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Censored bimodal symmetric-asymmetric families
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∗

In this paper, we introduce two new families of distri-
butions that are suitable for fitting unimodal as well as bi-
modal symmetric and asymmetric censored data. The mod-
els extend the skew normal model to bimodal symmetric and
asymmetric situations and typically involves less parameters
to be estimated than mixtures of normal distributions. Max-
imum likelihood estimation (MLE) is discussed and Fisher
information matrices are derived. Results of a simulation
study indicate stable parameter recovery in moderate and
large samples. Applications to two real data sets are re-
ported. The first data set is related to results of a study
on antiretroviral therapy (HAART) to AIDS patients with
strong evidence of bimodality and asymmetry. The second
data set (fetal weight of unborn children) presents bimodal
symmetry, well captured by the model introduced.

Keywords and phrases: Bimodal distribution, General-
ized Gaussian distribution, Kurtosis, Power-normal model,
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1. INTRODUCTION

Researchers are often confronted with data for which the
recorded continuous response variable has a lower bound
and takes on this boundary value for a sizeable fraction of
sample observations. One of the circumstances in which this
is the case is when the observed values are true zeros. An
example is the amount of money spent on a new car last
year by families in a certain community. Since some fam-
ilies did not buy a new car last year, their actual expen-
diture is zero. Another situation occurs when the response
variable Y is antibody concentration, which can typically be
measured by laboratory techniques, the choice depending on
the particular antigen(s) of interest, the method of sample
collection, the desired scaling, and the available technology.
Regardless of the technique, there is always a concentra-
tion value T (lower detection limit or LDL) below which
an exact measurement cannot be reported, and is a func-
tion of the assay that is employed. In general, T is assumed
to be a known constant. When data from an assay is left-
censored, the lower detection limit is known and can be used
to substitute values for the censored observations, that is
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the value T . Related to this problem is the blood concen-
tration of HIV-RNA in blood samples (log10 scale) of HIV
patients. For some patients, HIV levels are below (or at) the
detection limit which, using the Roche Amplicor assay, is 50
copies/ml. That is, values lower than (or equal to) that limit
are recorded as 50 copies/ml.

As shown in this paper, an efficient analysis can be un-
dertaken by combining continuous information with binary
data (Moulton and Halsey, 1995). The continuous infor-
mation comes from observations above LDL and the bi-
nary data correspond to observations below LDL. This idea
was popularized by Tobin (1958) and the resulting model
is typically referred to as the Tobit model. For a recent
study on asymmetric extensions of the Tobit model see
Mart́ınez-Flórez et al. (2013a). Models for limited and cen-
sored data based on the mixture between the logpower- nor-
mal and Bernoulli-type distributions see Mart́ınez-Flórez et
al. (2013b). Another recent study on doubly censored regres-
sion models with inflation is Mart́ınez-Flórez et al. (2015).

Recently, to study the relationship between serum anti-
body neutralization activity (determined by IC50) and the
B cell immune response, Chen et al. (2016) used the (or-
dinary) Tobit model given that the IC50 values can not be
observed when they are bellow the lower detection limitation
(LDL).

The present paper focuses on extending the censored nor-
mal model with no covariates to symmetric and asymmetric
bimodal and unimodal situations which, to the best of our
knowledge is not in the literature. In the study of Li et al.
(2006), the authors concluded that the distribution of HIV-
RNA (log10) is bimodal and considered it to be a mixture
of two normal distributions, reflecting different responses to
highly active antiretroviral therapy. The mixture of two nor-
mal distributions can be written as

p

σ1
φ

(
x− μ1

σ1

)
+

1− p

σ2
φ

(
x− μ2

σ2

)
,

where φ is the density of the standard normal distribution
and 0 < p < 1. It is the case, however, that mixtures of dis-
tributions is a very controversial topic (Marin et al., 2005)
mainly because one has to deal with nonidentifiability issues.
For data sets with lower detection limit (Tobit-type censored
model), we denote the Tobit extended two-normals mixture
model as CMN(μ1, σ1, μ2, σ2, p). We consider then an alter-
native route, which is made possible by extending the usual
normal and skew-normal (Azzalini, 1985) models to models
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that are able to incorporate a certain degree of asymmetry
and bimodality. We use the maximum likelihood approach
for parameter estimation and the BIC and CAIC criterions
for model comparison.

The paper is organized as follows. In Section 2 we review
basic results for bimodal symmetric and asymmetric mod-
els in the literature. Section 3 is devoted to an extension
of the ordinary normal model to a censored (Tobit-type)
flexible model, which can incorporate unimodal as well as
bimodal censored normal distributions. Some properties of
the distribution are presented. Location-scale extensions are
considered and maximum likelihood estimation is discussed.
Observed and expected (Fisher) information matrices are
derived. The bimodal symmetric flexible extension is con-
sidered in Section 4, where maximum likelihood estimation
is discussed. An asymmetric extension is considered for the
symmetric model and maximum likelihood estimation is dis-
cussed and observed and expected information matrices are
presented. Applications are considered in Section 5 to a data
set from a Colombian Cancer Clinic Center, which illustrates
the fact that the censored skew-normal bimodal model can
present a much better fit than the solely unimodal mod-
els and symmetric bimodal models. A censored (Tobit type)
mixture of two normal models is also studied. A second data
set (related to the ecographic weight of unborn children) is
studied indicating strong evidence of symmetric bimodality.
Thus, the models proposed and studied in this paper seem
to be useful in practical situations. A simulation study re-
ported in Appendix 3, illustrates good performance of the
maximum likelihood estimators under controlled situations.

2. EXISTING BIMODAL ASYMMETRIC
MODELS

Azzalini (1985) considers a general representation for an
asymmetric distribution, namely,

(1) ϕ(z;λ) = 2f(z)G(λz), z, λ ∈ R,

where f is a probability density function (pdf) symmetric
around zero and G is an absolutely continuous symmetric
distribution function and λ is a parameter which controls
the asymmetry in the model.

