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Bayesian inference on multivariate-t nonlinear
mixed-effects models for multiple longitudinal
data with missing values
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The multivariate-t nonlinear mixed-effects model
(MtNLMM) has been shown to be a promising robust tool
for analyzing multiple longitudinal trajectories following
arbitrary growth patterns in the presence of outliers and
possible missing responses. Owing to intractable likelihood
function of the model, we devise a fully Bayesian estimat-
ing procedure to account for the uncertainties of model
parameters, random effects, and missing responses via the
Markov chain Monte Carlo method. Posterior predictive
inferences for the future values and missing responses
are also investigated. We conduct a simulation study
to demonstrate the feasibility of our Bayesian sampling
schemes. The proposed techniques are illustrated through
applications to two case studies.

Keywords and phrases: Missing responses, Multivariate
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1. INTRODUCTION

The multivariate nonlinear mixed-effects model
(MNLMM), as proposed by Marshall et al. (2006), has been
shown to be a promising tool for analyzing multivariate
longitudinal data with arbitrary patterns of continuous
responses collected from many research fields such as
biomedical, psychological, environmental science and clin-
ical studies. The multivariate linear mixed-effects model
(MLMM) (Shah et al., 1997) can be viewed as a special case
of the MNLMM when the link function is specified as a sim-
ple identity function that is linear in fixed effects and ran-
dom effects. There is a large amount of literature describing
methods for the estimation of MLMM and MNLMM along
with their applications. From a maximum likelihood (ML)
perspective, the related work can be found, for example,
in Sammel et al. (1999), Roy and Lin (2002), Roy (2006),
Marshall et al. (2009), Wang and Fan (2010), and Wang
(2015). On the other hand, De la Cruz-Meśıa and Marshall
(2006) developed a Bayesian treatment of the nonlinear
mixed-effects model (Lindstrom and Bates, 1990, NLMM).
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Schafer and Yucel (2002) proposed Markov chain Monte
Carlo (MCMC) sampling-based strategies for Bayesian anal-
ysis of the MLMM with missing values. Recently, De la Cruz
(2014) investigated the Bayesian analysis of the NLMM un-
der a class of fat-tailed multivariate distributions, including
the Student’s t and slash and contaminated normal.

In the framework of MLMM and MNLMM, the random
effects and within-subject errors are routinely assumed to
follow a multivariate normal distribution for mathematical
tractability and computational simplicity. However, such a
normality assumption can usually cause a lack of robustness
against outliers and subsequently result in invalid inference.
To overcome this weakness, a number of authors have con-
sidered different extensions of mixed-effects models based
on the multivariate-t distribution (Kotz and Nadarajah,
2004) for robust modeling both sources of variability.
Pinheiro et al. (2001) introduced the t linear mixed-effects
model (tLMM) constructed by assuming multivariate-t
distributed random effects and errors to accommodate
outlying responses within subjects or unusual subjects.
Wang and Fan (2011) presented a multi-outcome version
of tLMM, namely the multivariate-t linear mixed-effects
model (MtLMM), for analyzing multivariate longitudinal
data. More recently, Wang and Lin (2014) proposed the
multivariate-t nonlinear mixed-effects model (MtNLMM) as
an extension of the MNLMM for robust inference.

In this paper, we adopt a variant of MCMC method for a
Bayesian treatment of the MtNLMM to assess the uncertain-
ties of model parameters. The proposed sampling procedure
allows to vary the specification of joint posterior densities
which are formulated by incorporating the joint prior den-
sity with the approximate likelihood function, obtained by
using the first-order Taylor series expansion on the model
around the individual parameters. The proposed Bayesian
sampling procedure provides a tremendous flexibility in gen-
erating posterior samples from their full conditional poste-
rior distributions.

The occurrence of missing responses with arbitrary pat-
terns is an unavoidable problem in multi-outcome longi-
tudinal studies due to a variety of reasons, for example,
missed visits, dropouts, loss to follow-up, death or dis-
abling conditions, and so forth. A comprehensive study
that covers methodological and computational aspects of
handling missing data can be found in Schafer and Yucel
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(2002), Marshall et al. (2006), Wang (2013), Wang and Lin
(2014), and Wang and Lin (2015), among others. To reflect
extra uncertainty due to missing data, this paper also of-
fers a modified MCMC procedure for the MtNLMM with
missing responses at random. The proposed fully Bayesian
treatment of MtNLMM allows for taking the uncertainties
of model parameters and missing outcomes into account
through appropriate prior choices and is shown to provide
more accurate inference than does the likelihood-based ap-
proach (Wang and Lin, 2014), especially when the small size
is not large. Further, our proposed Bayesian model includes
that of Wang and Lin (2015) as a special case if the mean
functions relating to covariates are made linear in parame-
ters.

The organization of this paper is as follows. In Sec-
tion 2, we establish notation and present the Bayesian
formulation of the MtNLMM together with the prior
specifications. In Section 3, we describe the implemen-
tation of the MCMC algorithms and discuss posterior
predictive inferences for missing values and future re-
sponses. Section 4 illustrates our methodology through two
real-data examples from HIV/AIDS and pregnant women
studies. A simulation study is conducted in Section 5
to study whether the Bayesian treatment of MtNLMM
can give reasonable results under various missingness set-
tings. Section 6 concludes with a short summary of is-
sues raised by our methods and some directions for pos-
sible future research. The required full conditional poste-
rior distributions and the implementation for Metropolis-
Hastings (M-H) algorithm (Hastings, 1970) are relegated
in the appendices. R code for implementation of the pro-
posed Bayesian approach is available online (see Supple-
mental Materials Section, http://intlpress.com/site/pub/
pages/journals/items/sii/content/vols/0011/0002/s001).

2. BAYESIAN MODEL SPECIFICATION

2.1 Multivariate-t nonlinear mixed-effects
model

Suppose that there are N subjects in the study. Each
subject has his/her own response matrix Y i which is com-
posed of r column vectors yij = (yij,1, . . . , yij,si)

T for the
jth characteristic (j = 1, . . . , r) and, from the other side,
si row vectors yi,k = (yi1,k, . . . , yir,k) for the kth occa-
sion (k = 1, . . . , si). The response matrix with dimension
si × r can be formed as Y i = [yi1 : · · · : yir] = [yT

i,1 :

· · · : yT
i,si

]T for the ith subject (i = 1, . . . , N). Let xi col-
lect a set of covariates for the ith subject. The relationship
between responses Y i and covariates xi cannot be com-
pletely modeled by the regression mean function, so the
within-subject errors are needed and defined by a si × r
matrix Ei = [ei1 : · · · : eir] = [eTi,1 : · · · , eTi,si ]T. Here

eij = (eij,1, . . . , eij,si)
T is a column vector corresponding to

yij , and ei,k = (ei1,k, . . . , eir,k) is a row vector correspond-
ing to yi,k. For convenience of model formulation, the vec(·)
operator, which strings out all columns of a matrix verti-

cally into a stacked vector, is utilized on Y i and Ei such
that yi = vec(Y i) and ei = vec(Ei).

The MtNLMM for the ith subject takes the form:

(1) yi = μi(ηi,xi) + ei,

where μi is a nonlinear, vector-valued and differentiable
function used to link the relationship between the responses
yi and covariates xi through a vector-valued individual pa-
rameters ηi = Aiβ + Bibi. In the way, the fixed effects β
and random effects bi can be incorporated into the model
such that μi(ηi,Xi) = μi(β, bi), where Ai and Bi are de-
sign matrices of size g × p and g × q for the fixed effects
and random effects, respectively. We further assume that
the random effects and within-subject errors are jointly dis-
tributed as

(2)

[
bi
ei

]
∼ tq+ni

([
0
0

]
,

[
D 0
0 Ri

]
, ν

)
,

where ta(μ,Ω, ν) represents the a-variate t distribution with
location vector μ, scale-covariance matrix Ω and degrees of
freedom (DOF) ν, and ni = sir. Under the assumption of
(2), the two-level hierarchy of the MtNLMM is

(3) yi|bi ∼ tni(μi(β, bi),Ri, ν), bi ∼ tq(0,D, ν).

For computational convenience, we consider Ri = Σ ⊗ Ci

for describing the among-characteristic and among-occasion
correlations simultaneously, where Σ = [σjl] ∈ Rr×r, for
j, l = 1, . . . , r, and Ci ∈ [−1, 1]si×si . According to the as-
sumption of eij and ei,k, the jth column (outcome) and the
kth row (occasion) of Y i, say yij and yi,k, respectively, can
be written as

yij = μij(ηi,xij) + eij , and yi,k = μk
i (ηi,xik) + ei,k,

where μij(ηi,xij) = (μj(ηi,xij,1), . . . , μj(ηi,xij,si))
T rep-

resents the vector of a link function relating the jth outcome
yij over si occasions to the covariates xij , and μk

i (ηi,xik) =
(μ1(ηi,xi1,k), . . . , μj(ηi,xij,k), . . . , μr(ηi,xir,k)) represents
a vector of r link functions with each relating the corre-
sponding outcome variable at the same time to the covari-
ates xi,k.

