
the propensity depends on missing values and subjects move
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in and out of the study as time progresses, which presents
great challenges for statistical analysis. Although some ef-
fort has been devoted to handle nonignorable nonmonotone
nonresponse (see, e.g., Troxel et al., 1998; Vansteelandt et
al., 2007; Xu et al., 2008; Shao et al., 2012), there is no gen-
eral well-established method and the research on this topic
is far from complete. The major issue is that the propensity
is not identifiable due to nonignorable nonresponse and is
very complicated due to nonmonotone nonresponse (Robins
and Ritov, 1997; Scharfstein et al., 1999). Assumptions must
be imposed to propensity in order to derive useful results,
but these assumptions are difficult or impossible to verify.

Vansteelandt et al. (2007) proposed a class of occasion-
specific tilted models for nonresponse propensity, but they
assumed that the part in propensity causing nonignorable
nonresponse is known to avoid the identifiability issue. A
sensitivity analysis was proposed to deal with the situation
where one does not know that information, but sensitivity
analysis is ad hoc and has limited application scope.

Different from the sensitivity analysis in Vansteelandt
et al. (2007), we propose to estimate the unknown nonig-
norable nonresponse propensity by imposing a parametric
model on the propensity that does not involve a baseline
covariate used to identify the parameters in the propensity
model. Using a covariate not involved in the propensity to
deal with the identifiability issue has been studied in Wang
et al. (2014) and Shao and Wang (2016) and such a co-
variate is called nonresponse instrument. Details are given
in Section 2, where we apply the generalized method of mo-
ments (GMM, Hansen, 1982) to estimate the propensity and
establish the consistency and asymptotic normality of the
estimators.

Our second achievement is to derive three consistent and
asymptotically normal estimators of marginal means of the
responses or parameters in a regression between the re-
sponses and baseline covariates in the longitudinal study.
The main technique we use is the inverse probability weight-
ing (IPW, Robins et al., 1994). Alternatively, we construct
augmented IPW (AIPW) estimators by making use of an
identity relating the conditional density for nonrespondents
and the quantities that are functions of observed data. The
ATPW estimators are model-assisted estimators in the sense
that they are efficient when the working model used to form
augmented data is correct, but they are still consistent and
asymptotically normal when the working model is misspec-
ified. Details are given in Sections 3 and 4.
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In addition, we consider in Section 5 an algorithm for the
computation of the AIPW estimators using the importance
sampling technique.

Simulation studies and a data example for illustration are
presented in Section 6. Section 7 concludes with a discussion.
Technical details are given in the Appendix.

2. IDENTIFICATION AND ESTIMATION OF
PROPENSITY

Consider a longitudinal study with a unit having time-
dependent response Y; and covariate vector V; at time
t=0,1,..,T. At the baseline t = 0, Sy = (Yo, Vo) together
with an additional time-independent covariate vector X are
observed. When t > 1, Y; may be missing although V; is ob-
served. Let §; be the response indicator that equals 1 if Y; is
observed and equals 0 otherwise. We consider nonmonotone
nonresponse so that &; = 0 does not imply that 4,11 = 0.
For the nonresponse propensity, we assume that X can be
decomposed as X = (U, Z), where U is continuous but Z
can be any kind, such that for ¢t =1,...,;T,

Pr(ét = 1|(5_t,}/,‘/,X)
(1) = Pr(&t = 1|50751517~--76t715t717st7U)

< 0
= Wt(Stflvst;Oét)a

where 5—t = (51, ceny 6t:\17 5t+17 ...,5'1"), Y = (Yb, Yl, ...,YT),
V = (Vo, Vl, ceey VT)7 St—l = (U, So, 5151, ceey 6t_1St_1) is
the observed history of S;, j < t, including the baseline co-
variate U, m; is a known function, and a? is an unknown pa-
rameter vector. The first equation in assumption (1) means
that the nonresponse of components of S; does not depend
on future values but dep_\ends on Sy so that nonresponse is
nonignorable; given S, S;_1, and the baseline covariate U,
the baseline covariate Z can be excluded from the nonre-
sponse propensity, which is used to create more estimation
equations for estimating the propensity and ensures that the
propensity is identifiable. Such a Z is referred to as a non-
response instrument (Wang et al., 2014). The second equa-
tion in assumption (1) imposes a parametric model on the
propensity.

To estimate the propensity, we consider an independent
and identically distributed sample of n units. For each i =
1,...,n, values of U, Z, Sy, &, and Sét previously described
are denoted by U;, Z;, S, i, and S ;;, respectively.

First, we consider a continuous r-dimensional Z. Define
estimating functions

Ot

@ gV Xha) =T e 1)
Tt t—1, 0ty Ot

where § = (41, e o) and & ¢ is a known vector-valued func-

tion of Z and S;_; with dimension K > the dimension of
ay. Throughout the paper we denote E,,(Y) =n"tY" | Y,
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for any random element Y. If o is the true parameter value,
Gi(ad) = E{q:.(Y,V, X,§,a)} = 0. Then, when K = the di-
mension of oy, we estimate o) by solving the sample equa-
tions E, {g:(Y,V, X,d,:)} = 0. When K > the dimension
of oy, the estimating equations are over-identified and we ap-
ply the generalized method of moments (GMM) approach
as follows. Let Gpi(ar) = En{g:(Y,V, X,6,a4)},

&y = argmin Gy (o) " Grela)
Q¢

be the ﬁrst:step GMM estimator, where a ' is the transpose
of a. Let Wnt = En{gt(Y, V, X, 5, dt)gf(}/, ‘/, X, (;, dt)T} and
the second-step GMM estimator of o is

3)

@&y = arg min Gm(at)TW@l Gri(ay).
Qg

Note that (2) is for a; at time ¢ only, although data at t =
0,1,....,t are used. We may construct estimating equations
for (af ,...,a) )T, but the dimension of (af ,...,a/ )" may
be too large to numerically handle.

Consider in general Z = (Z.,Z4), where Z. is a con-
tinuous r-dimensional covariate vector and Z; is a discrete
covariate taking values 1,...,J. Then, the GMM estima-
tion of the propensity is based on estimating equations:
E{g:(Y,V,X,5,a9)} =0, where 9:t(Y,V, X, 0, ;) is defined
the same as that in (2) with £+ being a function of ¢, Z,,
and S;_1, ¢ is the J-dimensional vector whose {th compo-
nent is I(Z; = 1), and I(+) is the indicator function.

Throughout this paper, expectations (i.e., notation E)
are taken in respect to the true distribution. For nota-
tional simplicity, let g¢(a;) = (Y, V, X, 0, o4) and m(ay) =
m(St-1,5,a¢) for t = 1,...,T. For any matrix A, let
| Al = \/trace(AT A) and A®% = AAT. Let 4 denote con-
vergence in distribution and C' denote a generic positive
constant which may vary depending on the context. The
following theorem presents some asymptotic properties of
the GMM estimator &; for every t. A sketch of the proof is
in the Appendix.

Theorem 2.1. Assume the following regularity conditions
hold:

C1. (a) The parameter space for oy, A, is a compact set
and of € A is the unique solution to Gi(ay) = 0; (b)
sup,, [|Gt(aq)| < oo; (i) uniformly for all oy € A, the
matric Ft(O[t) = —E{ftﬂt(a?)[m(at)*l — ].}E(O[t)—r}
is of full rank, where and Z(ay) = Ologit{m(cn)}/dcy
with logit(u) = log{u/(1 — u)}; (d) The matrix
W) = E{gi(a)®?} is positive definite.

(a) The propensity model (e ) is twice differentiable
with respect to oy; (b) m(a?) > C > 0 for all i =
1,eyn, and t = 1,...,T; (¢) Ont(ay) /Doy is uniformly
bounded.

C2.



Then, as n — oo,
n'2(6; — af) 5 N(0,57),

where ¥F = {TFTW; T} with TF = Ty(a}) and Wi =
Wi(af).

In Theorem 2.1, large sample properties of the two-step
GMM estimator &; are established for the case where the
propensity model (1) may be misspecified so that af may
not be the same as af. In the presence of misspecifica-
tion, the proposed GMM procedure consistently estimates
o; minimizing the population version of the empirical GMM
discrepancy. If the propensity model (1) is correctly speci-
fied, then é&; is consistent for the true parameter vector a?,

which is summarized in the following corollary.

Corollary 2.1. Assume that the reqularity conditions C1
and C2 given in Theorem 2.1 hold, and the propensity model
(1) is correctly specified. Then, as n — oo,

n'/2(a; —a?) 5 N(0,%),
where ¥y = {TJW'T )= with Ty = Ty(a?) and W, =
Wi(af).