In the particular case where f = φ and G = Φ, the den-
sity and distribution functions of the standard normal dis-
tribution, respectively, we obtain the density function of the
“so-called” skew-normal distribution, namely

(2) φSN (z) = 2φ(z){Φ(λz)}, z ∈ R,

which we denote by Z ∼ SN(λ). Some other results related
to the skew-normal model appear in Azzalini (1986) and
Pewsey (2000), where difficulties with maximum likelihood
estimation are pointed out. In particular, for the location-
scale extension, it is shown that the Fisher information ma-

trix is singular at λ = 0. The cumulative distribution func-
tion for this model is given by

(3) ΦSN (z) = Φ(z)− 2T (z, λ),

where T (·, ·) is the Owen(1956) function defined as

T (h, a) =

∫ a

0

φ(h)φ(hx)

1 + x2
dx,

where h is a real number and a is a positive real number.
Several bimodal extensions of the skew normal model

(Azzalini, 1985) have been considered in the literature. Kim
(2005) introduced the model

(4) f(u;λ) = kλφ(u)Φ(λ|u|)

where λ is a real number and kλ is a normalizing constant.
For λ > 0, Kim shows that model (4) is bimodal. This
model became known as the “two-pieces skew-normal model
(TN)”. Gómez et al. (2011), defines the skew-flexible-normal
model with density function given by

(5) f(u;λ, δ) = cδφ(|u|+ δ)Φ(λu)

where δ is a real number, cδ is a normalizing constant and
λ as the asymmetry parameter. Gómez et al. (2011) showed
that, for δ < 0, model (5) is bimodal. Arnold et al. (2009),
studied a bimodal asymmetric model called “the extended
two-pieces skew-normal model (ETN)”, with density func-
tion given by

(6) f(u;λ, β) = 2kλφ(u)Φ(λ|u|)Φ(βu)

where β and λ are real numbers and kλ is a normalizing
constant. It can be shown that this model is asymmetric
and bimodal for certain values of λ and β. Arnold et al.
(2009) show that the information matrix for a location-scale
extension of this model is singular at λ = β = 0, that is, for
the normal distribution, as is the case with Azzalini’s skew-
normal model. In the special case of λ = β = 0, Arnold et
al. (2009) use the iterative approach proposed by Rotnitzky
et al. (2000) to find a reparametrization that leads to a
nonsingular information matrix. Another type of bimodal
distribution, originally applied in a survival analysis context
was introduced by Ramires et al. (2016). It was termed,
exponentiated log-sinh distribution, which depends on four
parameters. Its density function is given by

f(x, μ, σ, ν, τ) =
τν

xσπ

cosh(w)

[ν2 sinh2(w) + 1]

×
[
1

2
+

1

π
arctan[ν sinh(w)]

]τ−1

,

τ, ν, σ > 0, x, μ ∈ R,

where w = log(x)−μ
σ and μ and σ are location-scale pa-

rameters τ is a shape parameter and ν controlling uni(bi)-
modality of the distribution. Moreover, sinh(cosh) are the
hyperbolic functions sin(cos).

238 G. Mart́ınez-Flórez, H. Bolfarine, and H. W. Gómez



3. FLEXIBLE NORMAL MODEL

Normal distribution has been widely utilized in a mul-
titude of scenarios to model continuous a data set that
presents a symmetric behaviour about their mean value and
with a unique maximum, that is, they are unimodal. For
the bimodal case, the mixture of two normal distributions
containing five parameters is typically used to estimate.

In this paper, we present a bimodal distribution contain-
ing less parameters than the normal mixture in which it is
considered that the data comes from a unique population.
This model has the characteristic of being symmetric about
its location and has pdf given by

(7) f(y; δ) = cδφ(|y|+ δ)

where δ is a real number and cδ = (2(1 − Φ(δ)))−1 is a
normalizing constant. We call this model the flexible normal
model and we denote it by FN(δ). Also, for δ = 0 it is
obtained the standard normal distribution.

Differentiating equation (7) with respect to y and equat-
ing to zero for δ < 0, we obtain{

y1 = δ, if y < 0,

y2 = −δ, if y ≥ 0,

where y1 ∈ R
− and y2 ∈ R

+. Consequently, Y is a bimodal
random variable. It then follows that the model is bimodal
for δ lower than zero. This model is a special case of the
model in (5) for λ = 0 and is suitable for data with sym-
metric bimodal behaviour.

The moments of the random variable flexible normal are
given as functions of the incomplete moments of the normal
distribution which are defined as

μr(x) =

∫ ∞

x

zrφ(z)dz.

The r-th moment of the random variable Z follows a flex-
ible normal distribution and is then given by

(8) E(Zr) = cδ

r∑
k=0

(
r

k

)
(δ)r−kμ0(δ)

(
1 + (−1)r−k

)
.

From the normal model with mean μ and variance σ2,
we say that a random variable X follows a location-scale
flexible normal distribution if its density function is given
by

(9) f(x;μ, σ, δ) =
cδ
σ
φ

(∣∣∣∣x− μ

σ

∣∣∣∣+ δ

)
, x ∈ R,

where μ is a location parameter and σ > 0 is a scale param-
eter. we denote it by FN(μ, σ, δ).

For a sample of size n, y = (y1, y2, · · · , yn) where yi ∼
FN(μ, σ, δ), i = 1, 2, · · · , n, the maximum likelihood esti-

mators can be found by maximizing the log-likelihood func-
tion

�(δ) = n log(cδ)− n log(σ)− 1

2

n∑
i=1

(∣∣∣∣yi − μ

σ

∣∣∣∣+ δ

)2

.