To avoid the non-identifiability problem (Galecki, 1994),
the specification of variance component for within-subject
errors which is used to describe the serial correlation among
occasions, denoted by Ci, should be specified as a correla-
tion matrix rather than a covariance matrix. Toward this
end, we exploit a parsimonious damped exponential corre-
lation (Muñoz et al., 1992, DEC) structure which is simple
and flexible for handling the observations measured at ir-
regularly visited occasions using a function of time and few
parameters. The DEC structure is defined as

(4) Ci = Ci(φ; ti) =
[
φ
|tik−tik′ |φ2

1

]
,

where the parameter vector φ contains the autoregressive
(AR) coefficient φ1 ∈ [0, 1), which describes the autocor-
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relation between observations separated by the absolute
length of two time-points, and the damping parameter
φ2 ∈ [0,∞), which permits acceleration of the exponential
decay of the autocorrelation function. The DEC structure in
(4) includes the compound symmetry, the continuous-type
first-order autoregressive (AR(1)) model and the first-order
moving average (MA(1)) model as special cases formed by
setting φ2 = 0, φ2 = 1 and φ2 → ∞, respectively.

2.2 Prior and posterior distributions

In a Bayesian treatment, one must specify prior distribu-
tions for model parameters θ = {β,D,Σ, φ1, φ2, ν}. Assum-
ing that the model parameters θ are independent a priori,
the joint prior density is

(5) π(θ) = π(β)π(D)π(Σ)π(φ1)π(φ2)π(ν).

The prior distributions adopted are as follows:

β ∼ Np(β0,F0), D ∼ IW(d0,G0), Σ ∼ IW(s0,H0),

φ1 ∼ U(0, 1), (1 + φ2)
−1 ∼ U(0, 1), (1 + ν)−1 ∼ U(0, 1),

where U(0, 1) denotes a uniform distribution between 0
and 1, and IW(s,Ω) denotes an inverse Wishart distribu-
tion with scale-covariance matrix Ω and DOF s. The hy-
perparameters β0, F 0, d0, G0, s0 and H0 are specified to
reflect vague prior information.

In order to conduct the Bayesian computation of
MtNLMM, we formulate four joint posterior densities used
across four cycles of the procedure. Firstly, we treat b =
{bi}Ni=1 as latent data and combine them with observed
data y = {yi}Ni=1 as the complete data. Multiplying the
joint prior density (5) by the complete-data likelihood func-
tion sketched based on hierarchy (3) leads to the first joint
posterior density, given by
(6)

p(θ, b|y) = π(θ)

N∏
i=1

tni(yi|μi(β, bi),Ri, ν)tq(bi|0,D, ν),

where ta(·|μ,Ω, ν) represents the probability density func-
tion (pdf) of ta(μ,Ω, ν).

In view of (6), none of full conditional posterior has
a recognizable distribution. Due to the high dimensional-
ity of parameters θ and random effects b, the implemen-
tation of the M-H algorithm for simulating each entry of
θ and {bi}Ni=1 is painfully difficult. The difficulty we suf-
fer from is “how to select the suitable proposal distribu-
tions which can provide stable convergence for each param-
eter”. To remit this difficulty, we utilize the stochastic rep-
resentation of multivariate-t distribution and a Taylor ap-
proximation of the model. Accordingly, the full conditional
posteriors of bi and all entries in θ except for φ and ν
show standard distributional forms. Thus the Gibbs sampler
(Geman and Geman, 1984) can be implemented straightfor-

wardly to simulate posterior samples of most of the param-
eters and random effects, while the M-H algorithm is per-
formed merely for φ and ν.

Based on the essential property of multivariate-t distri-
bution, we introduce a set of scaling weights (latent data)
τ = {τi}Ni=1, where τi ∼ Gamma(ν/2, ν/2). The second joint
posterior density of (θ, b, τ ) is

p(θ, b, τ |y) = π(θ)

N∏
i=1

φni

(
yi | μi(βi, bi), τ

−1
i Ri

)
(7)

×φq

(
bi | 0, τ−1

i D
)
G
(
τi|ν/2, ν/2

)
,

where φa(·|μ,Ω) denotes the pdf of a-variate normal distri-
bution with mean vector μ and variance-covariance matrix
Ω, and G(·|a, b) denotes the pdf of gamma distribution with
mean a/b and variance a/b2.

Then, we apply the first-order Taylor expansion on model

(1) around the unobservable individual parameter η
(s)
i =

Aiβ
(s)
i +Bib

(s)
i to linearize the MtNLMM, where β(s) and

{b(s)i }Ni=1 are the posterior samples of fixed effects and ran-
dom effects at the sth iteration of the MCMC procedure.
Model (1) becomes

(8) ỹi = X̃iβ + Z̃ibi + ei,

which is called the pseudo-data model henceforth. The no-
tation ỹi is an ni × 1 vector composed of r pseudo-response
vectors ỹij = (ỹij,1, · · · , ỹij,si)T in which

ỹij,k = yij,k − μj(η
(s)
i ,xij,k) + x̃ij,kβ

(s) + z̃ij,kb
(s)
i ,

X̃i is an ni × p matrix with rows made up of p × 1

vector x̃ij,k = μ̇j(η
(s)
i ,xij,k)

TAi, and Z̃i is an ni ×
q matrix with rows made up of q × 1 vector z̃ij,k =

μ̇j(η
(s)
i ,xij,k)

TBi, where μ̇j(η
(s)
i ,xij,k) is the first partial

derivative of μj(η
(s)
i ,xij,k) with respect to ηi.

In light of the pseudo-data model specified in (8) along
with assumption (2), we obtain ỹi ∼ tni(X̃iβ, Λ̃i, ν), where

Λ̃i = Z̃iDZ̃
T

i + Σ ⊗ Ci. Using the scaling weights τ , the
two-level hierarchy for pseudo-data model (8) is given by

(9) ỹi|τi ∼ Nni

(
X̃iβ, τ

−1
i Λ̃i

)
, τi ∼ Gamma(ν/2, ν/2).

Multiplying the joint prior density in (5) by the complete-
data likelihood, which is the product of the pdfs of (9)
for all subjects, yields the third joint posterior, denoted by
p(θ, τ |ỹ), where ỹ = {ỹi}Ni=1.

Model (8) can be alternatively represented as

ỹi|(bi, τi) ∼ Nni

(
X̃iβ + Z̃ibi, τ

−1
i Ri

)
,(10)

bi|τi ∼ Nq(0, τ
−1
i D),

τi ∼ Gamma(ν/2, ν/2).

Combining the data information from (10) with the prior
density in (5) gives rise to the fourth joint posterior
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p(θ, b, τ |ỹ). Following the above four joint posteriors, the
full conditional posterior distributions of parameters as well
as latent data, which are useful for the MCMC procedures,
are sketched in Appendix A.

3. COMPUTATIONAL STRATEGIES

3.1 Implementation of MCMC algorithm

The MCMC methods are primarily used for calculat-
ing numerical approximations of multi-dimensional integrals
through sampling from a probability distribution to cre-
ate a Markov chain that has the target distribution as
its equilibrium distribution. The two most popular tools
of MCMC methods in Bayesian inference are the Gibbs
sampler (Geman and Geman, 1984) and M-H algorithm
(Hastings, 1970) which draw posterior samples sequentially
from the full conditional posterior distributions and then
correct these samples to achieve an approximation of the
target posterior distribution. However, the Bayesian compu-
tation for the MtNLMM is complicated such that the con-
ventional MCMC procedure is computationally inefficient
when all the full conditional posteriors are derived from (6).
To go further, we exploit a variant of MCMC method that
allows to vary the specification of the joint posterior den-
sities with the data augmentation (DA) steps for random
effects as well as scaling weights and posterior (P) steps for
parameters at each iteration. Therefore, the MCMC method
offers enormous flexibility in formulating the procedure and
typical efficiency in sampling.

Let θ(s) = {β(s),D(s),Σ(s),φ(s), ν(s)}, {b(s)i }Ni=1, and

{τ (s)i }Ni=1 be the generated posterior samples of parameters,
random effects and scaling weights, respectively, at the sth
iteration. The MCMC algorithm, which consists of four cy-
cles of DA-steps and/or P-steps with each cycle being devel-
oped under one of the four joint posterior densities, proceeds
as Algorithm 1.