3. ESTIMATION OF RESPONSE MEANS

Once a consistent estimator &; of af is obtained, we
can make inference on the marginal distribution of Y; or
the conditional distribution of Y; given X. In this section
we consider the estimation of response means 9 = E(Y;),

t = 1,..,T. For a fixed t, u? can be estimated by inverse
probability weighting (IPW), i.e
0+ Yy
4 ~ipwl _ E tlt
( ) /"Lt {ﬂ-t Oét) }7

ibw 0+Y
Mtp2: tt}/ {

where (&) = mi( St,l, St, éi). Since estimators i
,&;pw are constructed based on complete observations only,
their estimation efficiency might be improved by imputa-
tion. To proceed, we first consider an artificial situation

where
(5)  moi(Si-1) =

are observed statistics. An augmented inverse probability
weighting (AIPW) estimator is

1
iPY and

ElY,|S¢ 1,6, =0], t=1,..T,

~ai oYy
6 aipw _ ]En A _
( ) /’Lt { T (at)

0 — Wt(dt)

ﬂ_t(é‘t)

m0t(§t—1)}-

The second term on the right-hand side of (6) is used for

~ipwl

a possible efficiency 1mpr0vement over fi, . In real appli-

cations, however, mo( S +—1) in (5) is unknown and has to
be estimated. Under assumption (1), after some algebraic
manipulations, we obtain that

Pr(S; € B|S ;1,8 = 0)

Pr(S; € B| S¢—1,0: = 1)

Pr(6; = 0[S, € B, S¢1)/Pr(6: = 1S, € B, S 1)
Pr(6; = 0|5 +_1)/Pr(6; = 1|9 41)

(7) =

for each t and any Borel set B, and
E{dtOt(St_l, St7()(g)| St—l} = PI‘((St = O| St—l),

where O;(S¢_1,St,a?) = {m(S¢_1, S a?)}~t — 1 denotes
the conditional odds of nonresponse. These results imply
that

f(St]St-1,6: =0)

f(Se| S 41,00 = 1)O(S 1,5, af)

(8) = )
E{O(S5-1,5:,a9)| S —1,0, =1}

where f(A|B) denotes the conditional density of A given
B. It follows from (8) that the joint conditional density

f(S¢]5¢-1) is identifiable under assumption (1). Moreover,

(8) relates the joint conditional density f(S:|S¢—1,0; = 0)
for nonrespondents to the quantities calculated based on ob-
served data. As a result,

moe(S 1) = /th(St| 511,60 = 0)dS;

fYQOt(St_l,St,a?)f(Stl St 1,0; =1)dS;
JOU(St—1,8,a0) f(Se| St—1,0: = 1)dS;

Thusin order to estimate mOt(ﬁt,l), it sufﬁceito estimate
(S| Si-1,0; = 1), since m(af) and hence Oy (S ;_1, i, af)
has already been estimated (Section 2). The estimation of
f(S¢| S¢-1,0: = 1) can be done usigg observed data.

Because the estimation of mg;(.S¢—1) is for the purpose

of improving efficiency, and because the AIPW estimator

AP in (6) is a model-assisted estimator in the sense that as
long as the propensity estimator m;(d¢) is consistent, fi2w

is consistent regardless of whether mg;(.S;_1) is consistent
or not, we propose to apply a parametric method i.e., we
consider a working parametric model f (S| K t—1,0p = 1)

f1(St| S +—1,7Y), where f; is a known function and 4y is an
unknown s;-dimensional parameter, and estimate 7 by the
maximum likelihood estimator 4; based on observed data,
which is a solution of

(9) E,L{étﬁlog ft(St|St—1arYt)/8'Yt} = 0
Then, mo:&(?t—ﬂ can be estimated as

ot (G, 4t)
_ fY;Ot(St—la Sta OA‘t).]ct(‘st' St—laﬁ/t)dst

(10) -
JOUS 1—1,5¢,64) fe(Se| S t—1,7¢)dSy
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Our proposed AIPW estimator (2P is given by equation
(6) with mo:(S+—1) replaced by its estimator 7o (G, Yt )-
The following proposition presents some asymptotic

properties of 15 defined by (9) for the case where the working
model f;(S;]S;—1,77) may be misspecified.

Proposition 3.1. Assume the following regularity condi-
tions:

C3. (a) The pammeﬁr space for 42, Ty, is a compact set;
(b) E{log f(S¢|S¢-1,0: = 1)} exists, t = 1,....T;
(c) the Kullback-Leibler Information Criterion defined
as E{log[ St|St 1,575 = 1)/ft(St|St 1,7Vt ]} has a
unique minimum at vy € Yy.
C4. (a) The assumed parametric model fi(S| S’t 1Y)
satisfies the regularity conditions of maximum likeli-
hood estimation of misspecified models, see conditions
A1-AG in White (1982); (b) uniformly for all v € Ty,
the matriz Ay(y:) = E{9”log fi(Si| S t—1,7) /0707 }
is of full rank; (c) the matriz. Bi(yf) =
B{[0log fi(Si] S't-1,7)/07:]¥?} is nonsingular.

Then, as n — oo,

(3 = 77) 5 NO,w ),
where C(7y¢) = A¢(ve) 1By (ve) Ae(ve) ™ and wy = Pr(8; = 1).
Let Ay = BE{Yi[l — m(af)|=(af)}, Ao = B{(Y; -
p)l = m(a)Ea)}, m(af) = [0 — m(af)]E(a?),
Ay = (OJWoT)In w8, = cov[(sm af)” 1{Yt —
mOt(a?77:)}vnt(a?)]v
(11) Hi(ag,vi) = Wft(i) b ;Zroii)at)mm(at,%);

where mo:(ay,v:) is given by (10) with é&; and 4; replaced
by a; and -y, respectively. The following theorem presents
some asymptotic properties of the proposed IPW estimators
AP and 4PY? and AIPW estimator 22", A sketch of the
proof is glven in the Appendix.

Theorem 3.1. Assume that the regularity conditions C1
and C2 given in Theorem 2.1 hold, and the propensity model
(1) 4s correct. As n — oo,

(i) for k = 1,2,
nl/z(ﬂitPWK - H’?) £> N(Oa Vnt)a

where Viy = Var{éthwt(at) + Al Agi(@9)} and Vo =
Var{dym (af) = (Vi — Mt)+A2tAtgt(at)}
(ii)

~aipw L
n' (AP — 1) 5 N(0, Vae),

= Var{H(a},7/) + ©{ Aege(af)}-

The second part of Theorem 3.1 shows that the proposed
ATPW estimator fiy'"" is consistent and asymptotically nor-
mal even if model f;(S¢|S;—1,7)) is misspecified. This is

where V3
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important in our problem because > it is difficult to impose
an exactly correct model for f(S¢|S¢—1,6: = 1) due to the
fact that data are longitudinal with nonignorable nonmono-
tone nonresponse. Furthermore, the result indicates that
the asymptotic distribution of ualpw does not depend on
the efficiency of 4;. Simulation results in Section 6 show
that ,&il PY improves the IPW estimators when the model

F:(Se] S 1—1,7Y) is nearly but not exactly correct.

4. ESTIMATION OF REGRESSION MODELS

We now consider the estimation of a parameter vector 5°
defined via T regression models between Y; and the baseline
covariate vector X:

(12)

where G;(X; %) is a known continuously differentiable func-
tion and ° is an unknown p-dimensional parameter vector.
Without missing data, suppose that 8° is estimated by solv-
ing E{D(X, B°)[Y; — G:(X;8%)]} = 0, where Dy(X, 3) is a
vector function with the same dimension as 3°. We assume
that the nonresponse propensity model is of the same form
as in (1), even though the regression models (12) are de-
fined without involving time-dependent variables V;. Here
V; can be treated as additional auxiliary variables. With the
nonresponse and propensity assumption (1), the estimating
equation becomes

& Dy (X, BO)Y; —
E{ mi(a?)

EY;|X) =G(X;8°,t=1,..,T,

=0.

gt(XEﬂO)]}

Thus, with af estimated by &; in Section 2, a consistent
IPW estimator 3PV of 5% can be obtained by solving

0:Dy(X, B)Y; — Ge(X; B)]
13) U,(8, E, { }:o.
( ) 1 5 at Z . (at)
The following theorem presents large sample properties of
the IPW estimator PV for the case that either the propen-
sity model (1) or the marginal regression model (12) is
misspecified. A sketched proof is in the Appendix. Define

() = ODy(X, ) /057,
U:(B, ) E{Zém ) DX, B)[Y: — Go(X; B)]},
J1(B, o) E{Z m(af)m(on) " Zu(X, B)[Ys — Ge(X; B)]},
J2(B, o) E{Z m(af)m(as) DX, B)Dy(X, B) "},
Ts(B, o) E{Zwt (N[ ()™ — 1Dy (X, B)
x| t—gt< 8= ()}



Theorem 4.1. Assume the reqularity conditions in Theo-
rem 2.1 and the following reqularity condition holds:

C5. (a) The parameter space for B°, B, is a com-
pact set and BF € B is the unique solution to
Ui(B,a7) = 0; (b) supgep [|G:(X; B)|| < oo; (c) uni-
formly for all oy € A and f € B, the matri-
ces J2(B,ar) and Ji(B,ar) — Jo(B,ar) are of full
rank; (d) Vi = Var{$,_ di[m(of) "' Du(X, 1) [Yi —
G(X; 80)] + T A ge(f)]} is nonsingular, where A} =
L TWy T W, Iy = (B eq), T5 =
Ja2(B}saf), and J5 = T3(B7, o).

Then, as n — oo,

n2(BP — gy 5 N(0,57),

where 7 = (J7 — J5) 'V (I7 — T5) 7t

It follows from Theorem 4.1 that the proposed IPW es-
timator is a consistent and asymptotically normal estima-
tor of the pseudo-true value 3y, which is the solution to the
population version of the empirical IPW discrepancy. If both
the propensity model and the marginal regression model are
correctly specified, we have the following corollary.

Corollary 4.1. Assume the conditions in Theorem 4.1 and
that both (1) and (12) are correct. Then, as n — oo,

nl/Q(Bipw _ﬁO) £> N(O,ZI),
where V, = Var{zt 1[5t7rt(at) 1’Dt(X BNY: — G (X;89)]
+ jsAtgt(at)]} Jo = ~72(50 at) ~73(50 at) 1=
NN

To improve the efficiency and obtain a model-assisted es-
timator of 8°, we follow the idea in Section 3 and construct
an ATPW estimator 3%P% of 8% by solving the following
augmented estimating equations:

UA(ﬂv&ta:Yt)

(14) ZEn{Dt(Xv B)[H¢ (6w, 41) — Ge( X5 B)]} =
t=1

Define

[M]=

Ua(Bras,7) =E{ Y Du(X, B)[Hy(an,70) = Ge(X: 8]

~
Il
-

P1(X, B7) Hy(an,70) = Ge(X: 8] .

