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Bayesian-frequentist hybrid approach for
skew-normal nonlinear mixed-effects joint models
in the presence of covariates measured with errors
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It is a common practice to analyze complex longitudi-
nal data using nonlinear mixed-effects (NLME) models. Ex-
isting methods often assume a normal model for the er-
rors, which is not realistic. To explain between- and within-
subject variations, covariates are usually introduced in such
models to partially explain inter-subject variations, but
some covariates may often be measured with substantial er-
rors. Moreover, although statistical methods for analyzing
longitudinal data have been evolving substantially, existing
methods are either frequentist or full Bayesian, not taking
into account scenarios where only part of the parameters
have sound prior information available. In an attempt to
take full advantage of both approaches, we adopt a Bayesian-
frequentist hybrid (BFH) approach to NLME models with a
skew-normal distribution in the presence of covariate mea-
surement errors and jointly model the response and covari-
ate processes. We illustrate the proposed method in a real
example from an AIDS clinical trial by modeling the viral
dynamics to compare potential models with different infer-
ence methods. Simulation studies are conducted to assess
the performance of the proposed model and method.

AMS 2000 subject classifications: Primary 62F15; sec-
ondary 62P10.
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1. INTRODUCTION

Longitudinal data analysis methods have been the sub-
ject of extensive studies, and they have been successfully ap-
plied to various practical problems. However, there are still
at least three questions to address: First, existing methods
are either frequentist or Bayesian and both have their limi-
tations in practice. For parameter estimation under general
conditions, both methods are asymptotically equivalent, in
that they have the same convergence rate with the same
weak limit [23, 16]. But their finite sample size properties
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are different, and each method has its advantages and dis-
advantages: The former is simpler in modeling and often
has computational advantage but cannot implement prior
knowledge into the model. Also, the frequentist method re-
quires slightly more conditions for estimation consistency
than those required by the Bayesian method [25]. Some fre-
quentist analyses of HIV viral load could lead to unpre-
dictable convergence problems during numerical computing,
e.g., [26, 30]. On the other hand, the Bayesian method can
incorporate prior information into the model, and any ad-
missible procedure can be formulated as either a Bayesian
or a limit of Bayesian procedures [28], including the frequen-
tist maximum likelihood estimate (MLE). It can gain small
sample advantage when the prior information is sound, but
could also be misleading when the prior information is not
justified even if the non-informative prior is used. This is
because the estimation from data of small sample sizes may
not have enough data information to swap away the effect
of the prior, and more or less advisably or inadvisably af-
fected by the prior. Moreover, the full Bayesian inference
is typically more time consuming due to numerical methods
such as the Markov chain Monte Carlo (MCMC) algorithms,
which may also generate additional approximation errors.

Second, most of the existing methods assume normal ran-
dom errors for convenience [8, 14, 18, 30, 32]. This requires
the variables to be “symmetrically” distributed. A viola-
tion of this assumption could lead to misleading inferences
[3, 9, 11, 10, 15, 24, 27]. As shown in Figure 1(a), in fact,
the observed viral load data (in log scale) in HIV studies are
often far from being “symmetric.”

Third, the validity of inference methods relies on an
important requirement that variables are “perfectly” mea-
sured. In practice, however, collected data are often far from
“perfect”. Measurement error in model covariates is another
typical feature of the HIV viral load data and ignoring this
phenomenon may result in biased statistical inference. As
an example, Figure 1(b) displays trajectories of longitudi-
nal viral load measured from RNA levels in plasma (in log10
scale) in an AIDS clinical trial study indicating that the
between- and within-subject variations appear to be large
[17, 1]. To partially explain these variations, covariates such
as CD4 counts are usually introduced in such models to
explain inter-subject variations. CD4 counts are often mea-
sured with substantial errors. As a result, joint modeling of
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Figure 1. Histogram of longitudinal viral load measurements and trajectories of viral load measured from RNA levels in plasma
(in log10 scale) from 48 patients in an AIDS clinical trial study.

CD4 cell counts and viral load is required to account for
measurement errors and random effects from both sources.

To address the aforementioned issues, in this article
we propose a Bayesian-frequentist hybrid (BFH) inference
method for skew-normal nonlinear mixed-effects joint mod-
els of the viral load and CD4 cell count. Specifically, as a rule
of thumb, for estimation of a d-dimensional parameter, it re-
quires the sample size to be at least 10×d for the regression
coefficients to be unbiased [7], and 30 × 2d for the validity
of asymptotic representation following the Bonferroni’s rule,
which can be difficult to achieve. The finite sample behavior
of the inference is thus important. In practice, we have situa-
tions in which we have sound prior information on only part
of the parameters, and no such information on the rest pa-
rameters. In this case, a full frequentist method will ignore
the valuable information on part of the parameters, while a
full Bayesian method requires prior on all the parameters,
which may yield misleading results, due to the prior on the
rest parameters for which we don’t have sound prior infor-
mation (even if with a non-informative prior on this part
of parameters). Thus, to deal with the above situation, an
approach that takes advantage of the two procedures and
avoids their weakness is desirable. As a solution, we adopt
a Bayesian-frequentist hybrid (BFH) approach proposed by
[34] to nonlinear mixed-effects (NLME) models with a skew-
normal (SN) distribution joint with a covariate model with
measurement errors. As an extension of [34], who proposed a
hybrid estimate for independent response variable-based re-
gression models, we propose to jointly investigate the NLME
model with an SN distribution for the response process and
the linear mixed-effects (LME) model with an SN distribu-
tion for covariate measurement error process.

It is worthwhile to note that the BFH approach can
not be replaced by the full Bayesian analysis with non-
informative priors on parameters with no objective prior
information. As an example, for n Bernoulli observations
of parameter p and the sum of X, if we have prior π(p)
for p, then the posterior distribution of p will be propor-
tional to pX(1− p)n−X × π(p). There can be potential bias

for non-informative prior where π(p) follows standard uni-
form distribution. For example, if n = 6 and X = 1 then
the unbiased MLE of p is 1/6. But with the uniform prior,
the posterior of p is Beta(2, 6). If we use the posterior
mean as the estimate, then the Bayes estimate is 1/4. The
bias introduced by the uniform prior can be calculated as
1/4− 1/6 = 1/12 ≈ 8.33%.

In Section 2, we describe the data set that motivated this
research and investigate SN-NLME joint models for HIV
dynamics. The associated BFH inferential approach to ob-
tain hybrid estimate (HE) is presented in Section 3, and the
model implementation using a Monte Carlo EM algorithm
is introduced in Section 4. In Section 5, we demonstrate the
proposed method by applying it to the AIDS data described
in Section 2 and report the analysis results. In Section 6 we
conduct a simulation study to examine and compare the fi-
nite sample performances of the BFH and frequentist meth-
ods under the normal and skew-normal models.