Algorithm 1. (MCMC algorithm for the MtNLMM)

P-Step for the 1st cycle. Generate φ = (φ1, φ2) and ν
from (A.1) and (A.2), respectively, via the M-H algo-
rithm described in Appendix B.

DA-Step for the 2nd cycle. Generate τi from (A.3) via
the Gibbs sampler, for i = 1, . . . , N .

P-Step for the 2nd cycle. Generate D and Σ from
(A.4) and (A.5), respectively, via the Gibbs sampler.

P-Step for the 3rd cycle. Generate β from (A.6) via the
Gibbs sampler.

DA-Step for the 4th cycle. Generate bi from (A.8) via
the Gibbs sampler, for i = 1, · · · , N .

Having the post-convergence posterior samples of size L,
say {θ(l)}Ll=1 that should be a subset of {θ(s)}Ss=1 =

{β(s),D(s),Σ(s),φ(s), ν(s)}Ss=1 after removing the ‘burn-in’

samples, denoted by {θ(s), s ≥ s0}, the posterior means of

parameters can be estimated by β̂ = 1
L

∑L
l=1 β

(l), D̂ =
1
L

∑L
l=1 D

(l), Σ̂ = 1
L

∑L
l=1 Σ

(l), and φ̂ = 1
L

∑L
l=1 φ

(l). Due

to the heavy-tailed behavior, the posterior median is an ap-
propriate estimator for ν. The 100(1− α)% posterior inter-

vals for θ can be constructed by [θ[α/2],θ[1−α/2]], where θ[α]

denotes the α-percentile of posterior samples of θ(l).
Furthermore, it is of interest to interpret subject-specific

variability by the estimation of unobservable random effects
and obtain the fitted values of repeated measures. Using
the post-convergence samples of {b(l)}Ll=1, the posterior es-
timates of random effects and fitted responses can be calcu-
lated as

(11) b̂i =
1

L

L∑
l=1

b
(l)
i , and ŷi =

1

L

L∑
l=1

μi(β
(l), b

(l)
i ).

3.2 Imputation for missing responses

The occurrence of missing data due to a variety of reasons
becomes a ubiquitous problem for researchers in practice.
For fitting the (univariate) NLMM and tNLMM with miss-
ing values, the estimation process is straightforward without
too much complexity added to the computational burden
because it can be done through distinct subject-specific de-
sign matrices. However, missingness on multivariate longi-
tudinal data can produce more complex patterns such as an
intermittent structure, which indicates that one characteris-
tic could be measured but the other could be missing for a
subject during his/her scheduled visits. To handle such kind
of data, the Bayesian methodology for fitting the MtNLMM
under an incomplete-data framework is also developed. Most
statistical procedures for conducting missing data depend
on conditions of missing-data mechanisms. In what follows,
we assume that the missingness of data is under missing at
random (Rubin, 1976, MAR) with an ignorability, meaning
that the missing-data process relies only upon the observed
values themselves.

Following the notation introduced in Wang and Lin
(2014) especially for the permutation matrices Oi and M i,
which extract the observed and missing parts of observa-
tions of each subject, model (1) for partially observed data
can be written as

yo
i = μo

i (ηi,xi) + eoi .

The first two joint posterior densities are modified as
p(θ, b|yo) and p(θ, b, τ |yo) accordingly.

Similarly, pseudo-data model (8) can be rewritten as

ỹo
i = X̃

o

iβ + Z̃
o

i bi + eoi

in which only the observed responses and their correspond-
ing covariates are included in ỹi, X̃i and Z̃i. Then we have

ỹo
i ∼ tno

i
(X̃

o

iβ, Λ̃
oo

i , ν) where Λ̃
oo

i = OiΛ̃iO
T
i . Treating

{ỹm
i , τi}Ni=1 as the latent data and then combining them

with observed pseudo data ỹo = {ỹo
i }Ni=1 as the complete

data, we obtain the complete-data likelihood function. Mul-
tiplying this likelihood function by the joint prior π(θ)
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in (5) gives the modified third joint posterior, denoted by
p(θ, ỹm, τ |ỹo). Subsequently, we can derive the full condi-
tional posterior density for missing responses ỹm

i given ob-
served responses ỹo

i , scaling weight τi and parameters θ,
denoted by p(ỹm

i |ỹo
i , τi,θ). Multiplying it by p(τi|ỹo

i ,θ) and
then integrating out τi yields
(12)[

ỹm
i |ỹo

i ,θ
]
∼ tni−no

i

(
ỹm·o
i ,

(
ν +Δỹo

i

ν + no
i

)
Λ̃

mm.o

i , ν + no
i

)
,

where ỹm·o
i = X̃

m

i β + Λ̃
mo

i Λ̃
oo−1

i (ỹo
i − X̃

o

iβ), Δỹo
i

=

(ỹo
i − X̃

o

iβ)
TΛ̃

oo−1

i (ỹo
i − X̃

o

iβ), and Λ̃
mm·o
i = M i(Ini −

Λ̃iO
T
i Λ̃

oo−1

i Oi)Λ̃iM
T
i with Λ̃

mo

i = M iΛ̃iO
T
i . Having pos-

terior samples of pseudo missing responses {ỹm(s)

i }Ss=1 gen-
erated from (12), we transform them back to

(13) ym(s)

i = ỹm(s)

i + μi(β
(s), b

(s)
i )− X̃

m

i β
(s) − Z̃

m

i b
(s)
i .

After a sufficiently long ‘burn-in’ period, the Markov chain

{ym(s)

i , s ≥ s0} tends to converge to the posterior predictive
distribution of missing responses p(ym

i |yo
i ).

As the three-level hierarchy given in (10), its version of
the partially observed data, which comprises the conditional
distribution of ỹo

i |(bi, τi), that of bi|τi, and the marginal
distribution of τi, can be determined. Hence the modified
fourth joint posterior density p(θ, b, τ |ỹo) is obtained. Using
the above four modified joint posterior densities, the full
conditional posterior distributions for parameters and latent
data are given in Appendix A.

As a consequence, the MCMC algorithm for Bayesian in-
ference of the MtNLMM with missing responses proceeds as
Algorithm 2 sequentially.

Algorithm 2. (MCMC algorithm for the MtNLMM with
missing responses)

P-step for the 1st cycle. Generate φ = (φ1, φ2) and ν
from (A.9) and (A.10), respectively, via the M-H algo-
rithm.

DA-step for the 2nd cycle. Generate τi from (A.11) via
the Gibbs sampler, for i = 1, . . . , N .

P-step for the 2nd cycle. Generate D and Σ from
(A.4) and (A.5), respectively, via the Gibbs sampler.

DA-step for the 3rd cycle. Generate ỹm
i from (12) via

the Gibbs sampler, and then obtain the samples of ym
i

based on (13), for i = 1, . . . , N .
P-step for the 3rd cycle. Generate β from (A.12) via

the Gibbs sampler.
DA-step for the 4th cycle. Generate bi from (A.13) via

the Gibbs sampler, for i = 1, · · · , N .

3.3 Predictive inference for future values

We now turn our attention to the predictive inference
for future values of a new subject. First, let Y 01(s01 × r)
be an observed response matrix for a new subject over

the first portion of time and Y 02(s02 × r) the correspond-
ing response matrix over the future portion of time. Sup-
pose that y0 = vec([Y T

01 : Y T
02]

T) satisfies the specifica-
tion of model (1) in which the mean vector is defined as
μ0(β, b0), and (bT0 , e

T
0 )

T ∼ tq+n01+n02(0, diag{D,R0}, ν),
where R0 = Σ ⊗ C0. Define y01 = vec(Y 01) and y02 =
vec(Y 02). To deal with missing values possibly existing in
y01, two permutation matrices O01 and O02, which are of
dimensions no

01 × (n01 + n02) and n02 × (n01 + n02) such
that O01y0 = yo

01 (observed values) and O02y0 = y02

(future values to be predicted), are introduced for ease of

notation. Let Λ̃
oo

11 = O01Λ̃0O
T
01, Λ̃

o

12 = O01Λ̃0O
T
02, and

Λ̃22 = O02Λ̃0O
T
02, where Λ̃0 = Z̃0DZ̃

T

0 +R0. The pseudo-
data model for y0 is

[
ỹo
01

ỹ02

]
∼ tno

01+n02

([
X̃01

X̃02

]
β,

[
Λ̃

oo

11 Λ̃
o

12

Λ̃
oT

12 Λ̃22

]
, ν

)
.