Given the complexity of the model, maximization has to
be performed numerically. The Fisher information matrix
for the location-scale flexible normal distribution, defined as
the expected values of the negative of the second derivative
of the log-likelihood function, is given by:

I(μ, σ, δ)

=

⎛
⎝ 1

σ2
δ

2σ2 0
δ

2σ2
2
σ2 + δ

σ2 (δ + h(δ)) 1
σ (δ − h(δ))

0 1
σ (δ − h(δ)) 1 + h(δ)(δ − h(δ))

⎞
⎠ .

where h(δ) = φ(δ)
1−Φ(δ) . The columns of this matrix are linearly

independent and for δ = 0, which corresponds to the case
normal of parameters (μ, σ2), the determinant of I(δ) =
2
σ3

(
1− 3

π

)
�= 0, indicating that the information matrix is

nonsingular.
Hence, the regularity conditions are satisfied in general

and the usual
√
n-property for the maximum likelihood es-

timators hold for all μ, σ and δ. Therefore, for large sample
sizes,

(μ̂, σ̂, δ̂)′
A→ N3((μ, σ, δ)

′, I(μ, σ, δ)−1),

so that the maximum likelihood estimators are consistent
and asymptotically normally distributed with covariance
matrix equals to the inverse of the Fisher information ma-
trix.

3.1 Flexible censored normal model

In this section we extend the ordinary normally dis-
tributed Tobit model to the normal bimodal situation.

Consider now that y∗ follows the standard flexible cen-
sored normal distribution and that (y∗1 , y

∗
2 , ..., y

∗
n) is a ran-

dom sample where only values of y∗ greater than a constant
c are recorded. For values of y∗ ≤ c only the value c is
recorded. Hence, the observed values are

yi =

{
y∗i , if y∗i > c,

c, otherwise,

for i = 1, 2, ..., n. The resulting sample is a left censored
sample. In this case we say that random variable Y follows a
flexible censored normal model and we denote it by CFN(δ).

The case c = 0 and censoring at the left can be seen as a
special case of the general situation above. For c = 0, since
Pr[yi = 0] = Pr[y∗i < 0] = 1

2 , we have that the density
function of y is

f(y) =

{
1
2 , if y ≤ 0,

cδφ(y + δ), if y > 0.
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Figure 1. Density CFN(1.5, 1.0,−1.75) censored at the left
(grey color).

As demonstrated above, the density function of this ran-
dom variable is bimodal for values of δ smaller than zero
and unimodal for values of δ greater than zero. For δ = 0
we have the ordinary Tobit normal model.

For c = 0, the r-th moment of the random variable Z
following a flexible censored normal model is then given by

(10) E(Zr) = cδ

r∑
k=0

(
r

k

)
(−δ)r−kμ0(δ).

It follows that the expectation and variance of the random
variable Z are given by

E(Z) = cδ[φ(δ)− δ(1− Φ(δ))] and

V ar(Z) = cδ

[(
1 +

1

2
δ2
)
(1− Φ(δ))

+ φ(δ)(1− δ − cδφ(δ))

]
.

3.1.1 The CFN location-scale extension

Defining

yi =

{
xi, if xi > 0,

0, otherwise,

one obtains the left censored flexible normal distribution,
which we denote by X ∼ CFN(μ, σ, δ). Figure 1 and 2
depicts plots for the distribution density for two values of δ.

Moreover, the r-th moment of the random variable Y fol-
lows a location-scale flexible censored normal distribution is
given by: E(Y r) =

∑r
k=0

(
r
k

)
μkδr−k

E(Zr−k), where Z fol-
lows the standard flexible censored normal distribution.

3.2 Estimation

We denote by
∑

0 the sum over censored observations
and

∑
1 the sum over noncensored observations. Therefore,

for observations yi = 0, we have that

Pr(yi = 0) = Pr(xi ≤ 0) = cδ

{
1− Φ

(
μ+ σδ

σ

)}

Figure 2. Density CFN(1.5, 1.0, 1.5) censored at the left
(grey color).

and for yi > 0, the distribution of yi is equal to the distribu-
tion of xi that is, yi ∼ FN(μ, σ, δ). Hence, for a random sam-
ple of size n, namely y = (y1, y2, ..., yn), the log-likelihood
function for θ = (μ, σ, δ)′ is given by

�(θ;y) =
∑
0

log

[
cδ

(
1− Φ

(
μ+ σδ

σ

))]

+
∑
1

[log(cδ)− log(σ) + log(φ(|zi|+ δ))] ,

where zi =
yi−μ
σ , i = 1, ..., n. Therefore, the score function

for the model parameters is given by

U(μ) = −n0

σ

φ
(

μ+σδ
σ

)
1− Φ

(
μ+σδ

σ

)
+

1

σ

∑
1

yi − μ

σ
− δ

σ

∑
1

sgn(yi − μ),

U(σ) =
n0μ

σ

φ
(

μ+σδ
σ

)
1− Φ

(
μ+σδ

σ

)

− n1

σ
+

1

σ

∑
1

(
yi − μ

σ

)2

+
δ

σ

∑
1

∣∣∣∣yi − μ

σ

∣∣∣∣,

U(δ) = −n0

φ
(

μ+σδ
σ

)
1− Φ

(
μ+σδ

σ

)
+

nφ(δ)

1− Φ(δ)
−
∑
1

∣∣∣∣yi − μ

σ

∣∣∣∣− n1δ,

where n0 and n1 is the number of censored and noncensored
observations, respectively, and “sgn” is the sign function.
The system of equations obtained by equating the scores
to zero has no closed form solution and needs to be solved
numerically. Therefore, the maximum likelihood estimator
for θ can be obtained using iterative procedures such as a
Newton-Raphson or quasi-Newton type algorithms. There
are however, other numerical procedures based on the ex-
pected (Fisher) information matrix that can be used. One
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possibility is to use “optim” or “maxLik” in R (see R De-
velopment Core Team, 2012).

Procedures “optim” or “maxLik” optimize the log-
likelihood function using the “optim” program in R
functions based on the Nelder-Mead, quasi-Newton and
conjugate-gradient algorithms. For smooth objective func-
tions, those methods are faster, requiring less iterations
for convergence. Some methods utilize the score function
(derivative of the likelihood) and when this function is not
provided they compute the gradients by using finite differ-
ences. The Nelder-Mead in “optim” works fairly well for
nondifferentiable functions as is the case with the absolute
value (|·|) and the sign function. The observed and expected
information matrices are given in Appendix 1.