2. THE DATA AND JOINT MODELS FOR
HIV DYNAMICS

2.1 Data description

The AIDS clinical trial study in [17] consists of 53 HIV-
1 infected patients who were treated by an antiretroviral
regimen. Five patients who dropped out earlier and never
returned to the study were excluded from the data analysis.
The plasma HIV-1 RNA (viral load) is repeatedly quantified
on days 0, 2, 7, 10, 14, 21, 28, 56, 84, 168 and 336 of follow-
up after initiation of treatment and trajectories of viral load
from 48 patients were depicted in Figure 1(b). The number
of measurements for each individual varies from 7 to 11.
The covariate CD4 cell count was also measured throughout
the study on a similar scheme. A log10-transformation of
viral load was used in the analysis to stabilize the variations
of observations and speed up algorithm of estimation. In
addition, to avoid too small or large estimates that may be
unstable, we standardize the time-varying (covariate) CD4
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Figure 2. Profiles of viral load (response) in log10 scale and standardized CD4 (covariate) for four randomly selected patients.
The horizontal line is below the detectable level of viral load (2=log10(100)).

cell count and rescale the original time t (in days) so that
the time scale is between 0 and 1.

Figure 2 shows the measurements of HIV viral load in
log10 scale and CD4 cell count for four randomly selected
patients. All trajectories of viral load and CD4 cell count
exhibit distinctive and important patterns throughout the
time course. The rate change in viral load appears to vary
substantially across patients, reflecting both biological vari-
ation and systematic associations with subject-level covari-
ates. The detailed descriptions of the study and data can be
found in [17].

2.2 Skew-normal NLME joint models for
HIV dynamics

As shown in Appendix B, nonlinear mixed-effects models
based on the two-compartment equation (B.2) are powerful
tools for modeling HIV viral dynamics [29] and offer almost
equal performance to capture the early segment of viral load
trajectories [30]. One of our objectives in this paper is to in-
vestigate how the extended equation (B.3) performs when
the complete viral load data including viral rebound are em-
ployed for modeling. We next develop such model structure
and the associated inferential method.

Denote the number of subjects by n and the number of
longitudinal measurements on the ith subject by ni. Let
yij = yij(tij) denote the log10-transformation of the viral
load value V (tij) for individual i at time tij (i = 1, . . . n; j =
1, . . . , ni). It was noted that the viral decay rates may vary
over time because they depend on some phenomenologic pa-
rameters that hide considerable microscopic complexity and
change over time [20]. Negative values of the decay rates may
correspond to viral increase and lead to viral rebound. [29]
suggested that variation in the dynamic parameters may be
partially associated with CD4 cell count and other covari-
ates. For the viral load response process, we consider the
following NLME model with an SN distribution incorporat-
ing possibly time-varying CD4 covariate with measurement
errors:

yij = log10(V (tij)) = log10(e
p1i−λ1itij + ep2i−λ2ijtij ) + eij

(1)

p1i = β1 + b1i, λ1i = β2 + β3zi0 + b2i

p2i = β4 + b3i, λ2ij = β5 + β6z
∗
ij + b4i

where z∗ij is a summary of the true (but unobservable) CD4
covariate value at time tij (see below in detail) and zi0 is the
baseline CD4 cell count; exp(pi1) + exp(pi2) is the baseline
viral load; λi1 and λij2 are the first- and second-phase viral
decay rates, respectively; βij = (pi1, pi2, λi1, λij2)

′ is a vec-

tor of individual parameters for the ith subject at time tij
and β = (β1, β2, β3, β4, β5, β6)

′ is a vector of population pa-

rameters; the vector of model errors ei = (ei1, . . . , eini)
′ iid∼

SNni

(
−

√
2/πδ11ni , σ

2
1Ini , δ1Ini

)
, which follows a multi-

variate SN distribution with unknown variance parameter
σ2
1 , and skewness parameter δ1, where 1ni = (1, . . . , 1)′; the

vector of random-effects bi = (bi1, bi2, bi3, bi4)
′ iid∼ N4(0,Σb),

and Σb is covariance matrix.
Models for the covariate process are needed to incorpo-

rate measurement errors in covariates. Following the study
by [33], we extend a linear mixed-effects (LME) model us-
ing the SN distribution for the CD4 process. In the ab-
sence of theoretical rationales, low-order polynomial LME
models may be considered and standard model selection
methods can be used to choose the best model. For sim-
plicity, we consider a single time-varying covariate. Let zij
be the observed covariate value for individual i at time tij
(i = 1, . . . n; j = 1, . . . , ni). In the presence of covariate mea-
surement errors, we consider the following covariate LME
model with an SN distribution.

zij = u′
ijα+ v′

ijai + εij (≡ z∗ij + εij),(2)

εi
iid∼ SNni

(
−

√
2/πδ11ni , σ

2
2Ini , δ2Ini

)
,

where z∗ij = u′
ijα+v′

ijai may be viewed as the true (but un-
observable) CD4 covariate value at time tij ; uij = uij(tij)
and vij = vij(tij) are l×1 design vectors; α = (α1, . . . , αl)

′
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and ai = (ai1, . . . , ail)
′ are unknown population (fixed-

effects) and individual-specific (random-effects) parameter
vectors, respectively. The random-effects ai, which are in-
troduced to account for large inter-individual variations in
the CD4 process, follow the multivariate normal distribu-
tion Nl(0,Σa), where Σa is covariance matrix. We assume
ei, bi, εi and ai are independent of each other.

Specifically, we consider the covariate model (2) with
uij = vij = (1, tij , . . . , t

l−1
ij )′ and focus on linear (l = 2),

quadratic (l = 3) and cubic (l = 4) polynomials to choose
the best model based on AIC and BIC values. The resulting
AIC (BIC) values are 890.0 (931.7), 773.4 (801.3) and 845.2
(887.1), respectively. Thus, we adopt the following quadratic
polynomial LME model for the CD4 process:

(3) zij = (α1 + ai1) + (α2 + ai2)tij + (α3 + ai3)t
2
ij + εij ,

where z∗ij = (α1 + ai1) + (α2 + ai2)tij + (α3 + ai3)t
2
ij ,

α = (α1, α2, α3)
′ is a vector of population (fixed-effects)

parameters and individual-specific random-effects ai =

(ai1, ai2, ai3)
′ iid∼ N3(0,Σa).