Subsequently, we draw the posterior predictive infer-
ence on future pseudo responses ỹ02 based on the observed
pseudo responses ỹo

01 (extracted the observed components
from ỹ01). Define R11 = O01R0O

T
01, R21 = O02R0O

T
01,

R12 = RT
21, R22 = O02R0O

T
02, G = Z̃02 − R21R

−1
11 Z̃01,

Z̃01 = O01Z̃0 and Z̃02 = O02Z̃0. By Bayes’ theorem, sim-
ple matrix algebra yields the conditional posterior distribu-
tion of ỹ02, given by
(14)

[ỹ02|ỹo
01,θ] ∼ tn02

(
μ̃2·1,

(
ν + Δ̃o

01

ν + no
01

)
Λ̃22·1, n

o
01 + ν

)
,

where

μ̃2·1 = X̃02β+ Z̃02b2·1 +R21R
−1
11 (ỹ

o
01 − X̃01β − Z̃01b2·1),

Λ̃22·1 = (R22 −R21R
−1
11 R12)

+G(W 01 −W 01(W 01 +D)−1W 01)G
T,

Δ̃o
01 = (ỹo

01 − X̃01β)
TΛ̃

oo−1

11 (ỹo
01 − X̃01β)

with b2·1 = b̃01 − W 01(W 01 + D)−1b̃01 in which b̃01 =

W 01Z̃
T

01R
−1
11

(
ỹ01 − X̃01β

)
, and W 01 =

(
Z̃

T

01R
−1
11 Z̃01

)−1
.

Finally, we generate posterior samples of pseudo future

responses {ỹ(s)
02 }Ss=1 from (14), in which the model parame-

ters are replaced by their posterior samples {θ(s), s ≥ s0}.
The future responses can be predicted as

(15) y
(s)
02 = ỹ

(s)
02 + μ0(η̂0,X02)− X̃02β̂ − Z̃02b̂2·1,

where η̂0, β̂, and b̂2·1 are the posterior means of η0, β, and

b2·1, respectively. The Markov chain {y(s)
02 , s ≥ s0} tends to

converge stationarily to the posterior predictive distribution
of future responses p(y02|yo

01).
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4. APPLICATIONS

We apply our proposed method to analyze two real
datasets. Both datasets are fitted by the MtNLMM and
MNLMM with specific mean curves and various auto-
correlation structures. For Bayesian model selection, we
use the expected Akaike information criterion (Brooks,
2002, EAIC), the expected Bayesian information criterion
(Brooks, 2002, EBIC), and the deviance information crite-
rion (Spiegelhalter et al., 2002, DIC), defined as EAIC =
2m + 2D(θ), EBIC = m logN + 2D(θ), and DIC =
2D(θ) − D(θ̄), where m is the number of model parame-
ters, D(θ) = Eθ|ỹ[−2�(θ|ỹ)] is the posterior expectation of
the deviance, and D(θ̄) is the deviance evaluated at the pos-
terior means of parameters with �(θ|ỹ) being the observed
log-likelihood function of θ for the pseudo responses. Hav-
ing the posterior samples {θ(l)}Ll=1, D(θ) and D(θ̄) can be

approximated by L−1
∑L

l=1 D(θ(l)) and D(L−1
∑L

l=1 θ
(l)),

respectively. Models with smaller EAIC, EBIC, and DIC
values are better supported by the data. Another commonly
used criterion is the logarithm of pseudo-marginal likelihood
(LPML), defined as

LPML =
N∑
i=1

log(ĈPOi),

where ĈPOi = {L−1
∑L

l=1 1/π(ỹi|θ(l))}−1 is the Monte
Carlo estimate of conditional predictive ordinate (CPO)
statistic (Carlin and Louis, 2006) using a harmonic-mean
approximation (Dey and Chang, 1997). Here the term

π(ỹi|θ(l)) is evaluated by the individual observed likelihood

for the pseudo data f(ỹi|θ) at each posterior sample θ(l).
Models with larger LPML values should be preferred.

4.1 ACTG 315 study

The first example concerns the ACTG 315 study devel-
oped by the Immunology Research Agenda Committee of
the US National Institute of Allergy and Infectious Disease,
the ACTG sponsor. In the study, 53 human immunodefi-
ciency virus type 1 (HIV-1) infected patients (participants)
were recruited by University Hospitals of Cleveland, Rush-
Presbyterian-St. Luke’s Medical Center and University of
Colorado Health Science Center. After the recruitment and
start of antiviral therapy (ART), patients were repeatedly
measured their plasma HIV-1 RNA (viral load) copies and
CD4+ T cell counts at days 0, 2, 7, 10, 14, 28, 56, 84, 168
and 196. HIV-1 infection is associated with progressive and
profound loss of immune function that places infected per-
sons at enhanced risk for opportunistic infections, and even
death. A reaction in HIV-1 related immune deficiency can be
characterized by decreases in numbers of circulating CD4+

T helper lymphocytes. In other words, CD4+ T cells in blood
decline to a lower level after HIV-1 infection and may re-
cover to a high level after ART suppress viral load. During
ART treatments, the virologic marker (measured by HIV-1
RNA) and the immunologic marker (measured by CD4+ T

Figure 1. Trajectories of log10(RNA) and CD40.5 for 48
HIV-1 infected patients.

cells) generally exhibit a negative correlation. Accordingly,
a joint analysis of HIV-1 RNA and CD4+ counts is helpful
to take into account the evolution of the correlation among
responses across occasions. For a more detailed account of
the study, the reader is referred to Lederman et al. (1998)
and Connick et al. (2000).

After excluding four early drop-out patients and one
due to a plasma HIV-1 RNA pattern that suggested in-
termittent adherence to study therapy, a total of 48 pa-
tients as a part of the clinical trial on 53 patients were
recruited in the later analysis. To stabilize the variances
and reduce the strong skewness among the two makers,
the HIV-1 RNA copies and CD4+ T cells are transformed
by a log-base-10 and a square-root function, respectively,
which are widely used in HIV-AIDS clinical trials. The
time trajectories of the two transformed markers, namely
log10(RNA) and CD40.5, across visited days are shown in
Figure 1. The data have been previously analyzed by a
number of authors using different approaches, for example,
Wu and Ding (1999), Liang et al. (2003), Wu and Liang
(2004), Lachos et al. (2013), Lin and Wang (2013), and
Wang (2015).

Let yi1,k and yi2,k be log10(RNA) and CD40.5 markers,
respectively, at the kth occasion for patient i. Consider the
MtNLMM with nonlinear mean functions for yi1,k and yi2,k:

yi1,k = log10
(
e(β1+bi1+β2tik) + eβ3rnai

)
+ ei1,k,(16)

yi2,k = (β4 + bi2)/(1 + e(β5−tik)/β6) + ei2,k,

where tik = dayik/7 is the kth visited time point (week) for
patient i, and rnai is the baseline log10-transformed RNA
levels for patient i. The random effects and within-subject
errors (bi1, bi2, e

T
i1, e

T
i2)

T, where eij = (eij,1, . . . , eij,si)
T, for

j = 1, 2, are assumed to follow the multivariate-t distribu-
tion with zero location vector and scale-covariance matrix
in block-diagonal form, i.e., diag{D,Σ ⊗Ci}. The consid-
ered autocorrelation functions on Ci include the uncorre-
lated structure (UNC), the continuous-type AR(1), and the
DEC dependence. For the purpose of comparison, the nor-
mal counterparts of MtNLMMs are also fitted to the data.
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Table 1. Model selection criteria under the six competing
models for the ACTG 315 data

Criteria
MNLMM MtNLMM

UNC AR(1) DEC UNC AR(1) DEC
EAIC 2089.613 2038.391 2054.598 2113.664 2008.104 2047.705
EBIC 2112.068 2062.717 2080.795 2137.990 2034.301 2075.773
DIC 2075.034 2020.283 2034.591 2096.839 1991.061 2028.670

LPML -1040.873 -1012.435 -1020.065 -952.615 -818.533 -881.764

We implement Algorithm 1 by running five parallel chains
with 30,000 iterations per chain and different initial values
extracted randomly from the prior distributions. The con-
vergence is monitored through the use of multivariate poten-
tial scale reduction factor (Brooks and Gelman, 1998, MP-
SRF), suggesting that the convergence achieves after 20,000
iterations for all of the fitted models. We therefore discard
the first 20,000 iterations as a ‘burn-in’ period for each chain
and then store one imputed sample per 10 iterations to re-
duce the autocorrelation within each chain. We have a sam-
ple size of L = 5,000 realizations used to approximate the
posterior distributions of interest.