3.2.1 Simulation study

For studying the behavior of the maximum likelihood es-
timator of the shape parameter δ̂ for small and moderate
samples, a small scale Monte Carlo simulation study was
conducted for the censored flexible normal model. Parame-
ter values were fixed at δ = −5, − 2, 2 and 5, were sample
sizes considered were n = 50, 150 and 1000. A total of 1000
repetitions were considered for each sample size. Censoring
percentage p% considered were: 5%, 10%, 20% and 40%.
To simulate deviates from the flexible normal model, the
inversion method using the distribution function

(11) FF (z; δ) =

{
cδΦ(z − δ), if z < 0,

1
2 + cδ [Φ(z + δ)− Φ(δ)] , if z ≥ 0,

was employed.
To evaluate estimators performance for point estimates,

the following quantities were considered: relative bias (RB),
defined as (bias/true parameter value) and the squared root
of the mean squared error (

√
MSE), which is the mean over

all samples of the squared bias. Maximum likelihood param-
eter estimates were computed by using procedure “optim”
(using “nlminb”) of statistical package R.

Negative bias is noticed for parameter δ, which becomes
small as the sample size increases (see Appendix 3). Bias
is greater for δ < 0 which seems to be explained by the
bimodal character of the generated data.

It can also be noted that the
√
MSE for maximum like-

lihood estimators (MLE) of δ decreases as sample size in-
creases which is expected since estimators are consistent. To
improve small sample performance, bias corrections such as
bootstrap or jackknife could be tried.

4. CENSORED BIMODAL MODELS

We now study two bimodal type censored models, one
symmetric and the other asymmetric, based on the two-
pieces skew-normal model and the extended two-pieces
skew-normal model proposed by Kim (2005) and Arnold et
al. (2009), respectively.

4.1 The censored bimodal symmetric model

The model proposed by Kim (2005),

(12) f(z;λ) = kλφ(z)Φ(λ|z|),

where λ is a real number and kλ = 2π/(π + 2arctan(λ))
is a normalizing constant, is a viable alternative for fitting
symmetric bimodal data for λ > 0. We use the notation
TN(λ). We can extend the model (12) to the censored set
up situation by considering the random variable

yi =

{
zi, if zi > 0,

0, otherwise,

which is left censored and which we denote by CTN(λ).
Hence, for λ > 0 we have a censored bimodal symmetric
model.

The density function for the right truncated random vari-
able Y is given by
(13)

f(y|y > c) =
2kλφ(y)Φ(λ|y|)

1 + kλ[Φ(c)− 0.5 + π−1 arctan(λ)− 2T (c, λ)]
,

where T (·, ·) is the Owen (1956) function.
For c = 0, the moments of the random variable Y can

be obtained from the moments of the random variable with
density function CTN(λ), leading to the following results

E(Y ) =
kλ

2
√
2π

[
λ√

1 + λ2
+ 1

]
,

E(Y 2) = kλ

[
1

4
+

1

2π
arctanλ+

1

2π

λ√
1 + λ2

]
,

E(Y 3) =
kλ

2
√
2π

[
2 +

3λ+ 2λ3

(1 + λ2)3/2

]
,

E(Y 4) = kλ

[
3

4
+

3

2π
arctanλ+

1

2π

λ(2λ2 + 5)

(1 + λ2)2

]
.

Hence, the variance of the random variable Y is given by

σ2 =
kλ

4π(π + 2arctanλ)

×
(
(π + 2arctanλ)2 +

4λ√
1 + λ2

(π + arctanλ)

− π

(
2λ2 + 1

1 + λ2

))
.

4.1.1 Maximum likelihood estimation

The location-scale extension of Kim (2005) can be written
as

f(x; ξ, η, λ) =
kλ
η
φ

(
x− ξ

η

)
Φ

(
λ

∣∣∣∣x− ξ

η

∣∣∣∣
)
,

where ξ ∈ R is a location parameter, η ∈ R+, is a scale
parameter and kλ = 2π/(π + 2arctan(λ)) is the normaliz-
ing constant. Being

∑
0 the sum over censored observations
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and
∑

1 the sum over noncensored observations, the log-
likelihood function is given by

�(θ;Y) =
∑
0

log

[
kλΦCTN

(
− ξ

η

)]

+
∑
1

[log(kλ)− log(η) + log(φ(zi))

+ log(Φ(λ|zi|))],

where ΦCTN (·) = Φ(·) − 0.5ΦSN (·) and zi =
yi−ξ
η . Hence,

the elements of the score function are given by

U(ξ) = −n0

η

φCTN

(
ξ
η

)
ΦCTN

(
− ξ

η

) +
1

η

∑
1

yi − ξ

η

+
λ

η

∑
1

sgn(yi − ξ)
φ
(

yi−ξ
η

)
Φ
(∣∣∣yi−ξ

η

∣∣∣) ,

U(η) =
n0ξ

η2

φCTN

(
ξ
η

)
ΦCTN

(
− ξ

η

) − n1

η
+

1

η

∑
1

(
yi − ξ

η

)2

− λ

η

∑
1

yi − ξ

η

φ
(

yi−ξ
η

)
Φ
(∣∣∣yi−ξ

η

∣∣∣) ,

U(λ) = − nkλ
π(1 + λ2)

+
1

2

√
2

π

n0

(1 + λ2)

φ
(√

1 + λ2 ξ
η

)
ΦCTN

(
− ξ

η

)

+
∑
1

∣∣∣∣yi − ξ

η

∣∣∣∣ φ
(

yi−ξ
η

)
Φ
(∣∣∣yi−ξ

η

∣∣∣) ,
where φCTN (·) is as above, and n0 and n1 are the number of
censored and uncensored observations, respectively. The sys-
tem of equations obtained by equating scores to zero has no
closed form solution and has to be solved numerically, using
iterative procedures such as a Newton-Raphson or quasi-
Newton type algorithms.