N

T, (8,00, 7) =B{

o~
Il

1

1]Dt(X7 ﬂ)

m(af)[me (o)~ —

M=

(B, e, ve) E{

X

/‘Hﬁ

:<\|
I

— mor(en, 1)}E() "},

Ty(B, . ) = {ZDt X, M1~ drmiar) ]

t=1

3m0t(04t7 %) }

X ———=—"1¢,
Oay,

{ZDt (X, B)[1 = ()]

t=1
Imor (e, 1)
S

(ﬁvatafyt

We now establish the asymptotic normality of the proposed
AIPW estimator 32P¥. The proof of the following theorem
is in the Appendix.

Theorem 4.2. Assume the regularity conditions in Theo-
rem 2.1 and the following regularity condition:

C6. (a) B € B is the unique solution to U, (B, af,~vf) = 0;
(b) uniformly for all oy € A, B € B and v € Yy,
the matriz T1 (B, ar,vi) — Jo(B,aq) is of full rank;
(c) the matriz Vi = Var{,_[¢f, + o5 + o4l}
is nonsingular, where @i, = D(X, 85 [H(af, ) —
G(X580)], w5 = (I3 — IHAglog), »5
—Ti{woAe(v;)} '0:0log fe(Se| Se—1,77) /0w, Ty =
Il(ﬁ:,az77:)f 1; = 12(627a:>7g)7 Iy = jg(ﬂ:,a?),
I3 = Ls(Bx, 0f 1), and Ii = Lu(B3, o 7).

Then, as n — 0o,

nt/2 By — gry & N(0,5%),

where $% = (I7 — J5) " 'Vi(Z — T5) !

In Theorem 4.2, large sample properties of the AIPW es-
timator PV are established for the case where models may
be misspecified. The pseudo-true value g% is the solution to
the population version of the empirical AIPW discrepancy.
If models are correctly specified, we have the following corol-
lary.

Corollary 4.2. Assume that the regularity conditions in

Theorem 4.2 hold, and all the models used are correctly spec-
ified. Then, as n — oo,

n1/2(3aipw _ BO) £> N(O, EA),

where ¥, = JQ_IVAJQ_l, V, = Var{Z? 1[<p1t+<p2t]} o1 =
Dy(X, B°)[Hi(af, 7)) — Ge(X; %)), war = TaMige(e]), Io =
IQ(ﬁO7 0[?, 719)

In conclusion, as long as the propensity model (1) and
the regression model (12) are correct, the AIPW estimator
BPY is consistent. It can improve the IPW estimator if the
working model is nearly correct.

5. COMPUTATION

It is easy to apply some numerical optimization methods
to compute the proposed two-step GMM estimator d; of a.
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Once @ is obtained, the computation of the proposed IPW
estimators "™ 4P and B®Y is not a difficult task. For
the AIPW estimators i2®Y and 32P™, we need compute the
conditional expectation mq:(dy,%:) in (10), which involves
intractable integration and can be computationally challeng-
ing. Here, we focus on the calculation of Baipw, whereas the
discussion for ;' T" is similar.

Following Riddles et al. (2016), we employ the idea of
importance sampling to approximate g (G4, J:) for subject
i by

(15) (G, A1) = Y Wigt(Gu, 40) Vi,
j:0e=1
where
Wije (s, 1)
(16) — Ot(Si(t*1)7Sjt’dt)fijt(’?t)/ft(sjt)

> Ot(si(tﬂ),Sjt,dt)fikt(%)/ft(skt)7

k‘!&ktzl

Fist () = Fi(Siel Sice—1)sAe)s Fr(Sje) = ng' D isy, =1 Jigt(3t)
is a consistent estimator of the marginal density f;(S;) =
f(S¢|0; = 1) using the respondents evaluated at Y; = Yj; and
Vi = Vi, and nyy = ZZL:I d;¢. Therefore, the computation
of Baipw has the following four steps:

(i) Applying a numerical optimization method to compute
the two-step GMM estimator &; by numerically min-
imizing the criterion function given in (3) defined in
Section 2. N
Specify a working parametric m_o\del Ffe(Se| S e—1,7t)
for the conditional density f(S¢ S¢-1,0: = 1). Using
the completely4 observed data, obtain 4; by maximizing
[1s,,—1 fe(Sitl Sice—1),7t) over .

Plugging &; and 4; in (16) to compute the weight
Wijt(Gy, %) and then construct the augmented data

(i)

(iii)
ﬁit(@t,’%)
0+ Y . 0 — Wit(@t)

it (Gy) it (Gy)

Z Wz‘jt(@m’%)yjt’

jiﬁjtil

for i = 1,..,n and t = 1,..,T. Here mie(Qy) =
77(51'(#1),51‘:&,@15)-
(iv) Compute 3%P% by solving the augmented equation

T

ZEn{Dt(Xa B Hy (64, %) — Ge(X;8)]} = 0.

t=1

In Step (iii) introduced above, the conditional expecta-
tion g (G, :) is estimated based on the weighted empir-
ical distribution, and the weights W;j: (64, %) in (16) can
be viewed as the fractional weights assigned to the imputed
values. Such a computational technique is very attractive
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because it does not introduce additional variability due to
Monte Carlo approximation. See Kim (2011) for detailed
discussion on parametric fractional imputation for missing
data analysis. Our empirical studies in Section 6 suggest
that the results based on approximation (15) are less sensi-
tive to the choice of the parametric model for the conditional
distribution for respondents.

6. SIMULATION STUDIES AND DATA
ANALYSIS

In this section, we conduct two simulation studies and a
real data analysis to examine the finite-sample performances
of the proposed estimators of unconditional response means,
we, t =1,...,T, and regression parameter . In simulations,
we obtain the simulated absolute bias (AB) and standard
deviation (SD) of estimators of u; and 3, the standard error
(SE) obtained by the bootstrap with replication size 100,
and the coverage probability (CP) of the confidence intervals
at the nominal level 95% based on asymptotic normality
and bootstrap SE. All results are based on 1,000 simulation
replications and the sample sizes n = 200 and 500.

6.1 Simulation 1: response means

We consider the case where there is no time-dependent
covariate V (S =Y;) and X = Z (U =0). For t = 1, ..., 4,
we consider that Yj;’s, ¢ = 1,...,n, are independently gen-
erated from one linear regression model and one nonlinear
regression model described as follows:

AL Yy =1+ Yo+ Z; + e, Yio = Zs + Yip + Yi1 + €0,
Yis =Z; + Yo+ Yio + &3, Yia = Z; + Yio + Yiz + cia;

A2. iy = Yio+Z2+ei, Yio = 142Yi0+ Z2 + Z; exp(— Y3 )+
42, Yég = 2+3}/1‘0 +Z12 +21/i1 exp(—Yi%/Z) +Ei3, Y;4 =
3+4Y;0 + Ziz + 4Y;0 eXp(—Yi%/él) + €i4,

where Y;‘O ~ N(O, 1), Zi ~ N(1,2), Eil, €42, €43, and E;4 are
independently generated from N(0,1), and Yo, Z; and €;4’s
are independent. We also consider a multivariate standard
normal vector Z; = (Z;1, Zia, Zi3) | and replace Z; in Al by
(Zin + Ziz + Zi3) /3.

We generate d;; independently from the Bernoulli distri-
bution with 7; under assumption (1), and we consider four
choices of m:

M1. m = {1+ explag + a1 Yo + I(t > 1)(aoed—1Yi—1)]} 4

M2. m = {]. + exp{ont + a1:Yo + I(t > 1)(042t5t—1}/t—1) +
s Y]}

M3. 7 = {1 + exp{ao: + a1 Yo + I(t > 1)(a2ds—1Y2 ) +
az Y]}

M4. 7 = 1-®{agi+a Yo+I(t > 1)(abp—1Yi—1)+azYi }s

where ay; = —0.6, ag; = —0.3, ag; = 0.1 in scenarios Al,

ayy = —0.6, as; = 0.1, agz = —0.1 in scenarios A2, and

Qo1 = —1, Qo2 — —0.6, Qo3 — —0.4, Qpq4 — —0.27 (I)() is
the standard normal distribution function. While M1 is an
ignorable missing data case, i.e., the propensity does not de-
pend on Y;, M2-M4 represent three different nonignorable



missing data cases. For ¢t = 1, ..., 4, the unconditional means
e are 2, 3, 4, 5 in scenarios Al, and 3, 4.07, 5.08, 6.48 in
scenario A2; for A1, the unconditional missing percentages
for four time points are about 28.3%, 29.4%, 30.5%, 30.1%
in scenario M1, 32.1%, 34.5%, 37.3%, 37.7% in scenario M2,
32.1%, 26.9%, 22.6%, 18.7% in scenario M3; 23.9%, 27.5%,
31.2%, 33.0% in scenario M4; for A2, the unconditional miss-
ing percentages for four time points are about 28.3%, 41.4%,
46.0%, 52.1% in scenario M1, 24.1%, 33.9%, 36.9%, 39.8%
in scenario M2, 24.1%, 50.3%, 45.6%, 60.7% in scenario M3,
15.5%, 27.8%, 32.3%, 36.3% in scenario M4.

We study the performance of the following five estimators
of pus: the proposed estimators i*"" and 4PV defined in (4)
and 2" defined in (6); s = S0, thzt/ i Git, the
sample mean of the observed Yj;’s; and Y; = St Yi/n,
the sample mean when there is no missing data, which is
used as a standard.

For the choice of m; in assumption (1), we do not assume
that we know exactly the form of the propensity. Instead,
we use the working propensity model

mi () = {1 + explao: + a1:Yo

(17) + I(t > 1)(2ebi-1Yi1) + 1 Ye]}

for all scenarios M1-M4. Under M1 and M2, the working

model (17) is correct. Under M3 and M4, however, the work-

ing model (17) is misspecified so that we can see the ro-

bustness of the proposed estimators """, 4P"? and 3P

against propensity model misspecification. IR
Furthermore we use the working model f;(Y;|S¢—1, ’yt)

1 2
(ST I’Yt( )7’7t( )

((, (1)) ,fyt(Q)). Note that this working model is always in-
correct.