Table 1 presents the EAIC, EBIC, DIC and LPML scores
for six competing models. We found that the MtNLMMs
provide better performance than their normal counter-
parts in terms of DIC and LPML. According to the EAIC
and EBIC, except for the models with UNC errors, the
MtNLMMs are superior to their normal counterparts. Over-
all, the best fit model is the MtNLMM with AR(1) er-
rors. Table 2 reports the summary statistics for the poste-
rior inference of parameters, including the posterior means
(Mean), posterior standard deviations (SD), and posterior
2.5% and 97.5% quantiles that create the 95% posterior
intervals, under the best model and the MNLMM-AR(1)
which is the best one under the normal models. For the sake
of comparison, the ML estimates (Est) of parameters, ob-
tained by the pseudo expectation conditional maximization
(ECM) algorithm (Wang and Lin, 2014), together with their
standard errors (SE) and 95% confidence intervals, showing
the lower and upper confidence limits (LCL and UCL), are
also listed in Table 2.

We now turn our attention to the parameter estimates for
the fitted MNLMM-AR(1) and MtNLMM-AR(1) from the
Bayesian and ML approaches. It can be seen that the pos-
terior and ML point estimates of model parameters show
slight differences between the normal and t models, espe-
cially for the variance components, say the elements in D,
Σ and φ1. From the estimates of Σ, we can compute the
correlations between log10(RNA) and CD40.5 levels. Under
Bayesian and ML approaches respectively, the correlations
are −0.245 and −0.134 for the fitted MNLMM-AR(1) and
−0.138 and −0.149 for the fitted MtNLMM-AR(1), imply-
ing a negative relationship between the virologic marker
(measured by HIV-1 RNA copies) and the immunologic
marker (measured by CD4+ T cells) during the ART treat-
ments. This finding is consistent with the earlier studies by

Figure 2. The log10(RNA) and CD40.5 observations (•) along
with the 95% posterior intervals for the mean curves (blue
shadow slash) and the 95% predictive intervals for one-step
ahead predictors (gray region) for eight randomly selected

patients from the ACTG 315 study.

Orendi et al. (1998) and Sachsenberg et al. (1998). The au-
toregressive parameter φ1 is also significantly different from
zero, revealing the existence of autocorrelation among occa-
sions on each characteristic. From the Bayesian viewpoint,
the posterior median of ν is 13.527 with the 95% poste-
rior interval [5.958, 29.228], while from the ML inference,
the point estimate of ν is 18.973 with the 95% confidence
interval [8.585, 35.799], indicating a moderate degree of fat
tails. As can be seen, the parameters for the fixed effects are
significantly different from zero, and the posterior standard
deviations are quite smaller than the corresponding stan-
dard errors obtained by the inverse of observed information
matrix. It implies that Bayesian approach gives more pre-
cise estimates than the ML inference in the study. In par-
ticular for the variance of random effects d11, it reveals that
the variation of random effects for log10(RNA) appears sta-
tistically significant under a Bayesian approach, while that
under ML estimation does not.

As an illustration, Figure 2 exhibits the observations of
log10(RNA) and CD40.5, the fitted values calculated by (11),
and the one-step-ahead predictors calculated by (15) to-
gether with their 95% posterior (predictive) intervals for
eight randomly selected patients. Generally, the fitted and
predicted curves adapt the trend along the observed re-
peated measures. However, some of the features are not
ideally captured because the viral load (RNA copies) and
CD4+ T cells are highly variable immune system markers
which are sometimes difficult to fit. Apparently, the pos-
terior bands for fitted values are narrower than those for
one-step-ahead predictors.

Figure 3 displays the scatter plots of the posterior es-
timates of random effects (bi1, bi2) via (11) superimposed
on a set of contour dashed lines obtained by the bivariate
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Table 2. Posterior estimates obtained by the MCMC algorithm and ML estimates obtained by the pseudo ECM algorithm
under the fitted MNLMM with AR(1) errors and MtNLMM with AR(1) errors, respectively, for the ACTG 315 data

Model Method
Parameter

β1 β2 β3 β4 β5 β6 d11 d21 d22 σ11 σ21 σ22 φ1 ν

N Bayes Mean 12.117 -2.634 1.306 16.879 -1.741 1.332 0.005 0.034 5.868 0.455 -0.283 2.941 0.155 –
SD 0.182 0.144 0.018 0.272 0.338 0.206 0.007 0.126 1.283 0.036 0.082 0.300 0.033 –
2.5% 11.766 -2.916 1.270 16.345 -2.404 0.927 0.001 -0.206 3.792 0.390 -0.445 2.430 0.096 –
97.5% 12.473 -2.352 1.343 17.427 -1.075 1.731 0.024 0.295 8.806 0.527 -0.125 3.602 0.222 –

ML Est 12.048 -2.656 1.304 16.860 -1.731 1.308 0.006 0.016 4.754 0.463 -0.218 5.701 0.682 –
SE 0.251 0.178 0.027 0.391 0.493 0.326 0.466 0.541 1.383 0.046 0.096 0.599 0.031 –
LCL 11.556 -3.004 1.250 16.093 -2.698 0.669 -0.906 -1.045 2.044 0.374 -0.406 4.528 0.621 –
UCL 12.540 -2.308 1.357 17.628 -0.765 1.947 0.918 1.076 7.464 0.552 -0.029 6.874 0.743 –

T Bayes Mean 11.945 -2.557 1.290 16.935 -1.825 1.329 2.584 0.069 1.945 0.410 -0.207 5.497 0.684 13.527
SD 0.201 0.124 0.020 0.248 0.380 0.242 1.026 0.442 0.713 0.049 0.102 1.012 0.051 6.416
2.5% 11.554 -2.798 1.252 16.453 -2.580 0.868 1.033 -0.794 0.876 0.322 -0.415 3.809 0.580 5.958
97.5% 12.345 -2.310 1.328 17.429 -1.065 1.809 4.974 0.989 3.635 0.516 -0.013 7.705 0.772 29.228

ML Est 11.970 -2.593 1.291 16.916 -1.856 1.361 0.008 0.161 4.590 0.421 -0.218 5.080 0.684 18.973
SE 0.247 0.171 0.027 0.392 0.526 0.341 0.434 0.515 1.367 0.049 0.090 0.620 0.032 8.585
LCL 11.487 -2.928 1.238 16.148 -2.886 0.693 -0.844 -0.849 1.909 0.325 -0.394 3.865 0.621 2.147
UCL 12.453 -2.258 1.344 17.684 -0.826 2.029 0.859 1.171 7.270 0.517 -0.041 6.296 0.747 35.799

∗ N: MNLMM with AR(1) errors; T: MtNLMM with AR(1) errors

Figure 3. Scatter plot for posterior estimates of random
effects (bi1, bi2) together with the bivariate t contour,

histograms and boxplots.

t density under the fitted MtNLMM-AR(1), together with

two summary histograms and boxplots. It reveals that the

contour plot ideally adapts the shape of scattering pattern.

From the histograms and boxplots, the heavy-tailed phe-

nomena appear due to the extremely estimated b̂21 and b̂32
of patients 2 and 3, respectively, which can be treated as

potential outliers. The two patients are pointed out in the

scatter plot of estimated random effects and also marked

in Figure 1. It is readily seen that the trajectory pattern

of log10(RNA) of patient 2 and that of CD40.5 of patient 3

deviate systematically from other patients, confirming the

extremely far-from-zero estimated b̂21 and b̂32.

4.2 Pregnant women data

The second example concerns a 2-year follow-up study

of 124 women diagnosed with normal pregnancies and 37

women with abnormal pregnancies in a private fertilization

obstetrics clinic in Santiago de Chile, Chile. The women

were classified into the normal group if they had a termi-

nal delivery, and the abnormal group if they had sponta-

neous abortions or other types of adverse pregnancy out-

comes. To detect complications or a high risk of losing the

fetus, the 161 young women were repeatedly measured their

beta-subunit human chorionic gonadotropin (β-HCG) and

estradiol concentrations during the first trimester of preg-

nancy. Figure 4 shows the trajectories in log10 scale for the

β-HCG and estradiol across time (in days) for the pregnant

women. The number of observations on each outcome mea-

sured at irregular occasions for the pregnant women ranges

from 0 to 6. For normal and abnormal groups, there are

around 2.61% and 0% missing β-HCG values, and 26.49%

and 57.5% missing estradiol values, respectively. More de-

tailed information about the clinical background can be

found in Marshall et al. (2006) and Marshall et al. (2009).

Let yi1 = (yi1,1, . . . , yi1,si)
T and yi2 = (yi2,1, . . . , yi2,si)

T

be the log10(β-HCG) and log10(Estradiol) for woman i, re-

spectively, and define yi = (yT
i1,y

T
i2)

T. The data are fitted

by the MtNLMM with two distinct mean curves for log10(β-

HCG) and log10(Estradiol) of the ith woman at time tik,
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Figure 4. Trajectories of log10(β-HCG) and log10(Estradiol)
for 161 pregnant women dataset.