3. BAYESIAN-FREQUENTIST HYBRID
ESTIMATE

In a longitudinal study, such as the AIDS study described
in Section 2, the longitudinal response and covariate pro-
cesses are usually connected physically or biologically. Al-
though a simultaneous inference method based on a joint
likelihood for the covariate and response data with non-
normality and measurement error may be favorable, the
computation associated with the joint likelihood inference
in such models with SN distribution for longitudinal data
can be extremely intensive and, particularly, may lead to
convergence problems [33]. Here, we propose a hybrid in-
ferential method for the response model (1) joint with the
covariate model (3) to estimate all parameters simultane-
ously.

3.1 Hybrid estimate given a loss function

Let yi = (yi,1, ..., yi,ni)
′, zi = (zi,0, zi,1, ..., zi,ni)

′, Yn =
(y1, ...,yn)

′ and Zn = (z1, ..., zn)
′. Following the discussion

in [24], we implement a modeling procedure to the joint
models by introducing two ni × 1 random vectors wi,1 and
wi,2 based on the stochastic representation for the SN dis-
tribution (see Appendix A in detail). It can be shown that
yi and zi can be hierarchically formulated as follows:

yi|zi,ai, bi,wi,1;α,β, σ2
1 , δ1(4)

∼ Nni

(
gi(ti,βi) + δ1[wi,1 −

√
2/π1ni ], σ

2
1Ini

)
,

zi|ai,wi,2;α, σ2
2 , δ2

∼ Nni

(
z∗
i + δ2[wi,2 −

√
2/π1ni ], σ

2
2Ini

)
,

wi,1 ∼ Nni(0, Ini)I(wi,1 > 0),

wi,2 ∼ Nni(0, Ini)I(wi,2 > 0),

bi ∼ N4(0,Σb), ai ∼ N3(0,Σa),

where I(w > 0) is an indicator function and
w follows normal distribution Nni(0, Ini) trun-
cated in the space w > 0; z∗

i = (z∗i,1, · · · , z∗ini
)′,

gi(ti,βi) = (g(ti1,βi1), · · · , g(tini ,βini
))′ with g(tij ,βij) =

log10(e
p1i−λ1itij + ep2i−λ2ijtij ).

Our model has many more parameters than typical lon-
gitudinal data models. The parameters of interest in general
may be partitioned into two subsets, one with prior knowl-
edge, and one without. In this case, a Bayesian analysis on
one subset will have benefits from the prior information,
while for the other subset a frequentist method is preferred.
Thus, a Bayesian-frequentist hybrid method [34] for the in-
ference of all parameters can have advantages over the full
frequentist or Bayesian method.

For simplification, we assume that the components of
the random-effects bi = (bi1, bi2, bi3, bi4)

′ are indepen-
dent with each other having distribution bik ∼ N(0, σ2

bk)
(k = 1, 2, 3, 4). Similarly, we assume aik ∼ N(0, σ2

ak)
(k = 1, 2, 3). Let θ = θ1 ∪ θ2 be the collection of
all unknown population parameters in our joint model,
where θ1 = {α3, β1, β2, β4, σ

2
a1, σ

2
a2, σ

2
a3, σ

2
b1, σ

2
b2, σ

2
b3, σ

2
b4}

and θ2 = {α1, α2, β3, β5, β6, σ
2
1 , σ

2
2 , δ1, δ2}. Based on past

studies [18, 9, 10, 6], we have prior information on θ1 sum-
marized in the prior density π(θ1), but we do not have such
information for θ2, which are parameters of interest and
the estimates are supposed to be dominated by data. Thus,
we implement the BFH approach to estimate θ1 using the
Bayesian method and θ2 the frequentist method simultane-
ously.

Denote observed data D={Y n,Zn, {tij}i=1,...,n;j=1,...,ni}.
Let f(·), f(·|·) and π(·) be a generic density function, a
conditional density function, and a prior density function,
respectively. In concise notation, the likelihood for the
observed data is

f(Yn,Zn|θ) = f(Yn,Zn|θ1,θ2) =

n∏
i=1

f(yi, zi|θ),

where

f(yi, zi|θ) =
∫ ∫ ∫ ∫

f(yi|zi,ai, bi,wi,1;θ)

(5)

× f(zi|ai,wi,2;θ)f(wi,1|wi,1 > 0)

× f(wi,2|wi,2 >0)f(ai)f(bi)dwi,1dwi,2daidbi,

with the density functions in the above integrand given
in (4). Let l(θ|Yn,Zn) = log f(Yn,Zn|θ) denote the log-
likelihood. Thus, the joint posterior density of θ based on
the observed data D can be written as

f(θ|D) ∝
{

n∏
i=1

∫ ∫ ∫ ∫
f(yi|zi,ai, bi,wi,1;θ)(6)
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× f(zi|ai,wi,2;θ)

× f(wi,1|wi,1 > 0)f(wi,2|wi,2 > 0)

× f(ai)f(bi)dwi,1dwi,2daidbi

}
π(θ1).

Recall that the frequentist estimate θ̂n of θ is

θ̂n = arg sup
θ

f(Yn,Zn|θ) = arg sup
θ

l(θ|Yn,Zn).

Given a loss function L(θ,d) and a prior π(θ), the general-
ized Bayes estimate θ̌n of θ is

θ̌n = arg inf
d

∫
L(θ,d)f(Yn,Zn|θ)π(θ)dθ.

Then given a loss L(θ1,d) and a prior π(θ1) only on
θ1, for general model with independently and identically
distributed observations, the hybrid estimate (HE) θn =

(θ̌1,n, θ̂2,n)
′ originally discussed by [34] is

θn = (θ̌1,n, θ̂2,n)
′

= arg(inf
d
, sup

θ2

)

∫
L(θ1,d)f(Y

n,Zn|θ1,θ2)π(θ1)dθ1.

The estimation regarding θn for case-model control ge-
netic data under the commonly used squared error loss, ab-
solute error loss and the 0-1 loss were discussed in [36]. With
the 0-1 loss, the HE is computationally the simplest and par-
allel to that for MLE. Here, for the hierarchical joint model
(4), we focus on the 0-1 loss on θ1. With this loss, the HE
of θ = (θ1,θ2)

′ is given by

θn = (θ̌1,n, θ̂2,n)
′(7)

= arg sup
(θ1,θ2)

{l(θ1,θ2|Yn,Zn) + log π(θ1)} .

Note that the BFH inference for HE considered here is
an extension of [34] who considered the HE of the param-
eter θ for independent response variable-based models. We
consider an HE of the parameter θ for longitudinal response
and covariate variables-based hierarchical joint models.