Simulation results are presented in Tables 1-3, for model
A1, model Al with multivariate Z, and model A2, respec-
tively. A few conclusions can be drawn from the simulation

results.

), with unknown parameter vector v, =

(i) Bias. The proposed estimators, """, 4P"? and 2P

have negligible blases m most of the cases. Among these
three estimators, "™ perform better than ;"' and
iP"2 . On the other hand 15° is biased.
(ii) Standard deviation. fiy'"” performs better than P!
and /i and the 1mprovement is substantial when t =
4. The SDs of AP and a*"? are comparable, smaller
than the SD of ucc, and become smaller when the mean
response rate or the sample size is larger.
Standard error. The bootstrap variance estimator
works well under all cases.
Coverage probability. When the working model (17)
is correct, the coverage probabilities based on Pt
AP and A2V are all close to the nominal level 0.95,
and are quite comparable with the method based on
Y; assuming no missing data. The main price paid for
missing data is the increased standard deviation so

)

Table 1. Absolute bias (AB), standard deviation (SD),
standard error (SE) and coverage probability (CP) values for
simulation 1 with model Al

Method

n = 200
t=1t=2t=3t=4

n = 500
t=1t=2t=3t=4

~ipwl
ey

~ipw2

Hy

~alpw
t

~cCcC
Mt

~ipwl
He

~ipw2
My

~aipw

M

~cCC

Mt

AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP

AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP

scenario M1

0.018 0.017 0.024 0.009
0.153 0.279 0.402 0.525
0.157 0.290 0.414 0.539
0.936 0.945 0.942 0.923
0.006 0.004 0.030 0.129
0.152 0.279 0.406 0.552
0.156 0.295 0.436 0.578
0.937 0.948 0.953 0.946
0.004 0.004 0.012 0.016
0.151 0.276 0.401 0.522
0.154 0.281 0.403 0.534
0.935 0.940 0.943 0.939
0.001 0.002 0.001 0.010
0.139 0.261 0.384 0.507
0.140 0.262 0.383 0.500
0.937 0.934 0.935 0.925
0.151 0.664 1.341 2.194
0.164 0.300 0.433 0.536
0.164 0.301 0.433 0.545
0.832 0.416 0.142 0.025

0.003 0.001 0.010 0.001
0.098 0.182 0.264 0.365
0.101 0.181 0.261 0.351
0.954 0.948 0.939 0.948
0.001 0.007 0.011 0.036
0.098 0.182 0.266 0.382
0.101 0.182 0.266 0.388
0.956 0.951 0.938 0.958
0.002 0.006 0.009 0.013
0.098 0.181 0.263 0.350
0.100 0.178 0.256 0.339
0.950 0.948 0.952 0.953
0.001 0.004 0.005 0.007
0.092 0.173 0.256 0.338
0.089 0.166 0.243 0.320
0.945 0.944 0.947 0.947
0.158 0.672 1.349 2.219
0.106 0.194 0.284 0.361
0.103 0.187 0.269 0.339
0.148 0.003 0 O

scenario M2

0.021 0.037 0.087 0.150
0.161 0.304 0.445 0.607
0.165 0.303 0.451 0.612
0.955 0.955 0.949 0.924
0.008 0.012 0.022 0.003
0.160 0.300 0.436 0.622
0.161 0.297 0.448 0.646
0.948 0.954 0.948 0.946
0.002 0.001 0.001 0.001
0.158 0.295 0.421 0.564
0.158 0.284 0.416 0.569
0.953 0.943 0.940 0.926
0.001 0.007 0.016 0.020
0.147 0.271 0.397 0.516
0.141 0.263 0.384 0.497
0.940 0.943 0.940 0.917
0.062 0.373 0.808 1.582
0.178 0.334 0.493 0.646
0.170 0.323 0.481 0.608
0.936 0.785 0.585 0.299

0.007 0.019 0.040 0.111
0.101 0.177 0.261 0.377
0.100 0.181 0.276 0.393
0.949 0.940 0.946 0.949
0.002 0.010 0.020 0.053
0.100 0.176 0.258 0.367
0.098 0.179 0.268 0.386
0.948 0.941 0.951 0.951
0.001 0.005 0.001 0.014
0.099 0.176 0.251 0.339
0.098 0.176 0.257 0.340
0.949 0.940 0.940 0.943
0.001 0.002 0.003 0.006
0.091 0.167 0.242 0.318
0.089 0.166 0.243 0.320
0.942 0.943 0.943 0.940
0.060 0.364 0.816 1.540
0.108 0.207 0.302 0.395
0.108 0.204 0.303 0.393
0.896 0.557 0.274 0.026

that the confidence intervals are longer due to non-
ignorable nonmonotone missing. When the working
model (17) is incorrect, coverage probabilities based
on proposed methods are still acceptable in most
cases. The confidence interval based on [if° does not
perform well in most of cases, because of the bias

7y CC

in /i
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Table 1. Continued

Method

n = 200
t=1t=2t=3t=4

n = 500
t=1t=2t=3t=4

Table 2. Absolute bias (AB), standard deviation (SD),
standard error (SE) and coverage probability (CP) values for
simulation 1 with model Al and multivariate Z

~ipwl

H

~ipw2

oy

~aipw
t

~CC
Mt

~ipwl
Hy

~ipw2
Hy

~aipw

Hy

~CC

H

AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP

AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP

scenario M3

0.029 0.047 0.076 0.110
0.156 0.280 0.410 0.534
0.164 0.286 0.409 0.538
0.941 0.927 0.921 0.905
0.017 0.003 0.044 0.093
0.155 0.283 0.420 0.547
0.159 0.292 0.428 0.545
0.940 0.929 0.937 0.882
0.012 0.018 0.021 0.040
0.154 0.277 0.396 0.518
0.156 0.285 0.425 0.526
0.937 0.929 0.929 0.904
0.006 0.018 0.026 0.040
0.140 0.260 0.382 0.504
0.139 0.259 0.374 0.490
0.928 0.923 0.909 0.891
0.052 0.376 0.541 0.575
0.163 0.311 0.448 0.577
0.169 0.310 0.441 0.563
0.928 0.740 0.714 0.776

0.008 0.017 0.040 0.036
0.101 0.179 0.266 0.354
0.099 0.177 0.264 0.352
0.949 0.943 0.932 0.936
0.003 0.008 0.043 0.101
0.101 0.178 0.265 0.353
0.098 0.177 0.269 0.357
0.954 0.947 0.940 0.935
0.002 0.002 0.005 0.008
0.100 0.176 0.252 0.335
0.097 0.177 0.269 0.341
0.947 0.949 0.956 0.953
0.001 0.002 0.001 0.004
0.091 0.171 0.247 0.326
0.089 0.165 0.242 0.313
0.941 0.944 0.938 0.918
0.057 0.395 0.573 0.605
0.108 0.196 0.285 0.368
0.107 0.197 0.284 0.361
0.911 0.483 0.483 0.595

scenario M4

0.019 0.041 0.119 0.130
0.153 0.297 0.461 0.547
0.161 0.308 0.462 0.564
0.954 0.954 0.929 0.881
0.005 0.012 0.017 0.145
0.152 0.291 0.458 0.558
0.157 0.307 0.482 0.573
0.948 0.959 0.943 0.890
0.002 0.006 0.047 0.070
0.151 0.280 0.442 0.534
0.158 0.296 0.443 0.550
0.952 0.950 0.932 0.904
0.001 0.001 0.002 0.001
0.137 0.259 0.382 0.510
0.140 0.261 0.374 0.470
0.944 0.949 0.926 0.870
0.070 0.466 1.021 1.763
0.158 0.305 0.467 0.568
0.160 0.300 0.434 0.547
0.923 0.666 0.368 0.160

0.007 0.022 0.070 0.117
0.095 0.179 0.286 0.471
0.098 0.189 0.304 0.470
0.947 0.949 0.952 0.936
0.002 0.010 0.030 0.027
0.095 0.175 0.272 0.498
0.096 0.185 0.297 0.520
0.953 0.947 0.956 0.936
0.001 0.006 0.030 0.053
0.095 0.172 0.257 0.411
0.097 0.181 0.276 0.421
0.954 0.944 0.953 0.933
0.001 0.001 0.001 0.002
0.087 0.164 0.244 0.324
0.089 0.166 0.243 0.313
0.942 0.947 0.937 0.915
0.077 0.478 1.033 1.797
0.100 0.192 0.010 0.375
0.102 0.192 0.284 0.366
0.878 0.312 0.060 0.004

6.2 Simulation 2: marginal regression

We consider that

Method

n = 200
t=1t=2t=3t=4

n = 500
t=1t=2t=3t=4

Pt AB
SD
SE
CP
™ AB
SD
SE
CP
ai™ AB
SD
SE
CP
Y; AB
SD
SE
CP
15 AB
SD
SE
CcpP

™t AB
SD
SE
CP
e AB
SD
SE
CP
g™ AB
SD
SE
CP
Y; AB
SD
SE
CP
i5° AB
SD
SE
CP

scenario M1

0.042 0.064 0.094 0.112
0.148 0.223 0.302 0.379
0.164 0.244 0.321 0.400
0.947 0.948 0.935 0.939
0.013 0.008 0.001 0.009
0.147 0.223 0.307 0.385
0.163 0.243 0.326 0.415
0.959 0.961 0.953 0.962
0.008 0.010 0.013 0.021
0.147 0.226 0.300 0.375
0.155 0.229 0.305 0.384
0.953 0.954 0.947 0.954
0.001 0.001 0.001 0.001
0.108 0.189 0.273 0.352
0.108 0.190 0.271 0.352
0.945 0.947 0.945 0.948
0.031 0.071 0.307 0.654
0.130 0.228 0.331 0.414
0.130 0.227 0.324 0.425
0.935 0.928 0.829 0.669