Table 3. Model selection criteria under the six competing
models for the pregnant women data

Criteria
MNLMM MtNLMM

UNC AR(1) DEC UNC AR(1) DEC

EAIC 651.559 616.333 661.298 485.150 488.181 496.992
EBIC 691.617 659.473 707.519 528.289 534.402 546.294
DIC 628.900 592.090 630.148 467.019 473.548 473.146

LPML -331.880 -306.442 -334.314 -241.136 -291.027 -251.939

given by

yi1,k =
β1 + bi1 + β2groupi
1 + e(β3−tik)/β4

+ ei1,k,(17)

yi2,k = β5 + (β6 + β7groupi)tik + bi2 + ei2,k,

where groupi is a group indicator (0 = normal group, 1 =
abnormal group) used to investigate whether there exists
any difference of the evolutions of responses between the
normal and abnormal pregnant women. The random effects
and within-subject errors are assumed to be bi = (bi1, bi2) ∼
t2(0,D, ν) and ei = (eTi1, e

T
i2)

T ∼ t2si(0,Ri, ν), where Ri =
Σ ⊗ Ci, and the UNC, continuous-type AR(1), and DEC
structures are considered for Ci. The normal counterparts
with mean functions specified in (17), where bi = (bi1, bi2) ∼
N2(0,D) and ei = (eTi1, e

T
i2)

T ∼ N2si(0,Ri), are also fitted
to the data for comparison purpose.

To conduct the Bayesian computation, we perform Al-
gorithm 2 using five parallel chains with 20,000 iterations
per chain and random initialization selected from the pri-
ors. After diagnosing the convergence via the MPSRF, we
delete the first 16,000 iterations as a ‘burn-in’ period for
each chain and then store one imputed sample per 20 iter-
ations to reduce the autocorrelation within each chain. As
a result, there are L = 1,000 realizations used to draw the
desired posterior inference.

Observing the model selection criteria listed in Table 3,
all MtNLMMs outperform over their normal counterparts.
The preferred models under the normal and t scenarios are
MNLMM-AR(1) and MtNLMM-UNC, respectively, and the

later model is better than the former. Table 4 shows the
point and interval estimates for all parameters of interest
obtained from the Bayesian and ML methods under the
best chosen normal and t models. Focusing on the poste-
rior inference, all the estimates of fixed effects are signifi-
cantly different from zero because the corresponding pos-
terior intervals do not contain zero. The estimates of β2

and β7 suggest that the change in responses over time ex-
ists significantly between the normal and abnormal groups.
We compute the estimates of correlations of log10(β-HCG)
and log10(Estradiol), given by σ21/

√
σ11σ22 = 0.677 and

0.163 under the best MNLMM and MtNLMM, respectively,
and they are somewhat different. Furthermore, the esti-
mates of AR parameter φ1 = 0.723 are highly significant
but only under the MNLMM. The posterior median of the
DOF ν = 3.010 is quite small, confirming the presence of
a heavy-tailed behavior among the random effects and er-
rors. When comparing the ML and Bayesian inference, the
posterior means of MCMC samples are quite similar to ML
estimates for fixed effects, whereas the Bayesian estimation
provides smaller variabilities, leading to a shorter range for
the resulting interval estimate. On the other hand, the two
methods usually give somewhat different estimates for vari-
ance components (D and Σ), as was the case of univariate
normal/t linear mixed models (Browne and Drapery, 2006;
Lin and Lee, 2007).

As an illustration, Figure 5 displays the observed re-
sponses, their fitted curves, and the imputed values along
with the 95% posterior intervals of missing responses under
the best model for six pregnant women who had at least
four measurement occasions and more than one missing β-
HCG and/or estradiol concentrations. As anticipated, the
fitted curves are almost close to the observations, and the
imputed values show a reasonable pattern. The 95% poste-
rior intervals give more precise results (narrower intervals)
when the woman had more observed measurements.

5. SIMULATIONS

We conduct simulations to examine the performance of
MNLMM and MtNLMM approaches under conditions re-
sulting from the fully observed data and two missing mech-
anisms. As suggested by one referee, we also compare the
accuracy of Bayesian and ML estimation methods for pa-
rameter recovery. The data are generated from a similar
model defined in (16) with the presumed model parameters,
given by β1 = 12, β2 = −3, β3 = 1, β4 = 17, β5 = −2,
β6 = 1,

D =

[
1 0.2
0.2 1

]
, Σ =

[
1 −0.75

−0.75 1

]
, Ci = I10,

and ν = 5. For each ‘simulated’ subject, the time points tik
are set as the values 0, 2, 7, 10, 14, 28, 56, 84, 168 and 196
(days) divided by 7 (week) as the temporal scales used in
the ACTG 315 example.
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Table 4. Posterior estimates obtained by the MCMC algorithm and ML estimates obtained by the pseudo ECM algorithm
under the fitted MNLMM with AR(1) errors and MtNLMM with UNC errors, respectively, the pregnant women data

Model Method
Parameter

β1 β2 β3 β4 β5 β6 β7 d11 d21 d22 σ11 σ21 σ22 φ1 ν

N Bayes Mean 4.673 -0.767 14.683 7.285 2.336 0.011 -0.008 0.010 0.006 0.004 0.494 0.173 0.132 0.723 –
SD 0.046 0.070 0.387 0.456 0.041 0.001 0.001 0.001 0.001 <0.000 0.066 0.032 0.022 0.068 –
2.5% 4.581 -0.899 13.937 6.333 2.259 0.009 -0.010 0.008 0.005 0.003 0.383 0.117 0.095 0.588 –
97.5% 4.761 -0.628 15.464 8.156 2.415 0.013 -0.005 0.013 0.008 0.005 0.642 0.237 0.176 0.810 –

ML Est 4.680 -0.787 14.853 7.194 2.332 0.011 -0.008 0.041 0.020 0.017 0.201 0.038 0.074 0.854 –
SE 0.059 0.086 0.483 0.574 0.055 0.001 0.002 0.032 0.013 0.011 0.028 0.012 0.011 0.033 –
LCL 4.565 -0.955 13.912 6.074 2.224 0.008 -0.011 -0.022 -0.005 -0.004 0.147 0.015 0.052 0.790 –
UCL 4.795 -0.618 15.794 8.314 2.440 0.014 -0.004 0.104 0.045 0.038 0.254 0.061 0.095 0.918 –

T Bayes Mean 4.713 -0.601 15.315 6.781 2.271 0.013 -0.006 0.035 0.006 0.027 0.067 0.009 0.045 – 3.010
SD 0.028 0.049 0.207 0.262 0.032 0.001 0.001 0.008 0.003 0.005 0.008 0.004 0.006 – 0.984
2.5% 4.659 -0.697 14.881 6.268 2.206 0.011 -0.009 0.022 0.001 0.018 0.053 0.001 0.035 – 2.000
97.5% 4.768 -0.510 15.695 7.284 2.333 0.015 -0.004 0.055 0.014 0.039 0.084 0.018 0.058 – 5.000

ML Est 4.704 -0.596 15.283 6.825 2.275 0.013 -0.006 0.039 0.010 0.015 0.082 0.014 0.039 – 3.574
SE 0.045 0.067 0.315 0.396 0.046 0.001 0.002 0.013 0.007 0.006 0.012 0.006 0.007 – 0.643
LCL 4.616 -0.726 14.668 6.053 2.185 0.010 -0.009 0.013 -0.003 0.004 0.059 0.002 0.026 – 2.321
UCL 4.791 -0.466 15.897 7.598 2.364 0.015 -0.003 0.065 0.023 0.027 0.106 0.025 0.052 – 4.828

∗ N: MNLMM with AR(1) errors; T: MtNLMM with UNC errors

Figure 5. The log10(β-HCG) and log10(Estradiol)
observations (•), the fitted curves (gray dashed lines), and

the imputed values (red dots) together with the 95%
posterior intervals (red dashed lines) for missing responses for

six selected pregnant women.

Once a sample of complete data is generated, artifi-
cial missing values are introduced to the sample under
MCAR and MAR mechanisms. In the MCAR experiments,
15% sub-samples of values are randomly selected and then
deleted. As far as the MAR mechanism is concerned, non-
response items are generated for each outcome variable yj ,
j = 1, 2, depending on the value of yjk, which is the observed
value of yj at time k, for k = 1, . . . , 10. Let qji be the ith
quartile of the empirical distribution of yj . The nonresponse
probabilities for yj are 1% if yjk < qj1, 5% if qj1 ≤ yjk < qj2,
10% if qj2 ≤ yjk < qj3, and 15% if yjk ≥ qj3.