Again a possibility is to use the package “optim” or “max-
Lik” in R. The expected and observed information matrices
to obtain the estimates for the model parameters are given
in Appendix 2.

4.2 The censored bimodal asymmetric
model

As mentioned in the previous section, the censored bi-
modal model presented in that section has, as its main fea-
ture, the ability to adjust to symmetric bimodal data being
then not adequate to situations where data is asymmetric
and bimodal. For situations of the latter type we propose
using the model studied in Arnold et al. (2009), which we
denote by ETN(λ, β) so that for the location-scale situation

Figure 3. Density CETN(7.5, 3.5, 3.5,−1.0) censored at the
left (grey color).

Figure 4. Density CETN(7.5, 3.5, 1.5, 0.25) censored at the
left (grey color).

we have thatX ∼ ETN(ξ, η, λ, β). Considering the censored
situation where

yi =

{
xi, if xi > 0,

0, otherwise,

we use the notation Y ∼ CETN(ξ, η, λ, β). Figures 3 and 4,
depicts density functions for the censored random variable
Y for some parameter values.

Hence, for c = 0, the contribution for the likelihood of
observations smaller than or equal to zero are given by

Ψ(0) = Pr(y = 0) = Pr(x ≤ 0)

= 2kλ

[
1

2

(
1− Φ

(
βξ

η

)
Φ

(
ξ

η

))

− T

(
ξ

η
, β

)
+ T

(
ξ

η
, λ

)]

+ 2kλ

[
− T

(
βξ

η
,
1

β

)
+ S

(
βξ

η
,
1

β
, λ

)

− 1

2π
arctan

(
βλ√

1 + β2 + λ2

)]
(14)
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where S is Steck’s function defined as (see Owen, 1956):

S(h, a, b) =

∫ h

−∞
T (ax, b)φ(x)dx,

where h is a real number and a, b are positive real numbers.

4.3 The log-likelihood function

For a random sample of size n, X1, X2, ..., Xn, the log-
likelihood function for the parameter vector θ = (ξ, η, λ, β)′

given the sample Y1, Y2, ..., Yn is given by:

�(θ;Y) =
∑
0

log(Ψ(0)) +
∑
1

[log(2) + log(kλ)− log(η)

+ log(φ(zi)) + log(Φ(λ|zi|)) + log(Φ(βzi))],

where zi =
yi−ξ
η . The score function and observed and ex-

pected information matrices can be obtained by proceeding
similarly as in the previous cases. Maximum likelihood esti-
mators obtained by equating score functions to zero have to
be obtained using numerical procedures. Behaviour of the
information matrix for λ = 0 and (λ, β)′ = (0, 0)′ are simi-
lar to those in Arnold et al. (2009). Thus we have a singular
information matrix and so model fitness can be performed
by using AIC score type statistics.

5. REAL DATA ILLUSTRATIONS

Results of fitting the models discussed in this paper to
two real data sets are now reported. The first seems to be
better explained by an asymmetric bimodal model while the
second by a symmetric bimodal model. Results indicate that
models proposed can present better performance than the
popular mixture of two normal distributions.

5.1 Illustration I

To illustrate the potential for applications of the mod-
els studied in this paper, we consider a sample of 369 HIV
patients of which 263 are males and 106 are females, and
which have been treated with the HAART therapy for less
than one year at the Santander-Colombia Medical service
hospital.

This data set contains age, date entering the program,
and viral load for the patients. Tests used for diagnosing
HIV infection in a particular person require a high degree of
both sensitivity and specificity. In Colombia, this is achieved
using an algorithm combining two tests for HIV antibodies.
If antibodies are detected by an initial test based on the
ELISA method, then a second test using the Western blot
procedure is used.

Since the measurements come from different laboratories,
the HIV-1-RNA quantification could be performed by three
different methods: Versant bDNA 3.0 R© (Bayer), LCx HIV R©

(Abbott) and Amplicor HIV Monitor v1.5 R© (Roche), all
with lower detection limits (LDL) of 50 copies per ml.

Table 1. Summary statistics based on the variable
log10 HIV-1-RNA for the 157 noncensored men

y s2y
√
b1 b2

1.6488 1.7328 0.5213 2.1315

For the male dataset, the average age is 36.19 years, where
the youngest male is less than one year old and the oldest
is 83 years old. Descriptive statistics for the observations
above the detection limit (157 observations or 60% of the
full male data) are presented in Table 1. Quantities

√
b1

and b2 correspond to sample asymmetry and kurtosis coeffi-
cients for values above log10(50). Statistics indicate that the
data set presents high positive asymmetry and low kurto-
sis compared to the normal model giving indication that the
censored-normal model may not be the best choice for fitting
the data set. Moreover, Figure 5,-(a) gives strong evidence
that the behavior of the variable HIV-1-RNA is bimodal
so that a censored bimodal skew-normal model may be the
best choice for fitting the HIV data set. To implement a
more complete study we consider fitting the following cen-
sored models: normal (CN), skew-normal (CSN), bimodal
symmetric skew-normal (CTN), flexible-normal (CFN) and
bimodal asymmetric skew-normal (CETN).

It can be depicted from Figure 5-(a) that the CSN model
seems to adequately fit the asymmetry in the data but not
the bimodal nature of the data set, which seems to be best
captured by models CTN and CETN. To compare models
fit, we use the BIC and CAIC criterions (see Hastie and
Tibshirani, (1990)), namely

BIC = −2 ∗ �̂(·) + p log(n) and

CAIC = −2 ∗ �̂(·) + p(log(n) + 1),

where p is the number of parameter for the model being
considered. The best model is the one with the smallest BIC
or CAIC scores. Table 2 presents maximum likelihood esti-
mators, BIC and CAIC values for models CN, CSN, CTN,
CFN and CETN, which is the one corresponding to the best
(smallest BIC or CAIC) model fitting. Figure 5-(b), presents
the QQ-plot for the estimated CETN model indicating an
excellent fit for most observations and the Figure 5,-(c),
presents the QQ-plot for the estimated CFN model.