0.023 0.031 0.048 0.065
0.095 0.139 0.196 0.240
0.100 0.145 0.195 0.246
0.943 0.953 0.941 0.943
0.003 0.004 0.001 0.001
0.094 0.139 0.196 0.243
0.098 0.143 0.194 0.246
0.948 0.952 0.939 0.953
0.001 0.004 0.005 0.007
0.094 0.138 0.195 0.239
0.095 0.139 0.188 0.238
0.944 0.952 0.939 0.943
0.001 0.001 0.001 0.001
0.069 0.122 0.175 0.227
0.068 0.120 0.172 0.224
0.942 0.947 0.947 0.946
0.033 0.078 0.311 0.652
0.085 0.148 0.216 0.280
0.082 0.143 0.206 0.270
0.917 0.901 0.674 0.340

scenario M2

0.041 0.067 0.090 0.128
0.151 0.244 0.321 0.409
0.165 0.260 0.344 0.431
0.954 0.945 0.946 0.929
0.004 0.010 0.022 0.036
0.155 0.243 0.321 0.429
0.169 0.271 0.368 0.480
0.965 0.960 0.962 0.955
0.012 0.018 0.030 0.048
0.156 0.237 0.337 0.398
0.161 0.247 0.328 0.410
0.956 0.955 0.943 0.936
0.001 0.001 0.002 0.004
0.109 0.191 0.271 0.356
0.107 0.189 0.269 0.349
0.945 0.938 0.939 0.930
0.111 0.386 0.755 1.273
0.129 0.232 0.334 0.432
0.130 0.229 0.333 0.422
0.864 0.607 0.373 0.170

0.018 0.024 0.044 0.067
0.094 0.149 0.193 0.251
0.103 0.157 0.209 0.268
0.962 0.962 0.954 0.951
0.003 0.009 0.007 0.008
0.095 0.148 0.194 0.257
0.102 0.158 0.213 0.277
0.965 0.962 0.962 0.956
0.001 0.001 0.007 0.010
0.096 0.146 0.192 0.244
0.100 0.151 0.200 0.253
0.962 0.956 0.953 0.949
0.005 0.005 0.007 0.008
0.067 0.120 0.171 0.221
0.068 0.121 0.173 0.225
0.950 0.946 0.948 0.952
0.115 0.394 0.752 1.271
0.081 0.148 0.213 0.266
0.082 0.147 0.214 0.270
0.721 0.239 0.062 0.001

We generate ¢; from the Bernoulli distribution with four

Yie = pit + BoYio + B3(tZ;) + €, t=1,2,3,4,

where Y;o ~ N(1,1), Z; ~ N(1,1), e;’s are indepen-
dently generated from N(0,1), Z;, Yo and ;s are inde-
pendent. The true parameter vector 8 = (B1,08s,83)" =
(0.1,0.1,0.1)7.
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choices of m, i.e., M1-M4, defined in Section 5.1. We con-
sider that ag; = —0.8, age = —0.6, a3 = —0.4, gy = —0.2,
ay; = —0.5, agy = 0.2, ag; = —0.5 and the unconditional
missing percentages for four time points are about 22.6%,
25.4%, 31.5%, 36.2% in scenario M1, 21.6%, 24.9%, 28.0%,
31.3% in scenario M2, 17.9%, 22.7%, 25.4%, 28.5% in sce-
nario M3; 11.8%, 15.7%, 19.5%, 23.7% in scenario M4.



Table 2. Continued

Method

n = 200
t=1t=2t=3t=4

n = 500
t=1t=2t=3t=4

Table 3. Absolute bias (AB), standard deviation (SD),
standard error (SE) and coverage probability (CP) values for
simulation 1 with model A2

~ipwl

Mt

~ipwl
j2

~ipw2
Hy

~aipw

H

~cC

Mt

AB
SD
SE
CP
AB
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SE
CP
AB
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SE
CP
AB
SD
SE
CP
AB
SD
SE
CP

AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP

scenario M3

0.020 0.024 0.066 0.121
0.168 0.234 0.310 0.397
0.170 0.242 0.316 0.393
0.953 0.953 0.937 0.911
0.001 0.011 0.007 0.016
0.167 0.235 0.314 0.409
0.170 0.246 0.332 0.422
0.950 0.957 0.952 0.936
0.003 0.003 0.021 0.054
0.169 0.237 0.310 0.400
0.168 0.243 0.322 0.406
0.950 0.953 0.946 0.919
0.002 0.002 0.004 0.008
0.111 0.193 0.277 0.356
0.107 0.189 0.270 0.347
0.932 0.936 0.939 0.922
0.109 0.445 0.721 0.871
0.131 0.224 0.311 0.399
0.129 0.221 0.307 0.386
0.854 0.466 0.355 0.400

0.003 0.007 0.033 0.064
0.096 0.142 0.200 0.257
0.099 0.144 0.200 0.264
0.955 0.949 0.937 0.952
0.006 0.006 0.008 0.006
0.096 0.143 0.201 0.254
0.099 0.145 0.201 0.270
0.952 0.944 0.939 0.957
0.004 0.003 0.001 0.011
0.096 0.142 0.198 0.246
0.099 0.144 0.200 0.263
0.955 0.952 0.945 0.961
0.001 0.001 0.001 0.001
0.069 0.122 0.175 0.226
0.068 0.120 0.172 0.224
0.940 0.942 0.953 0.948
0.111 0.451 0.724 0.879
0.082 0.143 0.198 0.253
0.082 0.140 0.197 0.250
0.723 0.119 0.046 0.067

scenario M4

0.014 0.024 0.059 0.106
0.151 0.226 0.302 0.389
0.155 0.233 0.309 0.380
0.958 0.939 0.922 0.906
0.008 0.016 0.026 0.054
0.151 0.231 0.313 0.405
0.155 0.242 0.335 0.419
0.959 0.944 0.949 0.920
0.001 0.006 0.025 0.053
0.152 0.234 0.307 0.397
0.157 0.240 0.323 0.403
0.960 0.943 0.938 0.915
0.003 0.001 0.001 0.004
0.109 0.191 0.273 0.355
0.107 0.188 0.267 0.342
0.943 0.933 0.924 0.898
0.133 0.453 0.707 0.873
0.123 0.211 0.301 0.392
0.121 0.207 0.292 0.374
0.790 0.419 0.341 0.374

0.006 0.006 0.044 0.079
0.087 0.144 0.204 0.269
0.095 0.146 0.208 0.269
0.962 0.951 0.952 0.930
0.003 0.007 -0.01 0.005
0.086 0.145 0.203 0.266
0.094 0.148 0.214 0.288
0.961 0.951 0.960 0.953
0.001 0.004 0.007 0.028
0.087 0.143 0.195 0.259
0.095 0.150 0.212 0.273
0.964 0.959 0.964 0.944
0.001 0.002 0.002 0.002
0.068 0.122 0.174 0.224
0.068 0.121 0.172 0.221
0.949 0.946 0.941 0.935
0.135 0.450 0.705 0.879
0.077 0.134 0.189 0.242
0.077 0.133 0.189 0.241
0.585 0.083 0.040 0.058

Weéuse the same working propensity model and

Method

n = 200
t=1t=2t=3t=4

n = 500
t=1t=2t=3t=4

Pt AB
SD
SE
CP
i AB
SD
SE
CP
Ayt AB
SD
SE
CP

SD
SE
CP
i AB
SD
SE
CP

™t AB
SD
SE
CP
o AB
SD
SE
CP
p™ AB
SD
SE
CP

SD
SE
CP
i AB
SD
SE
cp

scenario M1

0.022 0.059 0.131 0.292
0.305 0.343 0.421 0.638
0.307 0.386 0.469 0.734
0.933 0.954 0.948 0.940
0.005 0.034 0.074 0.171
0.306 0.334 0.405 0.679
0.307 0.366 0.448 0.706
0.934 0.947 0.949 0.951
0.010 0.034 0.055 0.128
0.311 0.337 0.429 0.636
0.308 0.350 0.428 0.644
0.930 0.944 0.941 0.945
0.005 0.006 0.008 0.002
0.300 0.319 0.371 0.420
0.297 0.317 0.366 0.419
0.932 0.942 0.939 0.931
0.161 0.039 0.360 0.487
0.357 0.362 0.476 0.577
0.348 0.369 0.474 0.559
0.934 0.937 0.882 0.850

0.012 0.026 0.053 0.122
0.198 0.216 0.250 0.344
0.192 0.225 0.262 0.404
0.935 0.947 0.947 0.959
0.006 0.016 0.030 0.077
0.199 0.215 0.247 0.373
0.192 0.219 0.254 0.382
0.936 0.944 0.945 0.959
0.007 0.012 0.028 0.060
0.200 0.222 0.268 0.329
0.193 0.217 0.261 0.356
0.933 0.943 0.939 0.946
0.001 0.001 0.003 0.007
0.196 0.207 0.237 0.272
0.189 0.202 0.233 0.266
0.941 0.934 0.943 0.933
0.152 0.062 0.330 0.452
0.230 0.246 0.312 0.363
0.222 0.235 0.301 0.358
0.899 0.917 0.792 0.752

scenario M2

0.014 0.017 0.065 0.137
0.307 0.337 0.412 0.542
0.303 0.333 0.429 0.564
0.937 0.935 0.951 0.946
0.001 0.006 0.015 0.043
0.309 0.341 0.411 0.549
0.305 0.339 0.432 0.574
0.938 0.943 0.956 0.954
0.008 0.001 0.015 0.026
0.309 0.338 0.413 0.506
0.304 0.332 0.404 0.511
0.934 0.936 0.944 0.947
0.005 0.001 0.005 0.002
0.303 0.329 0.381 0.445
0.298 0.318 0.367 0.424
0.932 0.923 0.936 0.933
0.555 0.807 0.877 1.389
0.356 0.402 0.464 0.518
0.352 0.383 0.441 0.497
0.686 0.454 0.495 0.214

0.002 0.002 0.017 0.049
0.193 0.206 0.243 0.327
0.190 0.207 0.249 0.328
0.942 0.952 0.949 0.952
0.005 0.007 0.001 0.019
0.193 0.206 0.245 0.332
0.191 0.208 0.248 0.333
0.942 0.953 0.947 0.955
0.001 0.005 0.006 0.008
0.193 0.207 0.248 0.306
0.191 0.208 0.246 0.311
0.942 0.952 0.941 0.948
0.004 0.006 0.013 0.006
0.190 0.201 0.231 0.273
0.187 0.201 0.230 0.265
0.942 0.953 0.947 0.937
0.563 0.796 0.889 1.381
0.223 0.243 0.276 0.305
0.222 0.243 0.280 0.313
0.267 0.088 0.104 0.007

fe(Yz] S¢—1,7) as in Section 5.1, and study the perfor-
mance of the following four estimators of 3: the proposed
estimators B and %PY defined in (13) and (14), re-
spectively; the least square estimator B when there is no
missing data, which is defined as the root of the follow-
ing equations Zle En{Dt(X, B)Y: — gt(X;B)]} = 0; the
least square estimator B only using the observed data,
which is defined as the root of the following equations

S En{0Du(X, B)[Y: — Gi(X; 8)]} = 0.