3.2 Asymptotic properties

Let θ0 = (θ1,0,θ2,0) be the true parameter generating
the observed data, (y, z) be a generic independent copy of
the (yi, zi)’s, and it can have dimensions ni (i = 1, ..., n).
Let l(2)(θ|y, z, ni) = ∂2l(θ|y, z, ni)/(∂θ∂θ

T ) for y and z
with dimension ni, and I(θ|ni) = −Eθl

(2)(θ|y, z, ni) be the
Fisher information about θ when y and z are of dimension
ni. We assume the following conditions:
(C0). limn→∞ max1≤i≤n ni < ∞.
(C1). There is a convex set A such that infθ∈A |I(θ)| > 0,
where I(θ) is given in the Proposition, that (θ1,0,θ2,0) ∈ A

and that (θ̌1,n, θ̂2,n) ∈ A for all large n.

(C2). On A, 0 < π(·) < ∞.
(C3). The first and second derivatives, π(k)(·) (k = 1, 2), are
bounded and away from zero on A,
(C4). I(·) is continuous at θ0.
(C5). In a neighborhood of θ0, ∂

∫ ∫
f(y, z|θ)dydz/∂θ =∫ ∫

∂f(y, z|θ)/∂θdydz.
The following property of θn for the hierarchical joint

model (4) is comparable with that in [36] for case-control
genetics data model (see proof in Appendix C).

Proposition 1. Assume conditions (C0)-(C5). Then under
the 0-1 loss, we have

(i) (θ̌1,n, θ̂2,n) → (θ1,0,θ2,0)(a.s.), and

(ii)
√
n(θ̌1,n − θ1,0, θ̂2,n − θ2,0)

D→ N(0, I−1(θ0)),

where I(θ0) = −
∑r

j=1 Eθ0
l(2)(θ0|y, z, kj)pj, k1, ..., kr are

all the different numbers the ni’s take, and the pj ’s are the
corresponding frequencies.

In the above the notation (θ̌1,n − θ1,0, θ̂2,n − θ2,0) is un-
derstood in the column vector sense (not an array of two col-
umn vectors). When the prior is fixed, the effect of the prior
will be asymptotically negligible, such hybrid estimator is
asymptotically first order equivalent to the maximum like-
lihood estimate (MLE) and efficient, but their finite sample
properties are different, the hybrid estimator can outper-
form the MLE due to the helpful prior information. Below
we give an example on how to use Proposition 1. We only
need to illustrate the computation of I(θ0).

Example. Assume that the observed data are (yi, zi)
with dim(yi) = dim(zi) = ni, (i = 1, ..., 1000). For
n = 1000, the ni’s only take r = 10 different num-
bers such that (k1, . . . , k10) = (3, 5, 6, 7, 8, 9, 10, 11, 12, 15),
with multiplicities (m1, ...,m10), and

∑r
j=1 mj = n. Let

(p1, ..., p10) = (m1, ...,m10)/n be the corresponding fre-
quencies. For (yi, zi)’s with ni = kj , their density func-
tion is f(y, z|θ, kj), with log-likelihood l(θ|y, z, kj) and the
corresponding Hessen matrix l(2)(θ|y, z, kj) for any i ∈
{1, . . . , 1000} and j ∈ {1, . . . , r}. Thus, in this case

I(θ0) = −
r∑

j=1

Eθ0
l(2)(θ0|y, z, kj)pj ,

which is well approximated, for large n, by

(8) Î(θ̂) = −
r∑

j=1

1

mj

∑
ni=kj

l(2)(θ0|yi, zi, kj)
mj

n
.

3.3 Asymptotically informative prior

In the full Bayesian setting, when the prior is collected
from prior data of size m with the ratio of sample sizes
m/n → c for some c ∈ (0,∞), the prior can be asymptoti-
cally informative, and the effect of the prior will be asymp-
totically non-negligible [35]. Here we propose an asymptot-
ically informative prior for the case of BFH model with
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the 0-1 loss. Below we give a review of the notion of
asymptotically informative prior in the full Bayesian set-
ting.

In classical Bayes the prior is fixed (or treated as fixed).
So it is washed out as the current data sample increases to
infinity. In the asymptotically informative prior (AIP), the
prior information grows together with the data sample size
so that AIP can remain effective in the limit. That is why
the Bayes estimate based on AIP can be more efficient than
the classical Bayes. In some cases the prior itself is AIP,
but the classical Bayes approach does not recognize this,
still treats it as fixed, and thus ignores such information in
the asymptotic results. In this situation, the classical Bayes
and our method with the AIP should be the same, but the
former does not acknowledge the nature of the prior. For
example, the prior information is summarized from some
previous similar study with data sample size 2000, and we
have current data with sample size 1000. The classical Bayes
method regards the prior from the results of 2000 data as
being fixed and computes the asymptotic result, while data
with sample size 1000 is used to approximately interpret the
asymptotic result. Here the prior from 2000 data is ignored,
while the size of 1000 is treated as “infinity”, and the prior
effect is washed out so that the analysis does not take advan-
tage of the prior efficiency. With the AIP method proposed
in [35], we attempt to recover such efficiency. So it is not
really our claim that the proposed method is “better” than
the classical Bayes regarding the prior. Also, prior informa-
tion from previous studies with large sample size may not
be formulated in a proper way to get an AIP by classical
Bayes, thus the classical Bayes method may not be able to
recover such prior information in the asymptotics.

We let πm(·) denote the informative prior density. We in-
dex the prior with an integer m to represent the sample size
from prior similar studies about θ. In practice, πm(·) is con-
structed using existing inferential results based on datasets
generated from the parameter, but not on the current ob-
served data. Let hm(θ1) = log πm(θ1). As in [35], we define
the asymptotically informative prior on θ1 as below.

Definition. πm(θ1) is an asymptotically informative prior

(AIP), if h
(2)
m (·) exists for all m, and as m → ∞,

1

m
h(1)
m (θ1,0)

a.s.→ 0,

m−1/2h(1)
m (θ1,0)

D→ N(0, J(θ1,0)),

and
1

m
h(2)
m (θ1)

a.s.→ −J(θ1)

on any compact set, for some d × d matrix J(θ1), non-
negative definite and componentwise continuous on that set,
with d = dim(θ1).

Two remarks for this definition are worth noting. One, in
some cases, the AIP can be constructed from existing inde-
pendent parameter estimates by a general density estimator

that may not be explicitly associated with some integer m.
In this case we can simply modify the above definition as:
let h(θ1) = log π(θ1). π(·) is an AIP, if

1

n
h(1)(θ1,0)

a.s.→ 0,

n−1/2h(1)(θ1,0)
D→ N(0, cJ(θ1,0)),

and
1

n
h(2)(θ1)

a.s.→ −cJ(θ1)

for some 0 ≤ c < ∞ and some matrix J(θ) which is non-
negative definite and componentwise continuous on some
compact set. This second definition includes the first one
by setting c = limn m/n, and including any fixed prior by
c = 0. But we are mainly interested in the case c �= 0.