For the n=106 women (HIV) infected and under treat-
ment with HAART therapy for no longer than one year,
the average age is 34.73 years. Descriptive statistics for the
observations above the detection limit are presented in Ta-
ble 3. Values indicate that the data set presents high posi-
tive asymmetry and low kurtosis compared to the normal
model giving indication that the censored-normal model
may not be the best choice for fitting the viral load data
set. Figure 7-(a), presents the QQ-plot for the estimated
CN model.
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Figure 5. (a) Histogram for log10 HIV-1-RNA to the 263 team men observation. Models: CETN (solid line), CTN (dashed
line), CSN(dotted line) and CN (dashed and dotted line), (b) QQ-plot CETN model and (c) QQ-plot CFN model.

Table 2. Parameter estimates (standard errors) for the fitting censored models

Parameter CN model CSN CTN CFN CETN

ξ 0.419(0.135) 1.314(1.515) 0.275(0.023) 0.322(0.006) 1.603(0.120)
η 1.936(0.118) 2.158(0.769) 1.949(0.110) 11.778(1.060) 2.031(0.154)
λ -0.619 (1.188) 31.694(11.483) 7.273(0.005) 2.232(0.865)
β -0.766(0.146)

BIC 829.39 834.99 836.15 842.59 826.18
CAIC 831.39 837.99 839.15 845.59 830.19

Table 3. Summary statistics for log10 HIV-1-RNA for the 69
non-censored women observations

y s2y
√
b1 b2

1.7112 1.4249 0.3549 1.9836

Additionally, the unimodality testing statistics defined by
Hartigan (1985), computationally implemented in Hartigan
and Hartigan (1985) presents a value of D = 0.0686 with
corresponding pvalue = 0.0133, so that the hypothesis that
the viral load is unimodal is rejected at the 5% level. This is
corroborated by the Figure 6-(a), which indicates the asym-
metric bimodal behavior of the variable viral load. For the
sake of model comparison, we also fitted the CFN and CETN
models and the mixture of two normals.

The estimated model parameters using maximum likeli-
hood turned out to be μ̂ = 1.006(0.137), σ̂ = 1.079(0.213)

and δ̂ = −0.987(0.379) with BIC= 348.95 and CAIC=

351.95 for the CFN model and ξ̂ = 1.587(0.160), η̂ =

1.840(0.213), λ̂ = 2.261(1.508) and β̂ = −0.588(0.199) with
BIC= 349.29 and CAIC= 353.29 for the CETN model.

The QQ-plots obtained by using the estimated parame-
ters are depicted in Figure 6-(b) and (c) providing an illus-
tration of the good performance of the models under study.

Now we compare the CETN model with the
CMN(μ1, σ1, μ2, σ2, p) model. The estimated model is

CMN(1.675, 0.847, 4.404, 0.748, 0.711)

with BIC= 351.08 and CAIC= 356.08. This model
has BIC and CAIC greater than the CETN and CFN
models, so the CETN and CFN models fit the data bet-
ter than the CMN model. Figure 6-(a) depicts the esti-
mated CETN, CFN and CMN models. The QQ-plot ob-
tained from the estimated CMN model is given in Figure 7-
(b), this shows the fit obtained with the estimated mod-
els.

Note that in spite of the large standard error of the
estimate of parameter λ (rendering thus the hypothesis
λ = 0 nonsignificant) we prefer to use Hartigan and Harti-
gan (1985) approach indicating that we should prefer model
CETN rather than model CSN. BIC also indicates smaller
values for models CFN and CETN.

The total censored data corresponds to 34.90% of the
sample under study. Further, the area under the estimated
CETN density is 35.33%, under the CFN model is 28.41%
and under the estimated density for the CMN model is
36.37%, with the best performance for the CETN model
again.

5.2 Illustration II

To illustrate the relevance of model FN in fitting sym-
metric bimodal data, we deal in this section with the eco-
graphic weight (fetal weight in grams - variable b.weighgt)
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Figure 6. (a) Histogram for log10 HIV-1-RNA for the 106 women noncensored observations. Models: CETN (solid line), CMN
(dashed line) and CFN(dotted line), (b) QQ-plot CETN model and (c) QQ-plot CFN model.

Figure 7. (a) QQ-plot CN model and (b) QQ-plot CMN model.

for a set of 500 observations available for downloading at
http://www.mat.uda.cl/hsalinas/cursos/2011/R/weight.rar.

Table 4. Descriptive statistics for variable b.weight

n x S2 Median

500 3210.356 695710.6 3175

The asymmetry coefficient for the data set is
√
b1 =

0.0712, indicating fair symmetry and, moreover, as the his-
togram in Figure 7 indicates, the data presents bimodal be-
havior. Table 5 presents maximum likelihood estimates for
the following models: Normal, TN, MN and FN, and the
corresponding BIC and CAIC scores.

We also fitted the mixture of two normal distributions,
obtaining the following estimates: μ̂1 = 2592.206(74.865),
μ̂2 = 3963.666(63.544), σ̂1 = 487.577(51.844), σ̂2 =

Table 5. Maximum likelihood estimators for the fetal weight
data and the corresponding standard errors (in parenthesis),

BIC and CAIC values

Estimates N TN FN

μ̂ 3210.356(37.301) 3207.422(26.083) 3212.829(22.294)
σ̂ 834.092(26.415) 772.688(25.760) 498.498(24.879)

δ̂ − 1.771(0.539) −1.239(0.116)
BIC 8156.713 8122.318 8100.083
CAIC 8158.713 8125.315 8103.083

462.484(35.953) and p̂ = 0.539(0.049), with BIC= 8120.967
and CAIC= 8125.967. Results indicate that models TN and
FN are better than the ordinary normal model and model
FN is better than models TN and MN. Figure 8-(a) illus-
trates the data histogram with the fitted distributions using
the maximum likelihood estimates. Figures 8-(b) and (c)
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Figure 8. (a) Histogram for b.weight. Models: Normal(dashed and dotted line), TN (dashed line), MN(dotted line) and
FN(solid line), (b) QQ-plot for FN model, (c) cumulative distribution function FN model, empirical(solid line) and

FN(dashed line).

depicts qqplot and the cumulative distribution function for
model FN, corroborating the satisfactory fit of the model
for variable b-weight.