Simulation results are presented in Table 4. It can be seen
that the proposed estimators Bipw and Baipw have negligible
biases in all cases, but the biases of 3 for B1 and By are
large in M2-M4. In terms of coverage probabilities, the two
strong competitors are Bipw and Baipw, and the CPs of BCC
for 51 and (B2 do not perform well in M2-M4, especially
when n = 500.
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Table 3. Continued
n = 200

Method n =500

Table 4. Absolute bias (AB), standard deviation (SD),
standard error (SE) and coverage probability (CP) values for
simulation 2

t=1t=2t=3t=4

t=1t=2t=3t=4

~ipwl

H

~ipw2

oy

~aipw
t

~CC
Mt

~ipwl
Hy

~ipw2
Hy

~aipw

Hy

~CC

H

AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP

AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP
AB
SD
SE
CP

scenario M3

0.015 0.020 0.068 0.148
0.305 0.330 0.382 0.541
0.300 0.325 0.385 0.552
0.944 0.928 0.931 0.900
0.002 0.003 0.010 0.024
0.306 0.336 0.392 0.560
0.303 0.334 0.414 0.556
0.945 0.935 0.942 0.927
0.008 0.018 0.053 0.115
0.306 0.331 0.382 0.501
0.302 0.327 0.390 0.505
0.946 0.934 0.934 0.912
0.002 0.002 0.004 0.006
0.301 0.322 0.363 0.425
0.296 0.316 0.358 0.408
0.941 0.931 0.931 0.905
0.557 0.856 1.178 1.366
0.364 0.368 0.397 0.424
0.349 0.356 0.389 0.404
0.656 0.323 0.143 0.088

0.003 0.015 0.064 0.232
0.189 0.206 0.244 0.328
0.192 0.208 0.246 0.325
0.950 0.952 0.951 0.901
0.003 0.005 0.049 0.206
0.189 0.207 0.246 0.347
0.193 0.211 0.254 0.363
0.949 0.956 0.955 0.926
0.001 0.014 0.048 0.174
0.190 0.207 0.244 0.312
0.193 0.209 0.246 0.321
0.949 0.950 0.945 0.928
0.001 0.003 0.002 0.006
0.186 0.201 0.229 0.262
0.190 0.203 0.232 0.265
0.952 0.960 0.952 0.952
0.565 0.862 1.178 1.368
0.220 0.231 0.254 0.265
0.225 0.229 0.252 0.264
0.272 0.029 0 0.001

scenario M4

0.022 0.013 0.083 0.088
0.291 0.321 0.413 0.572
0.299 0.318 0.441 0.582
0.949 0.914 0.937 0.938
0.005 0.011 0.026 0.017
0.293 0.326 0.417 0.616
0.305 0.331 0.455 0.600
0.952 0.928 0.947 0.939
0.021 0.005 0.025 0.014
0.292 0.322 0.398 0.521
0.301 0.320 0.412 0.525
0.950 0.923 0.936 0.950
0.016 0.015 0.016 0.014
0.287 0.308 0.361 0.418
0.294 0.305 0.362 0.416
0.949 0.915 0.933 0.933
0.462 0.830 1.093 1.750
0.312 0.354 0.415 0.445
0.324 0.345 0.414 0.445
0.732 0.352 0.234 0.025

0.012 0.007 0.035 0.058
0.190 0.208 0.260 0.357
0.191 0.207 0.269 0.363
0.942 0.929 0.953 0.947
0.006 0.001 0.020 0.033
0.190 0.210 0.266 0.394
0.193 0.211 0.276 0.381
0.946 0.937 0.955 0.945
0.012 0.003 0.009 0.006
0.190 0.208 0.257 0.321
0.192 0.206 0.255 0.334
0.945 0.929 0.947 0.955
0.009 0.006 0.005 0.012
0.189 0.202 0.230 0.266
0.187 0.197 0.229 0.265
0.942 0.928 0.947 0.952
0.468 0.837 1.107 1.755
0.209 0.228 0.267 0.278
0.206 0.222 0.262 0.286
0.380 0.032 0.007 0

n = 200 n = 500
Method Bl B2 B3 31 B2 B3
scenario M1
Bip“’ AB 0.004 0.001 0.003 0.002 0.001 0.002
SD  0.047 0.052 0.018  0.030 0.034 0.010
SE  0.047 0.052 0.018 0.032 0.035 0.011
CP  0.952 0.959 0.933 0.950 0.950 0.951
Baipw AB 0.004 0.001 0.003 0.002 0.001 0.002
SD  0.048 0.052 0.018 0.030 0.034 0.010
SE  0.046 0.052 0.019 0.031 0.034 0.011
CP 0.943 0.961 0.945 0.947 0.952 0.959
B AB 0.001 0.000 0.000 0.000 0.000 0.001
SD  0.022 0.032 0.013  0.013 0.021 0.008
SE  0.021 0.033 0.013 0.013 0.021 0.008
CP 0.938 0.944 0.931 0.948 0.954 0.952
BCC AB 0.001 0.001 0.001 0.002 0.001 0.001
SD  0.029 0.041 0.017 0.018 0.026 0.010
SE  0.028 0.040 0.017 0.018 0.025 0.010
CP 0.947 0.945 0.911  0.943 0.954 0.933
scenario M2
Bipw AB 0.004 0.004 0.001 0.001 0.000 0.001
SD  0.045 0.049 0.017  0.027 0.032 0.011
SE  0.044 0.049 0.017 0.029 0.033 0.011
CP 0.938 0.942 0.944 0.952 0.958 0.955
Baipw AB 0.004 0.004 0.002 0.000 0.000 0.001
SD  0.046 0.048 0.017 0.027 0.033 0.010
SE  0.043 0.049 0.018 0.029 0.033 0.011
CP  0.930 0.939 0.949 0.950 0.959 0.961
B AB 0.001 0.000 0.001 0.000 0.001 0.000
SD  0.021 0.033 0.013  0.014 0.021 0.008
SE  0.021 0.034 0.013 0.014 0.021 0.008
CP 0.937 0.935 0.933 0.956 0.946 0.946
BCC AB 0.033 0.015 0.002 0.032 0.013 0.001
SD  0.028 0.039 0.016 0.018 0.025 0.010
SE  0.027 0.039 0.016 0.017 0.025 0.010
CP 0.766 0.921 0.938 0.563 0.924 0.945

6.3 ACTG 193A data analysis

For illustration, we apply the proposed estimators to
a longitudinal data from the AIDS Clinical Trial Group
(ACTG) 193A (Henry et al., 1998), which was a study of
HIV-AIDS patients with advanced immune suppression. In
this study, patients were randomized to one of the four daily
regimens containing 600mg of zidovudine considered as four
treatments: (I) zidovudine alternating monthly with 400mg
didanosine, (IT) zidovudine plus 2.25mg of zalcitabine, (I11)
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zidovudine plus 400mg of didanosine, and (IV) zidovudine
plus 400mg of didanosine plus 400mg of nevirapine.

For the HIV study, the CD4 cell count is of prime inter-
est which decreases as HIV progresses. The CD4 counts were
collected from 1,280 patients before the treatments were ap-
plied (baseline measurements) and we use their records in
the analysis. After the treatments were applied, the CD4
count was scheduled to be collected from each patient ev-
ery 8 weeks. We consider the first four follow-up times,
8,16,24,32, as four time points ¢t = 1,2,3,4, and use the
CD4 counts in four time intervals, (4, 12], (12,20], (20, 28],
(28, 36], as the study variable Y; for ¢t = 1,2, 3,4, because
the realized follow-up time points might be a little different
from the scheduled time points. A few patients had more
than one measurement in one time interval, in which case



Table 4. Continued

n = 200 n = 500
Method B B2 B3 31 B2 B3
scenario M3
[g’ipw AB 0.002 0.006 0.004 0.001 0.001 0.002
SD  0.043 0.047 0.016  0.028 0.029 0.010
SE  0.042 0.045 0.017  0.029 0.030 0.010
CP  0.954 0.943 0.943 0.958 0.964 0.947
Baipw AB 0.001 0.003 0.004 0.005 0.009 0.002
SD  0.046 0.050 0.016  0.028 0.032 0.010
SE  0.043 0.049 0.017 0.029 0.033 0.011
CP  0.946 0.948 0.954 0.955 0.951 0.951
f} AB 0.001 0.000 0.000 0.001 0.001 0.000
SD  0.022 0.034 0.013 0.014 0.021 0.008
SE  0.021 0.033 0.013 0.014 0.021 0.008
CP  0.951 0.946 0.948 0.948 0.949 0.939
BCC AB 0.030 0.018 0.001  0.029 0.018 0.001
SD  0.026 0.038 0.016 0.017 0.024 0.010
SE  0.026 0.037 0.016 0.017 0.023 0.010
CP 0.784 0.914 0.939 0.558 0.880 0.942
scenario M4
Bipw AB 0.013 0.010 0.002 0.004 0.002 0.001
SD  0.040 0.046 0.016  0.027 0.031 0.011
SE  0.040 0.046 0.016 0.029 0.031 0.010
CP 0.940 0.935 0.952  0.952 0.943 0.949
Baipw AB 0.012 0.010 0.002 0.003 0.001 0.002
SD  0.041 0.047 0.016  0.028 0.031 0.010
SE  0.040 0.046 0.017 0.028 0.031 0.010
CP 0.932 0.937 0.959 0.946 0.938 0.951
B AB 0.000 0.001 0.000 0.000 0.000 0.000
SD  0.022 0.033 0.013  0.014 0.021 0.008
SE 0.021 0.033 0.013 0.013 0.021 0.008
CP 0.953 0.938 0.955 0.955 0.951 0.933
5’“ AB 0.043 0.030 0.001 0.043 0.031 0.002
SD  0.026 0.038 0.015 0.017 0.024 0.010
SE  0.026 0.037 0.015 0.016 0.024 0.010
CP 0.614 0.861 0.949 0.239 0.714 0.931

we use the last record in that interval as Y; at time ¢.