Two, πm(·) can sometimes be formulated as a multi-

variate exponential family; i.e., πm(θ) = exp{m[θ̄
′
mT (θ) +

B(θ) + C(θ̄m)]}, for some known differentiable functions
T (·), B(·) and some known function C(·), where θ̄m is a
consistent estimator of θ0 constructed from past estima-

tors and is asymptotically normal, i.e.
√
m(θ̄m − θ0)

D→
N(0, J−1(θ0)), with T (·) and B(·) satisfying T (1)(θ0) =
J(θ0) + o(1) and B(1)(θ0) = −θ′

0T
(1)(θ0) + o(1). Here θ̄m

can be viewed as a hyperparameter. For example, if θ̄m is a
consistent and asymptotically normal estimator of θ0 con-
structed from existing results, with asymptotic variance ma-
trix J−1(θ0), then

πm(θ) = (2π)−d/2md/2|J(θ̄m)|1/2

× exp{−m

2
(θ − θ̄m)′J(θ̄m)(θ − θ̄m)}

is an AIP and an exponential family with T (θ) = J(θ̄m)θ,

B(θ) = −θ′J(θ̄m)θ/2 and C(θ̄m) = −θ̄
′
mJ(θ̄m)θ̄m/2 +

d
2m log m

2π + 1
2m log |J(θ̄m)|.

With the above notion of AIP πm(θ1) on θ1 only, we con-
struct the hybrid estimator for our hierarchical joint model.
With 0-1 loss and π(θ1) replaced by πm(θ1), formula (7)
can be written as

θn = (θ̌1,n, θ̂2,n)
′(9)

= arg sup
(θ1,θ2)

{l(θ1,θ2|Yn,Zn) + log πm(θ1)} .

Here πm(·) differs from the prior in the classical Bayesian
setting where it changes along with m, and the latter can
be viewed as a special case of the former in which the
rate is zero at which πm(·) concentrates toward θ1,0. Note
that when πm(θ1) is an AIP only for θ1, the correspond-
ing J(θ1) is of dimension dim(θ1), we embed it into the
matrix J(θ) with dimension dim(θ) as its upper-left block,
and with other entries be zeros. Thus, J(θ) is of the form
J(θ) = diag(J(θ1),0). To study the asymptotic behavior of
θn in this case, we need the following condition.
(C6). 0 ≤ c = limn m/n < ∞.
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Proposition 2. Assume (C0)-(C6). Then under the 0–1
loss for θ1, we have

(i) θn → θ0 (a.s.)

(ii)
√
n(θn − θ0)

D→ N(0, [I(θ0) + cJ(θ0)]
−1),

where I(θ0) is given in Proposition 1.

The above asymptotic normality result includes the clas-
sical Bayes estimator in which c = 0 and includes the results
of Proposition 1. When c > 0, since J(·) is non-negative
definite, [I(θ0) + cJ(θ0)]

−1 ≤ I−1(θ0) in the matrix non-
negative definite sense, and I−1(θ0) is the asymptotic vari-
ance matrix for the classical Bayesian estimator and MLE
based on the likelihood only. As a result, the hybrid estimate
with asymptotically informative prior can be more efficient
than the classical Bayes estimate, as well as the MLE based
only on l(·|Yn,Zn).

4. MODEL IMPLEMENTATION

We implement the proposed model using the Monte Carlo
Expectation-Maximization (EM) algorithm as in [6]. Let

γ = {{ai}, {bi}, {w1,i}, {w2,i}}i=1,...,n

denote all random effects. With the observations D and
model parameters θ, the Bayesian density can be derived
as

(10) f(D|θ)× π(θ1) =
f(D,γ|θ)
f(γ|D,θ)

× π(θ1).

Note that this conditional density expression could be max-
imized using the EM algorithm. For example, the Bayesian
density in [6] has the same format as (10) except for a dif-
ferent likelihood function and random effects. We maximize
the Bayesian density by taking expectation with respect to
[γ|D,θ(k)] on both sides of (10) and then maximizing

Q(θ|θ(k),D) = log π(θ1)(11)

+

∫
log(f(D,γ|θ))× f(γ|D,θ(k))dγ,

where θ(k) is the set of the values of all model parameters
at one iteration in the EM algorithm. If we generate Nsim

Monte Carlo realizations of γ given parameters θ(k), then
the density (11) can be computed using Monte Carlo sam-

ples of γ conditional on θ(k)

Q(θ|θ(k),D) = E
[γ|D,θ(k)

]
(log(f(D|γ,θ)) + log(f(γ|θ)))

+ log π(θ1)

=
1

Nsim

Nsim∑
q=1

[
n∑

i=1

ni∑
j=1

{
log f(yij |zi,γi,q;θ)

+ log f(zij |γi,q;θ)
}]

+
1

Nsim

Nsim∑
q=1

[
n∑

i=1

f(γi,q|θ)
]
+ log π(θ1),(12)

where γi,q = {ai,q, bi,q,w1i,q,w2i,q} is the qth realization of

the random effects conditional on θ(k). The density functions
in (12) can be calculated as

• f(yij |zi,γi,q;θ) = f(yij |ai,q, bi,q,w1i,q;θ) is the nor-
mal distribution density with mean log10[exp{β1 +
bi,q(1)− tij(β2 + β3zi0 + bi,q(2))}+ exp{β4 + bi,q(3)−
tij(β5 + β6z

�
ij,q + bi,q(4))}] +δ1

[
w1i,q(j)−

√
2/π

]
,

where z�ij,q = (α1 + ai,q(1)) + (α2 + ai,q(2))tij + (α3 +

ai,q(3))t
2
ij , and variance σ2

1 ;
• f(zij |γi,q;θ) = f(zij |ai,q,w2i,q;θ) is the normal distri-

bution density with mean z�ij,q + δ2

[
w2i,q(j)−

√
2/π

]
and variance σ2

2 ;
• f(γi,q|θ) = f(ai,q|θ)f(bi,q|θ)f(w1i,q|θ)f(w2i,q|θ),

where f(ai,q(k)|θ) is the normal density with mean
0 and variance σ2

ak for k = 1, 2, 3; f(bi,q(k)|θ) is
the normal density with mean 0 and variance σ2

bk for
k = 1, . . . , 4; each element in w1i,q and w2i,q follows
standard normal distribution truncated to take non-
negative values only.