6. FINAL DISCUSSION

This paper presented a series of models that can be used
under censored data situations with possible bimodality.
Therefore, models proposed extend the ordinary normal To-
bit model, which was firstly designed for unimodal situa-
tions. As seen in the applications it is not uncommon in real
data sets such anomalies to occur. As shown in this paper,
an efficient analysis can be undertaken by combining con-
tinuous information with binary data by using asymmet-
ric models. We consider then an alternative route, which
is made possible by extending the usual normal and skew-
normal (Azzalini, 1985) models to models that are able to
incorporate a certain degree of asymmetry and bimodality.
Moreover, models considered involve less parameters to be
estimated than the ordinary mixtures of normals model. Es-
timation was discussed by using the maximum likelihood
approach which requires numerical implementation given
the complexity of the models under study. Fisher and ob-
served information matrices were presented for some of the
models. Model fitting is implemented by using the BIC and
CAIC scores. A hypothesis testing for unimodality (Harti-
gan, 1985) is also implemented. Real data applications pro-
vide strong support for the new model (CETN), showing
that it is a viable alternative to existing models in the liter-
ature, including the mixture of two normal models.
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APPENDIX 1

In this section we present the observed and expected in-

formation matrices for the CNF (μ, σ, δ) model. Starting

with the observed information matrix, namely the negative

of the second derivative of the log-likelihood function with

respect to the model parameters, for which we use the nota-

tion jμμ, jμσ, jμδ jσσ, jσδ and jδδ, we arrive at the following

expressions, where μ∗ = μ+σδ
σ and h(·) = φ(·)

1−Φ(·)

jμμ =
n1

σ2
+

n0

σ2
h(μ∗) [−μ∗ + h(μ∗)]

jμσ =
n0

σ2
((μ∗ − δ)μ∗ − 1)h(μ∗)− n0

σ2
(μ∗ − δ)h2(μ∗)

+
2

σ2

∑
1

yi − μ

σ
− δ

σ2

∑
1

sgn(yi − μ),

jσσ =
n0μ

σ2
(1− (μ∗ − δ)μ∗)h(μ∗) +

n0

σ2
(μ∗ − δ)h2(μ∗)

− n1

σ2
+

3

σ2

∑
1

(
yi − μ

σ

)2

+
2δ

σ2

∑
1

∣∣∣∣yi − μ

σ

∣∣∣∣ ,
jμδ = −n0

σ
(μ∗ − h(μ∗))h(μ∗) +

1

σ

∑
1

sgn(yi − μ),

jσδ =
n0μ

σ
(μ∗ − h(μ∗))h(μ∗)− 1

σ

∑
1

∣∣∣∣yi − μ

σ

∣∣∣∣ ,
jδδ = −n0 (μ

∗ − h(μ∗))h(μ∗) + n (δ − h(δ))h(δ) + n1.

The expected (Fisher) information matrix follows then

by taking expectations of the above components (multiplied

by n−1) (assuming that regularity conditions are satisfied).

The elements of this matrix, which we denote by

iμμ, iμσ, iμδ iσσ, iσδ and iδδ, can be written as

iθrθp = n−1E

{
−∂2�(θ;y)

∂θr∂θp

}
, r, p = 1, 2, 3,

with θ1 = μ, θ2 = σ and θ3 = δ. Its elements can be written
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as

iμμ =
1

σ2
[1− cδ (1− Φ (μ∗))] +

cδ
σ2

φ (μ∗) [−μ∗ + h(μ∗)] ,

iμσ =
cδ
σ2

φ (μ∗) [(μ∗ − δ) (μ∗ − h(μ∗))− 1]

− δcδ
σ2

(1− Φ (μ∗))

+
2cδ
σ2

[
φ (μ∗) +φ(δ)+ δ

(
Φ (μ∗)+Φ(δ)− 3

2

)
− 1√

2π

]
,

iσσ =
μcδ
σ2

φ (μ∗) [1 + (μ∗ − δ) (−μ∗ + h(μ∗))]− 1

σ2

+
cδ
σ2

[
− 2δφ(δ) + (1 + 2δ2) (1− Φ (μ∗))

− 4δ2(1− Φ(δ))
]

+
cδ
σ2

[
(3μ∗ − 4δ)φ (μ∗)

+ 3(1 + δ2) (1− 2Φ(δ) + Φ (μ∗))
]
,

iμδ =
cδ
σ
φ (μ∗) [−μ∗ + h(μ∗)] +

cδ
σ

(1− Φ (μ∗)) ,

iσδ =
cδμ

σ
φ (μ∗) [μ∗ − h(μ∗)]− δcδ

σ
(1− Φ (μ∗))

+
cδ
σ

[2δ (1− Φ(δ))− 2φ(δ) + φ (μ∗)] ,

iδδ = cδφ (μ∗) [−μ∗ + h(μ∗)] + h(δ) [δ − h(δ)]

+ 1− cδ (1− Φ (μ∗)) .