To apply the proposed method, we use the baseline mea-
surement as the instrument Z. Because the baseline mea-
surements were taken before the treatments were applied,
it is reasonable to assume t}gt the propensity at time ¢

does not depend on Z given S;_; and Y;. We fit propen-
sity model (17) to the data set. The estimates and their
standard errors based on the bootstrap are reported in Ta-
ble 5.

It can be seen that the number of CD4 counts of Treat-
ment I keeps decreasing rapidly compared with other treat-
ments, which indicates that Treatments II, III and IV have
good performance on the HIV-AIDS disease. Under Treat-

ments I, IT and III, all three estimates, "™, flP™? and

i and their standard errors are almost identical. How-
ever, these estimates are different from fi$¢ . Specifically, for

t = 1 under Treatments I and IV, f° may be too conser-

Table 5. Estimates (with standard errors in parentheses) for
the ACTG 193A data

Estimator t=1 t=2 t=3 t=4
Treatment I
et 26.62 (2.51) 32.36 (1.91) 14.96 (2.45) 14.11 (1.26)
APV 26.63 (2.48) 32.23 (1.84) 16.68 (2.52) 15.06 (1.32)
AXPY 26,59 (2.46) 32.42 (1.89) 17.26 (2.68) 14.80 (1.44)
fge 26.21 (1.59) 23.12 (1.69) 19.25 (1.27) 18.64 (1.15)
Missing (%) 30.6 26.8 47.3 39.1

Treatment 11

APt 34,49 (3.59) 26.28 (3.68) 17.82 (1.71) 17.00 (1.40

(3.59) ) (1.40)
APV 34,48 (3.46) 26.94 (3.64) 18.01 (1.76) 17.47 (1.43)
APV 34.58 (3.43) 26.73 (3.61) 18.42 (1.98) 17.49 (1.41)
fise 31.19 (2.18) 27.77 (1.71) 22.21 (1.64) 23.06 (1.68)
Missing (%) 315 23.2 44.3 43.6
Treatment I11
AT 38.78 (5.04) 31.57 (4.21) 23.19 (3.19) 19.41 (1.93)
APY? 3892 (5.01) 31.58 (4.23) 23.10 (3.22) 20.13 (2.05)
A3PY39.78 (4.96) 31.58 (4.23) 23.81 (3.07) 19.53 (1.96)
s 42.20 (3.65) 36.24 (2.68) 30.12 (2.89) 30.70 (2.79)
Missing (%) 320 22.5 46.5 41.5
Treatment IV
AT 48.03 (3.89) 42.06 (4.71) 30.56 (3.74) 31.97 (3.49)
APY? 4817 (4.05) 42.09 (4.94) 31.50 (3.63) 32.23 (3.48)
APV 48.50 (4.00) 42.05 (4.70) 32.51 (4.23) 32.89 (3.77)
g 42.86 (3.23) 48.80 (4.32) 38.77 (3.75) 40.59 (4.36)
Missing (%)  28.4 23.5 45.7 37.0
vative since it is smaller than 2P"', AP"? and 2" for

t = 3,4 under Treatment I and ¢t = 2, 3,4 under Treatments
IT, IIT and IV, 45° may be too optimistic since it is larger
~ipw?2 ~aipw

than P, 47" and jif

7. DISCUSSION

Handling longitudinal data with nonignorable nonmono-
tone nonresponse is a challenging problem, mainly due to
the issue of identifiability of the nonresponse propensity. As-
sumptions on propensity must be imposed to develop useful
methods but they cannot be verified due to nonignorable
nonresponse. We use a parametric propensity model and a
GMM approach making use of a nonresponse instrument to
identify unknown parameters in the propensity. Our asymp-
totic results for the proposed estimators are established un-
der situations where the propensity model can be misspeci-
fied. Alternatively, we construct a model-assisted AIPW es-
timator that depends on an estimator of a conditional mean
for nonrespondents under a working parametric model. Al-
though the working parametric model is often misspecified,
the ATPW estimator is still consistent and asymptotically
normal and has good empirical performance in our simula-
tion studies.
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A nonresponse instrument Z plays a crucial role in our
method, which is assumed to be given in this paper. In ap-
plications, baseline covariates are good candidates for in-
struments, as our empirical study of ACTG 193A indicated,
because baseline covariates were obtained before the treat-
ments were applied and it is reasonable to assume that the
propensity at time ¢ does not depend on baseline measure-
ments given longitudinal observations S;_; defined in (1)
and S;. Nonresponse instrument selection in general is very
difficult and challenging, which is a topic of our future re-
search.

The result on IPW in Section 4 can be extended to the sit-
uation where G;(X; 3°) in (12) is replaced by G;(X, V;; 39).

In some problems V; may have missing components, in
addition to missing Y; values. Although our method can be
applied by changing d; to the indicator of completely ob-
serving (Y, V4), it discards incomplete data and hence is
not efficient. To develop method producing efficient estima-
tors, however, is very challenging because the missingness
of (Y, V) may have many patterns that are hard to model.
Further research is needed.
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APPENDIX

Proof of Theorem 2.1. Recall gi(ay) = (Y, V,X,8, ),
Gmg(ozt) = En{gt(at)} and Gt(Oét) = E{gt(at)} By the
law of large number (LLN), it can be shown that G (a;) —
Gi(ayr) = 0p(1) for all oy € A. Since both g; () and Gre(ov)
are continuous at each oy € A,

sup [|Gne(ar) — Gi(aw)| = 0p(1).
ateA

This, coupled with GMM identification (i.e., Lemma 2.3
of Newey and McFadden, 1994), shows that a; = of +
0,(1). By the LLN, it can be shown that W,, = W; +
op(1). Let Qi(ar) = Gia) "W/ Gi(aw) and Qulaw) =
Gnt(at)TW&lGnt(at). Based on Lemma 2.3 and Theorem
2.1 of Newey and McFadden (1994), to prove &, —a; = 0,(1),
it is enough to show that sup,, ¢ 4 [@ni(ar) —Q:(ar)| = 0p(1).
This is true because by the triangle and Cauchy-Schwartz
inequalities,

sup |Qni(ar) — Qi)

ar€
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< sup [{Guele) = Gele)} W, {Gualw) = Gl
+ s [Gula) TVt + (W) ){Guele) = Gl
+ sup [Gulao) (W, = W7 )Ga()

< sup [[Gralar) = Gulan)} I

+2 SléaHGt(at)HHGnt(at) — Gyan)|[IIW;
+ s |G |P Wt = Wt = 0, (1).

This proves &; = of + 0,(1).

Next, we derive the asymptotic normality of &;. With
probability approaching one, we have the first-order con-
dition 2Fm(dt)VAV,;1Gm(dt) = 0, where Tpi(ay) =
0Gpt(a)/0as. Expanding Gp:(G:) around «f, multiplying
through by n'/2, and solving gives

n'/? (& — of)

= — [0} (G) W' Tu(a)] 71T (60) W'

1/2Gnt (O‘: )7

where @; is between &; and «of. By simply calculation and
the LLN, for all a; € A,

Fnt(Oét)
= —En{&0eme(on) 1 — m(ar)]Z(e) T}
= —E{&m(ad)[me(on) ™" — 12 () "} + 0p(1).