The prior distribution π(θ1) and the initial parameter
values shall be specified to start the first iteration of the
algorithm. Some details about priors and initial parameters
in the AIDS clinical data example are provided in Section 5.
We run the following steps at each iteration.

1. Generate Nsim random effects γi for each i ∈ {1, . . . , n}
using the model parameters at the current iteration
θ(k);

2. E-step: compute (12);
3. M-step: update θ value by maximizing (12).

Same as [6], we complete Nem iterations to achieve the final

estimate θ(Nem). We use equation (8) to estimate the Fisher
information matrix and the formula in [21] to approximate
the variance in the estimate. In brief, for a generic parameter
θ, the estimated variance of θ can be written as

(13) V̂ ar(θ) =
[
E(l′′) + E(l

′2) + (E(l′))2
]−1

,

where l is the log-likelihood, l′ and l′′ are the first and second
order derivatives, respectively. We approximate the expec-
tations in (13) using the simulated parameters θ(k) from the
EM iterations.

5. ANALYSIS OF THE AIDS CLINICAL
DATA

As described in Section 2, 48 patients were included in
the analysis. Among them 1 patient had 7 longitudinal mea-
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Table 1. Parameter estimates from the frequentist and BFH models based on the EM at the 50-th iteration. Numbers in the
parentheses are estimated standard deviation for the estimates of (β1, β2, . . . , β6).

Parameter Freq. estimate (STD) BFH estimate (STD)

β̂1 8.785 (0.018) 9.217 (0.028)

β̂2 8.956 (0.085) 24.821 (0.149)

β̂3 3.365 (0.062) 10.766 (0.085)

β̂4 3.505 (0.027) 3.812 (0.022)

β̂5 -1.008 (0.053) -2.724 (0.038)

β̂6 1.008 (0.038) 1.001 (0.046)

α̂1 -0.293 -0.303

α̂2 3.190 3.262

α̂3 -2.599 -2.734

σ̂2
1 1.443 1.288

σ̂2
2 1.650 1.196

σ̂2
a,1 0.615 0.250

σ̂2
a,2 0.780 0.261

σ̂2
a,3 0.580 0.208

σ̂2
b,1 1.239 0.596

σ̂2
b,2 5.640 3.351

σ̂2
b,3 3.401 2.072

σ̂2
b,4 25.662 20.505

δ̂1 -0.0051 0.0033

δ̂2 -0.0041 0.0056

surements, 6 patients had 9 measurements, 12 patients had
10 measurements, 27 patients had 11 measurements, and
2 patients had 12 measurements. So r = 5, (k1, . . . , k5) =
(7, 9, 10, 11, 12), and (m1, . . . ,m5) = (1, 6, 12, 27, 2) accord-
ing to the notation in (8). In the analysis of this AIDS clin-
ical data set, we choose the 0-1 loss for the BFH model
because 1) it is the most commonly used loss function in
the hybrid Bayesian literature [34, 6, 36], and 2) with the
0-1 loss, the algorithm complexity of BFH is equivalent to
that in the frequentist analysis. We use the priors in [6] and
[13] to construct the prior of π(θ1), where [6] constructed a
Bayesian-frequentist hybrid model for Y n with random ef-
fects {bi}i=1,...,n only and [13] implemented a survival and
longitudinal joint model involving the model parameters in
(4). These priors are essentially AIP because they were so-
licited from existing studies. Specifically,

• β1 ∼ N(8.4, 0.32), β2 ∼ N(0.32), β4 ∼ N(3.8, 0.32);
• α3 ∼ N(−2.91, 0.53);
• σ2

b1, . . . , σ
2
b4 follow inverse gamma distributions with

means 1.43, 5.7, 3.89, and 24.54, respectively;
σ2
a1, . . . , σ

2
a3 follow inverse gamma distributions with

means 0.674, 0.658, and 0.553, respectively. All the vari-
ances are three times of the mean values.

Initial parameter values in our EM algorithm are the
same as from the EM algorithm in [6] for (β1, . . . , β6, and
σ2
b1, . . . , σ

2
b4), and estimates in [13] for all other model pa-

rameters. We set the number of simulation at each iteration
(Nsim) to be 200, and the number of EM iteration (Nem) is
set to 50.

Parameter estimates from the frequentist and BFH mod-
els are listed in Table 1. For the parameters describing the
viral load (β1, . . . , β6), the estimated values from the BFH
model are comparable with existing estimates in the litera-
ture; i.e., [6, 13]. Some frequentist estimates, however, con-
verged to unreasonable values in the parameter space (e.g.,
β2 and β3). Most of the estimates of other parameters from
the two models are similar except for (σ2

b,1, . . . , σ
2
b,4) and

(δ1, δ2). This can be due to the large number of model pa-
rameters and relatively small sample size. Figures 3 and 4
show the trace plots of (β1, . . . , β6) from the frequentist
and BFH methods, respectively. We can see that the es-
timates converge to different values from the two methods.
The Bayesian hybrid inference leads to more stable and re-
liable estimates even with a moderate number (i.e., 10) of
model parameters. Similar to [6], we estimate the standard
deviation of (β1, . . . , β6) from both models in the paren-
theses of Table 1. We can see that the estimated standard
deviations are similar between the two models if the esti-
mates are close to each other, but the estimated standard
deviation from the BFH model can be smaller when the fre-
quentist model has an unreasonable estimate. For example,
the estimated β4 and β5 from the frequentist model are big-
ger than those in the BFH model. This is consistent with
the conclusion of Proposition 2, and the findings in [6] that
the Bayesian hybrid inference may not correspond to greater
estimation uncertainty.

To compare the convergence of the two models, we make
a trace plot of the objective function in Figure 5, where
the objective function is the negative log likelihood in the
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Figure 3. Trace plots of the estimates (a) β1, (b) β2, (c) β3,
(d) β4, (e) β5, (f) β6 from the frequentist model through

50 iterations.

Figure 4. Trace plots of the estimates (a) β1, (b) β2, (c) β3,
(d) β4, (e) β5, (f) β6 from the BFH model through 50

iterations.
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Figure 5. Trace plot of the objective function (to be
minimized in the EM algorithm) from the frequentist model
(solid curve) and BFH model (dashed dots) through the 50

iterations.

frequentist model, and the sum of negative log likelihood
and negative prior density in the BFH model. The Bayesian
hybrid inference can smoothly converge to the final value
after about 10 iterations, while the objective function in the
frequentist analysis had a drop at the 10th iteration, which
is less stable than the iterations in the proposed BFH model.
In this example, the BFH model had superior convergence
properties to the frequentist alternative.