APPENDIX 2

In this appendix we present the observed and expected

information matrices for the CTN(ξ, η, λ) model. Start-

ing with the observed information matrix. Considering:

ΦCTN (·) = Φ(·)−0.5ΦSN (·) and φCTN (·) = φ(·)−0.5φSN (·)
we arrive at the following expressions:

jξξ =
n0

η2

⎧⎨
⎩

φCTN

(
− ξ

η

)
ΦCTN

(
− ξ

η

)
⎡
⎣− ξ

η
+

φCTN

(
− ξ

η

)
ΦCTN

(
− ξ

η

)
⎤
⎦

+
1

2

√
2

π

λφ
(√

1 + λ2 ξ
η

)
ΦCTN

(
− ξ

η

)
⎫⎬
⎭

+
1

η2

∑
1

{
1 + λ2

[
λ|zi|

φ(λzi)

Φ(λ|zi|)
+

(
φ(λzi)

Φ(λ|zi|)

)2
]}

,

jηξ =
n0

η2

⎧⎨
⎩

φCTN

(
− ξ

η

)
ΦCTN

(
− ξ

η

)
⎡
⎣−1 +

(
ξ

η

)2

− ξ

η

φCTN

(
− ξ

η

)
ΦCTN

(
− ξ

η

)
⎤
⎦

+
1

2

√
2

π

ξ

η

λφ
(√

1 + λ2 ξ
η

)
ΦCTN

(
− ξ

η

)
⎫⎬
⎭

+
1

η2

∑
1

[
2zi + λsgn(yi − μ)

{
(1− λ2z2i )

φ(λzi)

Φ(λ|zi|)

− λ|zi|
(

φ(λzi)

Φ(λ|zi|)

)2
}]

,

jλξ =
n0

2η

√
2

π

φ
(√

1 + λ2 ξ
η

)
ΦCTN

(
− ξ

η

)
⎡
⎣ ξ

η
− 1

1 + λ2

φCTN

(
− ξ

η

)
ΦCTN

(
− ξ

η

)
⎤
⎦

+
1

η

∑
1

[
−sgn(yi − μ)

(
φ(λzi)

Φ(λ|zi|)

)(
λ2z2i − 1

)

+λzi

(
φ(λzi)

Φ(λ|zi|)

)2
]

jηη =
n0ξ

η2

⎧⎨
⎩

φCTN

(
− ξ

η

)
ΦCTN

(
− ξ

η

)
[
1

η

(
2−

(
ξ

η

)2
)

+

(
ξ

η

)2 φCTN

(
− ξ

η

)
ΦCTN

(
− ξ

η

)
⎤
⎦− 1

2

√
2

π

λξ

η2

φ
(√

1 + λ2 ξ
η

)
ΦCTN

(
− ξ

η

)
⎫⎬
⎭

+
1

η2

∑
1

[
− 1 + 3z2i + λzi

φ(λzi)

Φ(λ|zi|)
(
λ2zi − 2

)

+λ2|zi|
(

φ(λzi)

Φ(λ|zi|)

)2
]
,

jλη =
n0ξ

2η2

√
2

π

φ
(√

1 + λ2 ξ
η

)
ΦCTN

(
− ξ

η

)
⎡
⎣− ξ

η
+

1

1 + λ2

φCTN

(
− ξ

η

)
ΦCTN

(
− ξ

η

)
⎤
⎦

+
1

η

∑
1

[
zi

φ(λzi)

Φ(λ|zi|)
(1− λzi|zi|) + λz2i

(
φ(λzi)

Φ(λ|zi|)

)2
]
,

jλλ =
n0

2

√
2

π

1

1 + λ2

φ
(√

1 + λ2 ξ
η

)
ΦCTN

(
− ξ

η

)

×

⎡
⎣ 2λ

1 + λ2
+ λ

(
ξ

η

)2

+
1

2

√
2

π

1

1 + λ2

φ
(√

1 + λ2 ξ
η

)
ΦCTN

(
− ξ

η

)
⎤
⎦

+
nkλ

π2(1 + λ2)2
(kλ + 2πλ)

+
∑
1

[
z2i

φ(λzi)

Φ(λ|zi|)

(
λ|zi|+

φ(λzi)

Φ(λ|zi|)

)]
.

Expected information matrix

Taking expected values of the negative of the second

derivative of the log-likelihood function, we arrive at the

following entries

Iθrθp = E

{
−∂2�(θ;y)

∂θr∂θp

}
, r, p = 1, 2, 3,

with θ1 = ξ, θ2 = η and θ3 = λ. Considering: bj =

E{zj (φ(λz)/Φ(λ|z|)])2}, b∗j = E{|z|j (φ(λz)/Φ(λ|z|)])2} and
γ = λ√

1+λ2
.
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iξξ =
kλ
η2
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APPENDIX 3

Results of a simulation study to verify parameter recovery
for the parameter δ with the flexible censored normal model
of Section 3 are reported in Table 6. It can be depicted that

Table 6. Performance evaluation for MLEs of parameter δ under the CNF model

p = 5% p = 10% p = 20% p = 40%

δ n RB
√
MSE RB

√
MSE RB

√
MSE RB

√
MSE

50 -0.022 0.157 -0.035 0.162 -0.055 0.174 -0.054 0.178
-5 150 -0.019 0.090 -0.035 0.103 -0.054 0.100 -0.058 0.121

1000 -0.015 0.041 -0.033 0.041 -0.054 0.036 -0.060 0.057
50 -0.062 0.175 -0.101 0.184 -0.156 0.190 -0.119 0.193

-2 150 -0.055 0.100 -0.100 0.110 -0.151 0.113 -0.132 0.126
1000 -0.050 0.045 -0.098 0.046 -0.149 0.041 -0.149 0.057
50 0.152 0.483 0.209 0.529 0.246 0.566 0.210 0.598

2 150 0.122 0.286 0.129 0.298 0.159 0.344 0.164 0.373
1000 0.047 0.109 0.052 0.119 0.070 0.147 0.085 0.156
50 0.094 0.757 0.119 0.740 0.131 0.797 0.111 0.962

5 150 0.066 0.417 0.070 0.412 0.065 0.388 0.078 0.530
1000 0.017 0.119 0.013 0.093 0.014 0.107 0.022 0.148
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the maximum likelihood estimation approach implemented
performs well for moderate and large sample sizes.

Received 25 October 2016
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metric regression models with limited responses with an application
to antibody response to vaccine. Biometrical Journal, 55:156–172.
MR3045838
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