This, together with W,,; = W} 4+ 0,(1) and & = o +0,(1),
implies that

[T (G )Wy T (@) 71T 0 (G ) W
= [F:th*_lrﬂilrzTWt*_l + Op(l)-
1/2

By the Slutzky theorem, we can show n'/?(&; — «F) 5
N0, (T TW;—T#)~1). This completes the proof. O

Proof of Corollary 2.1. When the intermittent propensity
model is correctly specified, m () = m(a?), Wy = Wy +
0p(1) and & = a? + 0,(1). Then the proof for the Corol-
lary 2.1 follows directly from these facts. O

Proof of Theorem 3.1. We first derive the asymptotic prop-
erties of the proposed Horvitz-Thompson type estimators
APY and iPY2. By simply calculation and the LLN, we
can prove that OE,[0;Y;/m(a)]/0ar = —A1 + 0,(1),
where Ay; = E{Y3[1 — m(a?)]=(a?)}. Similarly, we have
OE,, [ (o) 1Yy — u?)] /Oy = —Aay +0p(1), where Ay, =
E{(Y; — iN)[1 — m(aN)]=(a?)}. From the proof of Theo-
rem 2.1, we have &; — af = —A;G,(a?), where A; =
[CTW, 0~ 'IT W, . Then, for 2""!, we have

~ipwl 0
Hy — My



n[0¢Yy/m(G)] — pf

E
= En[6,Ys/m(ad)] — pf — Al (& — af) + 0,(n™1/?)
E 0

= En[6:Ye/m(0f) + Al Avgi(af)] — 1 + 0, (n1/3),
and for fi ”pwz , we have
=g
= n[6t}/;5/7rt(dt)}/En[6t/7rt(dt)] - N?
= {En[6¢/m ()]} En [eme () ' (Ve — )]

= Eu[6mi(af) ™ (Y — u))] — A(@s — af) + 0p(n~1/?)
= E,[0em(af) 1Y — 1) + AJ Avge ()] + op(n 1/2)~
Applying the central limit theorem (CLT), n'/2(aP™" —

L

w) = N(0,V.), where Vi, = Var{étY}/wt(at) +
AfAege(af)} and Vor = Var{dm(af)™'(V; — uf) +
A Migi(af)}

Next, we consider the asymptotic distribution of the
AIPW estimator /i2PV. Note that n~'E,(6) = Pr(§, =
1) + 0p(1). Let wy = Pr(d; = 1). Using the arguments of
White (1982, Theorem 3.1 and Theorem 3.2 ), we can show
that 4, — 7 = 0p(1) and

Ve =t
= —{wiAi(7/)}
+ Op(n_1/2)~

We consider OE, {H;(a?,v;)}/0ar, OB {H(a?,~;)}/0v:.
By calculation, we obtain

OB, {Hy(a?, )}
aOlt
=~ Eu[om(af) *{Y, —
+ ]E [{1 — 5t7rt(at)
=:Th1 + Tho.

B {60108 (S5 11,77)/07 )

moi (e, 77 ) }Omi (o) /Dexi]
}amot(at Ve )/ 0au]

Under propensity model (1), it is easy to show that T,o =
0p(1). Note that

e
- E{mft ){Yt

= B{ V= mu(ofd (o) ) =

{1 = m(a)HY: -
mou(af, ) How = m(af)}E(a)) }

Note that we also have ®, = Cov[§m(ad) HY, —
mot (2, 77) },me(af)]. Then, we have T,,; = —®; + 0,(1).
Applying the LLN and under nonresponse assumption (1),
it can be shown that 9E, {H:(a,~;)}/0v: = 0p(1). There-

fore, for 42P" | we have that

~aipw 0

o — Mt

]En{Ht(Oé?a’Y?)} - HJ? + (I);rAtht(a?) + Op(nfl/Q)
= ]En{Ht(a?77?> + q);rAtgt(a?)} — M? + Op(n—l/Q)-

Applying the CLT, we have that n!/2(a2PY — 19) A
N(0, Va;), where Va; = Var{H;(a?,7?) + ® Argi(a?)}. The
proof of Theorem 3.1 is completed. O

Proof of Theorem 4.1. We first prove g B BF. It is suf-
ficient to verify the conditions of theorem 5.9 of van der
Vaart (1998). According to Lemma 2.4 in Newey and Mec-
fadden (1994), together with the continuity of U, (8, &) in
B, we can show that

sup ||U1(ﬂ7&f) - UI(/BaOLI)H ﬂ) O

BeB

Next, we show infg.5_g:|>c [|Ur (B, a7)[| > 0, for any € > 0
and 3 € R?. This is true because

inf U,(B, af
ﬁ:\lﬁfﬁfl\Ze” (8ol

= b U8, af) =

U8, ot
B:118— Byl >e (87, o)l
[T (B, ) —

ﬁ:uﬁi—nﬁf;nzs T2 (B, a)|(B = B,

which is strictly positive under Assumption C3. Here 3 is
between 8 and B7. Therefore, all underlying conditions of
Theorem 5.9 of Van der Vaart (1998) hold, and this proves
the consistency of Bip‘”.

Using simple algebraic manipulations,

U, (B, o)
0BT

_ iE{
ina{

-1
= E{ Zﬂ(a?)ﬂ(af)_lgt(X, BOY: — Ge(X; 5?)]}

Zu(X, B[V - Gu(X: 57)]}

WX DX 57T

&

1
> wla)m(a;) DX, B)DX, B)T |+ 0p(1)

- *-72* + Op(l)’

_OUL(By,af)
oo

Hg’ﬂ

x m -~ Gi(X: ﬁi‘)]E(aZ‘)T} +0,(1)
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=:J5 +o0p(1). Vaart (1998, Theorem 5.9), we can show that 2iPw 2 g*.
Using simple algebraic manipulations and LLN,

Now using Taylor expansion, U, (3®Y, &) = U,(8F,af) +
(Ji = T3)(BPY = By) — T3 (& — af) + Op(”71/2)7 which (“)UAﬁj,aqu)

leads to 88T
B — B == (J7 = T5) OB, 0f) = T3 (@ —a))} o
+Op(n71/2). - ;E {975 X ﬁ )[Ht(am%&) gt(Xvﬁj )]}
T
Let A2 = [T W11, ]* '3 TW; 1. From Theorem 2.1, we _ ZE {Dt(X BIYDU(X 5*)1'}
have & — af = —A;Gpi(a}). Therefore, we obtain ~ " T T
pipw % T
e = B> AX. B Hi o) - Gu(X: 871}

o~
Il

T
- (Jf —JQ*)’IZlEn{ém(a;‘)*lDt(X, %) !
t=1 _E
X [V = Gu(X;3 7)) + T g} + op(n=1/2).

— =
-+

S Dy (X. 41D X, 507} + ol
=1

= Zik - jQ* + Op(l)a

Applying the CLT, we have that n'/2(fPY — gr) 5 UL (B, aF )
N(0,%%), where X = (J; — J5) V(T — J5)~ ! with dof
Ve o= Var{X |, dimi(af) DX, BH)Y: — Gu(X;87)] + T
Ti Nl T = YR D Bl Y, — mada 20)
Proof of Corollary 4.1. When the intermittent propensity tgl( ) Omon( )
model and the marginal regression model are correctly spec- 9m(F) x5 s ay—179mor(afs vf)
ed, 4, — b 1 on(D), oty o mad, GG = aag DU B~ dema) TG
gt(X;ﬁO), and T
i == B{ 3" Du(X, B)0m(0}) (Y — moula, i)}
8U (ﬂo at 0 0 t=1
g == B DX DX )T } + o, (1)  omlad) dmoe(a7, )
t=1 at - — DX, B[ — oym ()™ 1]%}
oU,(B°, af) ¢ 0 0y—1 0 o o
_T :E{Zﬂ't(at)[ﬂ't(at) _I]Dt(X7ﬁ ) +Op(]‘)
t t=1 = =I5 + I3 + o0p(1),
— M= 7
X Y = Gi(X; °)]E(0)) T } + 0p(1). o7 (B% a7
oy

Then the proof for the Corollary 4.1 follows directly from
these facts. | T Omo (e, v
_ = ZER{Dt(X, BE[1 — 5tm(a;)—1]M}

Proof of Theorem 4.2. By the LLN, together with the facts P vy
Gy = of +0p(1) and 4y = yf + 0,(1), it can be shown that i} o1 Omoy(af, )
02(8,60, ) = Ua(Broioni) + opl(1) for all 8 € B. Since = B{DUX B[ = dim(ad) =552 L4 0,(1)
G+(X; B) is continuous at each 3 € B, we further have that — LTI 4 op(L).

sup |UA(B, &, 3) — Ua(B, a4 2 0.

Beg” 4B, 60, %) 48,057 Applying Taylor expansion, together with asymptotic ex-
pansions for &; and 4, we show that

Additionally,
sl Y, I2e 1U4(8, a7 Ua(BY, G, ) N
— lan || (6 a* 7*) o U (ﬂ* O[* 7*)“ = A(BA,OQ,%) + (_’Z,-iK — j2*)(5a1pw _ﬁ:)
PpArze T (T~ T — 0) + T Gr — 37+ 0pln )

122 (B, af 75) = Fa(Br a8 - B, (B alAl) + (T — T2 (6 — )

) — Zi{n A )} B {50 10g (S8 11,77)/0% }
which is strictly positive under Assumption C6. Here 3 is itwr )} 0108 fulSi] S 1-1,70)/ 0
between 8 and S%. Then, using the arguments of Van der + (T3 — TN Gi() + 0y (n71/?)

> inf
B:l|B=Brll=€
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T
= ZEN{\IIt(B:aO‘:a’Y:)} + (If - j;)(éaipw - B:)
t=1

+

Op(n_1/2)>

where q!t(ﬁ:’aI77:) Wlt(ﬁf\’ar77:) + 902t(0‘2<77;) +
<P3t(aI77f)7 801t(ﬂfuaf7%*) = Dt(X76:;)[Ht(O‘I7’Y:) -
Gu(X; B2 paulaq,vi) = (Ts — I3)Afgeleg), wsi(of, i) =
~Ti{wiA(vf)} 100 1og fi(Sil S t-1,77) /0. Then,

6alpw _ ﬁ:;

T
=— (T} = T5) D Bl {08, 07, )} + 0p(nT3).

t=1

Applying the CLT, we have that nl/Q(ﬁaipW - B%) A

N(0,%%), where ¥* = (Z; — J5) "V (Z; — J5)~! with
Vi = Var{3D, W85, i, 7)) O
Proof of Corollary 4.2. When all the models used are cor-
rectly specified, & = o + 0,(1), % =7 + 0,(1), and

OUL(8° af, %)
opT

8UA(5Oa a?v%?)
Do

T
== B{ Y DX B)DuX. B)T | + 0p(1),

T
— - 2{ Y m(ad)m (@) - UD(X.8)

x {¥; = mor(ad, A1) T} + 0p(1),

AUA(B°, 0f,7?
A(a’y—rt t) — Op(].).

Then the proof for the Corollary 4.2 follows directly from
the above facts. O
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