6. A SIMULATION STUDY COMPARING
BFH AND FREQUENTIST METHODS

We further compare BFH and the frequentist methods,
as well as the models with and without skewness in the mea-
surement error. We generate a simulation data set for 48 pa-
tients at observation times 0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20,
and 24 (assumably in month). Values of the model parame-
ters used to simulate the data are close to the BFH estimates
from the real example in Table 1, except that σ2

b,1, . . . , σ
2
b,4

are set to a small value 0.001, and δ2 = 0. Same as the simu-
lation studies in [2] and [19], we generate each random error
eij in (1) as εij − 2, where εij is an independent realization
from gamma distribution with parameters 2 and 1. The ini-
tial values of the parameters are close to the real values in
the simulation. Prior distributions are the same as in the
real example in Section 5. Such simplified setting can fa-
cilitate the result interpretation and guarantee all methods
converge in a few iterations typically less than 10.

Our simulation study compares four scenarios: A, Fre-
quentist method with skewness parameter δ1 set to 0, B,
BFH with δ1 set to 0; C, Frequentist with δ1 to be esti-
mated; D, BFH with δ1 to be estimated. For C and D, we
let the lower bound of δ1 in the iteration to be 0.9 and the
initial value to be 1 to guarantee some degree of skewness.
In each scenario, the numerical integration/maximization
is based on 200 Monte Carlo simulations, and the number
of iteration is 10. We present the results as the estimates of
β1, . . . , β6 in Table 2 with the true and initial values. We can

Table 2. Estimates of β1, . . . , β6 from Frequentist, no
skewness (F. NS); BFH, no skewness (BFH NS); Frequentist,
skewness (F. S); BFH, skewness (BFH S), and the true and

initial values of the parameters.

F. NS BFH NS F. S BFH S True;Initial

β̂1 21.62 18.12 21.60 18.14 8; 8.2

β̂2 54.17 23.16 53.92 23.14 25; 26.5

β̂3 22.25 11.95 22.18 11.96 8.68; 8.5

β̂4 8.78 9.02 8.78 8.99 3.8; 3.8

β̂5 -5.56 -3.42 -5.56 -3.40 -2.34; -2.5

β̂6 0.03 -1.51 0.01 -1.51 -0.073; 0

δ̂1 NA NA 0.90 0.95 gamma(2,1); 1

see that in the estimation of β1, . . . , β3, the two FBH sce-
narios are significantly more accurate than those from the
frequentist method, while the models with or without the
skewness are comparable. For β4, all estimates have similar
bias. In the estimation of β5, BFH with the skewness pa-
rameter is better than that without, and the BFH estimates
are both more accurate than the frequentist estimates. For
β6, the frequentist estimates have smaller predictive errors
than the FBH estimates, but FBH estimates were able to
maintain the correct negative slop. The relatively big bias
in the estimates of β1 and β4 in all scenarios can be due to
the systematic discrepancy between the simulation process
and true model formula. In the estimation of δ1 in C and
D, we can see that the frequentist estimate stopped at the
lower bound 0.9, while the FHB estimate converged to 0.95.
After changing the lower bound to 0 for another run, the fre-
quentist estimate of δ1 is then close to 0. In summary, the
FHB method can lead to more accurate and reliable esti-
mates than the frequentist counterpart when the number of
parameters is large and data sample size is relatively small.
The inclusion of the skewness parameter δ1 can lead to more
accurate estimates.

7. CONCLUDING REMARKS

The HIV viral dynamics models have been developed ex-
tensively in the statistical science community in the past 15
years. But the challenges still remain on developing proper
statistical methods incorporating a large number (20 or
more) of parameters with some prior knowledge and the
skewed measurement error in the joint nonlinear mixed-
effects models. In this article we develop a hybrid Bayesian
inference method for the viral load modeling with skewed
measurement errors. We are able to incorporate available
informative priors on any parameters while leaving other pa-
rameters as frequentist parameters. Our rationale of choos-
ing the frequentist and Bayesian parameters was to estimate
the key parameters from the scientific perspective using only
the data information (frequentist method) and to incorpo-
rate the prior on less important parameters (Bayesian infer-
ence). In addition, we consider multivariate SN distribution
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introduced by [24], which is suitable for a BFH computa-
tion as briefly discussed in Appendix A. We propose the use
of asymptotically informative prior in the longitudinal joint
models as originally introduced in [35].

Regarding the real example illustrated in Figures 1 and
2, the results presented in the Table 1 based on the proposed
BFH approach indicate that the first and second population
decay rates could be approximated by λ̂1 = 24.75 + 10.68z0
and λ̂2(t) = −2.34 + 0.07 × (0.31 − 3.34t + 2.84t2), re-
spectively, where z0 is the standardized CD4 value at the
baseline. The population viral load value is estimated by
V̂ (t) = exp{9.22− λ1 × t}+ exp{3.79− λ2(t)× t}. We can
see that the first phase decay rate (λ1) is significantly as-
sociated with the baseline CD4 value because of the signifi-
cant estimate of β3, and the second phase decay rate (λ2(t))
is associated with the unknown true CD4 values that in-
crease significantly with time t because of the significant
estimates of a3. Although the true association between the
viral load and CD4 cell count at various time points can be
more complicated than the aforementioned interpretation,
our analysis provides a simple approximation that may fa-
cilitate the medical researchers to generate new scientific
hypotheses and point to further research of the HIV viral
load dynamics.

To the best of our knowledge, this is the first attempt to
investigate the FHB inference approach based on the NLME
joint model with SN distribution for longitudinal data. This
kind of modeling approach by assuming the model errors
with an SN distribution is important in many statistical ap-
plications areas not only HIV dynamic study, allowing ac-
curate inference of parameters while adjusting for the data
with skewness. In the real example and the simulation study,
we have shown that the BFH inference can outperform the
frequentist inference. In summary, we recommend using the
BFH instead of frequrntist inference or full Bayesian infer-
ence with non-informative priors in the analysis of HIV vi-
ral load data when part of the model parameters have prior
knowledge and the sample size is relatively small. The soft-
ware for running the real example in Section 5 is available
upon request. Future research on joint modeling incorpo-
rating time-to-event outcomes into the current model (1) is
underway. Another theoretical challenge would be the hy-
pothesis testing incorporating Bayesian and frequentist pa-
rameters. Finally, as one of referees mentioned, the BFH
inference and full Bayesian inference should be further com-
pared not only limited to the 0-1 loss (because with the
0-1 loss, the two approchaes are computationally equiva-
lent if the frequentist parameters had constant prior in the
full Bayesian analysis). Under a general loss function (e.g.,
squared error loss and absolute loss), the comparison would
involve intensive computations and require significantly ad-
ditional efforts given the proposed nonlinear mixed-effects
joint model. These complicated problems are beyond the fo-
cus of this article, but investigation of this important issue
is underway.