Table 5. Model selection under various sample sizes and
missing proportions based on 100 replications

Missingness Criteria
N = 25 N = 50

MNLMM MtNLMM MNLMM MtNLMM

DIC
Mean 1556.352 1473.348 3160.725 2981.424

Full Freq (1) (99) (0) (100)
Data

LPML
Mean -812.589 -748.355 -1643.631 -1476.624
Freq (0) (100) (0) (100)

DIC
Mean 1454.250 1377.558 2926.504 2833.399

MCAR
Freq (11) (89) (3) (97)

LPML
Mean -753.870 -712.742 -1504.381 -1432.803
Freq (3) (97) (2) (98)

DIC
Mean 1520.686 1491.557 3084.063 3021.791

MAR
Freq (39) (61) (24) (76)

LPML
Mean -801.570 -776.133 -1600.044 -1550.067
Freq (16) (84) (24) (76)

For each simulated data set, the MNLMM and MtNLMM
approaches are fitted using the MCMC procedure described
in Section 3 and the ECM algorithm of Wang and Lin (2014)
to draw inference from both Bayesian and ML perspectives.
A total of 100 replications are undertaken across sample
sizes N = 25 and 50 for each of the fully observed and two
missing data patterns. One thing worth noting is that the
ECM procedure for ML estimation may fail, though seldom,
to achieve convergence for a particularly simulated miss-
ing pattern. To ensure that the comparison among different
methods is evaluated based on the same simulated data, an
additional data set is regenerated using the R try() func-
tion in the case of non-convergence.

Table 5 lists the averages of DIC and LPML together with
the frequencies (Freq) of the models supported by DIC and
LPML. Observing the table, the MtNLMM leads to smaller
DIC and larger LPML values. Moreover, the frequency of
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Table 6. Comparison of parameter estimation obtained by the Bayesian MCMC and pseudo ECM-based ML methods for
N =25 and 50 under full data, MCAR and MAR mechanisms

N = 25 N = 50
Missingness Parameter Bayes ML Bayes ML

True Est 2.5% 97.5% Est LCI UCI Est 2.5% 97.5% Est LCI UCI
value (Bias) (Length) (Bias) (Length) (Bias) (Length) (Bias) (Length)

β1 12 11.958 11.396 12.520 11.922 11.150 12.694 11.996 11.586 12.403 12.009 11.450 12.567
(-0.042) (1.125) (-0.078) (1.545) (-0.004) (0.816) ( 0.009) (1.116)

β2 -3 -2.954 -3.384 -2.529 -2.920 -3.514 -2.327 -2.948 -3.252 -2.645 -2.914 -3.337 -2.490
( 0.046) (0.856) ( 0.080) (1.187) ( 0.052) (0.607) ( 0.086) (0.847)

β3 1 0.997 0.940 1.055 0.993 0.912 1.074 1.000 0.959 1.041 0.998 0.940 1.056
Full (-0.003) (0.116) (-0.007) (0.162) (< 0.000) (0.082) (-0.002) (0.116)
Data β4 17 17.002 16.675 17.329 17.003 16.578 17.427 17.001 16.759 17.244 16.997 16.683 17.311

( 0.002) (0.654) ( 0.003) (0.849) ( 0.001) (0.485) (-0.003) (0.627)
β5 -2 -2.039 -2.677 -1.412 -2.102 -2.992 -1.213 -2.066 -2.516 -1.624 -2.135 -2.771 -1.499

(-0.039) (1.265) (-0.102) (1.779) (-0.066) (0.892) (-0.135) (1.272)
β6 1 1.015 0.728 1.304 1.042 0.637 1.446 1.031 0.827 1.237 1.064 0.774 1.355

( 0.015) (0.575) ( 0.042) (0.809) ( 0.031) (0.410) ( 0.064) (0.581)

β1 12 11.968 11.362 12.582 11.921 11.113 12.730 12.007 11.559 12.456 12.030 11.445 12.615
(-0.032) (1.220) (-0.079) (1.617) ( 0.007) (0.897) ( 0.030) (1.169)

β2 -3 -2.962 -3.464 -2.459 -2.923 -3.563 -2.283 -2.954 -3.307 -2.600 -2.927 -3.384 -2.469
( 0.038) (1.005) ( 0.077) (1.280) ( 0.046) (0.707) ( 0.073) (0.915)

β3 1 0.998 0.934 1.064 0.992 0.906 1.077 1.001 0.954 1.047 0.999 0.938 1.060

MCAR
(-0.002) (0.130) (-0.008) (0.170) ( 0.001) (0.092) (-0.001) (0.122)

β4 17 17.001 16.674 17.331 17.004 16.575 17.434 16.999 16.753 17.246 17.000 16.681 17.318
( 0.001) (0.656) ( 0.004) (0.859) (-0.001) (0.493) (< 0.000) (0.637)

β5 -2 -1.994 -2.805 -1.159 -2.093 -3.059 -1.128 -2.050 -2.599 -1.508 -2.128 -2.815 -1.442
( 0.006) (1.647) (-0.093) (1.931) (-0.050) (1.090) (-0.128) (1.373)

β6 1 0.995 0.619 1.364 1.037 0.598 1.475 1.022 0.775 1.272 1.062 0.748 1.375
(-0.005) (0.744) ( 0.037) (0.877) ( 0.022) (0.497) ( 0.062) (0.627)

β1 12 11.954 11.344 12.556 11.909 11.110 12.708 11.986 11.549 12.418 11.988 11.410 12.565
(-0.046) (1.212) (-0.091) (1.597) (-0.014) (0.869) (-0.012) (1.155)

β2 -3 -2.969 -3.449 -2.486 -2.938 -3.557 -2.318 -2.959 -3.294 -2.624 -2.929 -3.372 -2.487
( 0.031) (0.963) ( 0.062) (1.240) ( 0.041) (0.670) ( 0.071) (0.886)

β3 1 0.994 0.931 1.057 0.984 0.902 1.066 0.995 0.951 1.040 0.990 0.932 1.049

MAR
(-0.006) (0.125) (-0.016) (0.164) (-0.005) (0.089) (-0.010) (0.118)

β4 17 16.981 16.653 17.312 16.984 16.555 17.412 16.984 16.740 17.229 16.978 16.661 17.295
(-0.019) (0.658) (-0.016) (0.857) (-0.016) (0.489) (-0.022) (0.634)

β5 -2 -2.015 -2.776 -1.262 -2.109 -3.029 -1.188 -2.059 -2.571 -1.549 -2.151 -2.820 -1.483
(-0.015) (1.513) (-0.109) (1.841) (-0.059) (1.023) (-0.151) (1.337)

β6 1 1.007 0.664 1.350 1.047 0.627 1.467 1.027 0.794 1.263 1.070 0.765 1.376
( 0.007) (0.686) ( 0.047) (0.839) ( 0.027) (0.469) ( 0.070) (0.611)

MtNLMM supported by the two criteria becomes larger as
the sample size N increases. The results apparently reveal
the benefit of using the t distribution to handle data sets
with outliers.

When comparing the performance between the Bayesian
and ML methods, we focus on the estimation accuracies of
fixed effects. Table 6 shows the estimation results, includ-
ing averages of posterior means and ML estimates (Est) of
fixed effects, together with the corresponding 95% poste-
rior intervals (2.5%, 97.5%), the 95% confidence intervals
(UCL, LCL), average differences between the estimators and
the true values (Bias, in parentheses), and average lengths
of posterior (confidence) intervals (Length, in parentheses)

over 100 replicates. Judging from this table, both Bayesian
and ML methods can provide reliable estimates of model
parameters because the posterior (confidence) intervals ab-
solutely contain the true values of corresponding parameters
and the biases are quite small. In almost all cases, the Bayes
estimates obtained as the mean of posterior samples show
relatively smaller biases as compared to the ML estimates.
Moreover, the Bayesian credible intervals created by the
2.5% and 97.5% quantiles of the relevant posterior distribu-
tions are shorter than the 95% confidence intervals through
the large-sample normal approximation. As anticipated, the
lengths of posterior (confidence) intervals decrease as the
sample size increases. In summary, this simulation confirms
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that the proposed MCMC scheme actually outperforms over
the ECM algorithm in providing more precise inference for
fixed effects.

6. CONCLUSION

We have presented a fully Bayesian treatment of the
MtNLMM with a parsimonious DEC structure account-
ing for the dependence of within-subject errors. Several
Bayesian hierarchical structures of the MtNLMM are con-
structed by using the first-order Taylor expansion to lin-
earize the model and incorporating the weakly informative
prior distributions for model parameters, which lead to full
conditional posteriors following standard distributions. The
proposed MCMC algorithms vary the specification of joint
posteriors alternately and thus provide great efficiency in
carrying out Bayesian posterior inference. Besides, the pre-
dictive inference for future responses and missing values can
be drawn based on the corresponding posterior distributions
with parameters replaced by their posterior estimates. Nu-
merical results demonstrate that the proposed method per-
forms reasonably well for the simulated and real datasets.

In the case where MAR with ignorability is not realistic,
the relationship between the unobserved measurements and
missingness process should be further investigated. There-
fore, it would be interesting to generalize the Bayesian
MtNLMM under non-ignorable missingness.
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APPENDIX A. FULL CONDITIONAL
POSTERIOR

DISTRIBUTIONS

We state the full conditional posterior distributions for
model parameters as well as the latent variables under
both fully and partially observed-data frameworks of the
MtNLMM. From the first joint posterior given in (6), the
full conditional posterior densities of φ and ν are

p(φ|y, b,θ(−φ))(A.1)

∝
N∏
i=1

|Ci(φ)|−r/2
(
1 +

Δyi

ν

)−(ν+ni)/2

(1 + φ2)
−2,

and

p(ν|y, b,θ(−ν))(A.2)

∝
N∏
i=1

Γ(ν+ni

2 )

Γ(ν2 )(πν)
ni/2

(
1 +

Δyi

ν

)−(ν+ni)/2

(1 + ν)−2,

respectively, where Δyi =
(
yi − μi(β, bi)

)T
R−1

i

(
yi −

μi(β, bi)
)
. The symbol “θ(−α)” comprises all parameters

contained in θ except for α. From the second joint posterior
given in (7), we obtain the full conditional posterior distribu-
tions of τi, D and Σ, which show the standard distributions
and are given by[

τi|yi, bi,θ
]

(A.3)

∼ Gamma

(
ni + q + ν

2
,
Δyi +Δbi + ν

2

)
,[

D|y, b, τ ,θ(−D)

]
(A.4)

∼ IW
(
N + d0,

N∑
i=1

τibib
T
i +G0

)
,

[
Σ|y, b, τ ,θ(−Σ)

]
(A.5)

∼ IW(

N∑
i=1

si + s0,

N∑
i=1

ψi(β, bi) +H0),

where Δbi = bTi D
−1bi and ψi =

[
tr

(
C−1

i (φ)Eijl

)]
with

Eijl = τi
(
yij − μij(β, bij)

)(
yil − μil(β, bil)

)T
,

for j, l = 1, 2, · · · , r. Besides, the full conditional poste-
rior distribution of β drawn from the third joint posterior
p(θ, τ |ỹ) is
(A.6)[
β|ỹ, τ ,θ(−β)

]
∼ Np

(
Σβ

( N∑
i=1

τiX̃
T

i Λ̃
−1

i ỹi+F−1
0 β0

)
,Σβ

)
,

whereΣβ =
( ∑N

i=1 τiX̃
T

i Λ̃
−1

i X̃i+F−1
0

)−1
. From the fourth

joint posterior p(θ, b, τ |ỹ), the full conditional posterior dis-
tribution of bi can be derived and given by[

bi|ỹi, τi,θ
]

(A.7)

∼ Nq

(
Σ̃biZ̃

T

i R
−1
i (ỹi − X̃iβ), τ

−1
i Σ̃bi

)
,

where Σ̃bi =
(
Z̃

T

i R
−1
i Z̃i +D−1

)−1
. It follows straightfor-

wardly from (A.7) that

[
bi|ỹi,θ

](A.8)

∼ tq

(
Σ̃biZ̃

T

i R
−1
i (ỹi − X̃iβ),

(ν +Δỹi

ν + ni

)
Σ̃bi , ν + ni

)
.

Under the partially observed-data framework of the
MtNLMM as described in Section 3.2, the required full con-
ditional posterior distributions are stated as follows. Using
p(θ, b|yo), the conditional posterior densities of φ and ν are

p(φ|yo, b,θ(−φ))(A.9)

262 W.-L. Wang and L. M. Castro



∝
N∏
i=1

|Roo
i |−1/2

(
1 +

Δyo
i

ν

)−(ν+no
i )/2

(1 + φ2)
−2,

p(ν|yo, b,θ(−ν))(A.10)

∝
N∏
i=1

Γ(
ν+no

i

2 )

Γ(ν2 )(πν)
no
i /2

×
(
1 +

Δyo
i

ν

)−(ν+no
i )/2

(1 + ν)−2.

Using p(θ, b, τ |yo), the full conditional posterior distribu-
tion of τi is[

τi|yo
i , bi,θ

]
(A.11)

∼ Gamma

(
no
i + q + ν

2
,
Δyo

i
+Δbi + ν

2

)
,

where Δyo
i
= (yo

i − μo
i (β, bi))

TRoo−1

i (yo
i − μo

i (β, bi)) with

μo
i (β, bi) = Oiμi(β, bi) and Roo

i = OiRiO
T
i . Similarly, the

full conditional posterior distributions of D and Σ are ex-
pressed as (A.4) and (A.5), respectively, in which the term yi

should be replaced byOT
i y

o
i +MT

i y
m(s)

i , where ym(s)

i are the
generated posterior samples of missing responses via (13).
In addition, it follows from the modified third and fourth
joint posterior densities that

[
β|ỹo, τ ,θ(−β)

]
(A.12)

∼ Np

(
Σo

β

( N∑
i=1

τiX̃
oT

i Λ̃
oo−1

i ỹo
i + F−1

0 β0

)
,Σo

β

)
,

and

[bi|ỹo
i ,θ] ∼ tq

(
Σ̃

o

bi
Z̃

oT

i Roo−1

i (ỹo
i − X̃

o

iβ),(A.13) (ν +Δỹo
i

ν + no
i

)
Σ̃

o

bi
, ν + no

i

)
,

respectively, where Σo
β =

( ∑N
i=1 τiX̃

oT

i Λ̃
oo−1

i X̃
o

i +F−1
0

)−1
,

and Σ̃
o

bi
=

(
Z̃

oT

i Roo−1

i Z̃
o

i +D−1
)−1

.

APPENDIX B. IMPLEMENTATION OF M-H
ALGORITHM FOR φ AND ν

Let φ∗
1 = log(φ1/(1 − φ1)) and φ∗

2 = log(φ2) such that
φ∗ = (φ∗

1, φ
∗
2) is located within a R2 space. We generate

φ∗ = (φ∗
1, φ

∗
2) through a bivariate normal distribution with

mean vector φ∗(s)

= (φ∗(s)

1 , φ∗(s)

2 ) and variance-covariance
matrix cJφ∗ which is chosen to be the asymptotic covariance
matrix for φ (Wang and Lin, 2014), where c is a tuning suit-
able value such that the acceptance of the M-H algorithm
is between 0.2 and 0.4. The conditional posterior density of
φ∗ is

f(φ∗|y, b,θ(−φ∗)) = p(φ|y, b,θ(−φ))e
φ∗
1+φ∗

2
/
(1 + eφ

∗
1 )2,

and the resulting acceptance rate is

α1

(
φ∗(s)

,φ∗(s+1))
= min

{f(φ∗(s+1)

|y, b(s+1),θ
(s+1)
(−φ∗))

f(φ∗(s) |y, b(s+1),θ
(s+1)
(−φ∗))

, 1
}
.

Having obtained φ∗, we transform them back to
(φ1, φ2) = (eφ

∗
1/(1 + eφ

∗
1 ), eφ

∗
2 ).

For obtaining the posterior samples of ν from (A.2), we let
ν∗ = log( 1

ν−2 ) such that ν∗ ∈ (−∞,∞), and then generate

ν∗
(s+1)

through a normal distribution with mean ν∗
(s)

and
variance σ2

ν̂∗ , where an approximation of σ2
ν̂∗ is chosen as

the asymptotic variance of ν̂∗. It follows from (A.2) that
the conditional posterior density of ν∗ is

f(ν∗|y, b,θ(−ν∗)) = p(ν|y, b,θ(−ν))e
−ν∗

.

After having a candidate sample of ν∗, it is accepted with
probability

α2(ν
∗(s)

, ν∗
(s+1)

) = min
{f(ν∗

(s+1) |y, b(s+1),θ
(s+1)
(−ν∗))

f(ν∗(s) |y, b(s+1),θ
(s+1)
(−ν∗))

, 1
}
.

Finally we transform the obtained ν∗ back to ν = (1 +
2e−ν∗

)/eν
∗
.
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Marshall, G., De la Cruz-Meśıa, R., Barón, A. E., Rutledge,

J. H., Zerbe, G. O., 2006. Non-linear random effects model for
multivariate responses with missing data. Statistics in Medicine 25,
2817–2830. MR2242205
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