APPENDIX A. MULTIVARIATE
SKEW-NORMAL
DISTRIBUTION

Different versions of multivariate skew distributions have
been proposed and used in the literature [24, 2, 3, 4,
15]. A new class of distributions by introducing skew-
ness in multivariate elliptically distributions were developed
in publication [24]. The class, which is obtained by us-
ing transformation and conditioning, which contains many
standard families including the multivariate skew-normal
(SN) distribution as special case. A k-dimensional random
vector Y follows an k-variate skew-elliptical (SE) distri-
bution if its probability density function (pdf) is given
by

(A.1) f(y|μ,Σ,Δ;m(k)
ν ) = 2kf(y|μ,A;m(k)

ν )P (V > 0),

where A = Σ + Δ2, μ is a location parame-
ter vector, Σ is a k × k positive (diagonal) covari-
ance matrix, Δ = diag(δ1, δ2, . . . , δk) is a k × k
skewness matrix with the skewness parameter vector
δ = (δ1, δ2, . . . , δk)

T ; V follows the elliptical distribu-

tion El
(
ΔA−1(y − μ), Ik −ΔA−1Δ;m

(k)
ν

)
and the den-

sity generator function m
(k)
ν (u) = Γ(k/2)

πk/2

mν(u)∫ ∞
0

rk/2−1mν(u)dr
,

with mν(u) being a function such that
∫ ∞
0

rk/2−1mν(u)dr
exists. The function mν(u) provides the kernel of the orig-
inal elliptical density and may depend on the parameter
ν. This SE distribution is denoted by SE(μ,Σ,Δ;m(k)).
One example of mν(u), leading to an important special
case used throughout the paper, is mν(u) = exp(−u/2).
This expression leads to the multivariate SN distribu-
tion.

As we know, a normal distribution is a special case of an
SN distribution when the skewness parameter is zero. For
completeness, this Appendix briefly summarizes the multi-
variate SN distribution introduced by [24] to be suitable for
a Bayesian inference since it is built using the conditional
method. See [24] for detailed discussion on properties of SN
distribution. Assume a k-dimensional random vector Y fol-
lows a k variate SN distribution with location vector μ, k×k
positive (diagonal) covariance matrix Σ and k× k skewness
matrix Δ = diag(δ1, δ2, . . . , δk).

A k-dimensional random vector Y follows a k-variate SN
distribution, if its pdf is given by
(A.2)

f(y|μ,Σ,Δ) = 2k|A|−1/2φk{A−1/2(y − μ)}P (V > 0),

where V ∼ Nk{ΔA−1(y − μ), Ik − ΔA−1Δ}, and φk(·)
is the pdf of Nk(0, Ik). We denote the above distri-
bution by SNk(μ,Σ,Δ). An appealing feature of equa-
tion (A.2) is that it gives independent marginal when
Σ = diag(σ2

1 , σ
2
2 , . . . , σ

2
k). The pdf (A.2) thus simplifies

to
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f(y|μ,Σ,Δ)

(A.3)

=

k∏
i=1

[
2√

σ2
i + δ2i

φ

{
yi − μi√
σ2
i + δ2i

}
Φ

{
δi
σi

yi − μi√
σ2
i + δ2i

}]
,

where φ(·) and Φ(·) are the pdf and cdf of the standard
normal distribution, respectively. The mean and covariance
matrix are given by E(Y ) = μ+

√
2/πδ, cov(Y ) = Σ+(1−

2/π)Δ2. It is noted that when δ = 0, the SN distribution
reduces to usual normal distribution. In order to have a
zero mean vector, we should assume the location parameter
μ = −

√
2/πδ.

According to the study by [24], if Y follows
SNk(μ,Σ,Δ), it can be expressed by a convenient stochas-
tic representation as follows.

(A.4) Y = μ+Δ|X0|+Σ1/2X1,

where X0 and X1 are two independent Nk(0, Ik) random
vectors. Let w = |X0|; then, w follows an k-dimensional
standard normal distribution Nk(0, Ik) truncated in the
space w > 0. Thus, a two-level hierarchical representation
of (A.4) is given by

(A.5) Y |w ∼ Nk(μ+Δw,Σ), w ∼ Nk(0, Ik)I(w > 0).

APPENDIX B. HIV DYNAMIC MODELS

Viral dynamic models can be formulated through a sys-
tem of ordinary differential equations (ODE) [5, 12, 22, 29].
Following notation in [12] and [29], a mathematical ODE
model for HIV dynamics can be written as follows by con-
sidering an infected cell compartment–productively infected
cells (Tp).

d

dt
Tp = kTVI − dpTp,

d

dt
VI = (1− η)d− cVI ,(B.1)

d

dt
VNI = ηd+NdpTp − cVNI ,

where VI and VIN are the concentrations of infectious virus
and non-infectious virus, respectively, and T denotes the
number of uninfected target cells for HIV, which can be as-
sumed to be a constant at the early stage of HIV treatment.
To account for compartment where the protease inhibitor
drugs cannot completely block the production, we consider
an additional virus production term with a constant (av-
erage) rate d in the model. The parameters dp and c are
the death rates of productively infected cells and free virus,
respectively. Under some reasonable assumptions and sim-
plifications, an analytic solution for equation (B.1) can be
obtained. More details on the notation and simplifications

can be found in Wu and Ding (1999). Thus, one useful ap-
proximate solution, which can be used to capture virus de-
cay, has been proposed as follows.

(B.2) V (t) = exp(p1 − λ1t) + exp(p2 − λ2t)

where V (t) = VI(t) + VNI(t) is the total number of HIV-
1 RNA copies per mL of plasma, λ1 and λ2 are the first-
and second-phase viral decay rates, respectively [22], exp(pi)
(i=0,1,2) reflect the baseline viral load at time t = 0. It is
generally assumed that λ1 > λ2, which assures that the
model is identifiable and is appropriate for empirical studies
(Wu and Ding, 1999). It is of particular interest to estimate
these viral decay rates because they quantify the antiviral
effect, and hence, can be used to assess the efficacy of the
antiviral treatments. In estimating these decay rates, only
the early segment of the viral load trajectory data before
rebound can be used [22, 29, 30, 31].

Nonlinear mixed-effects models based on two-
compartment model with two phase decay rates (B.2)
are powerful tools for modeling HIV viral dynamics. [30]
showed that they are approximately equal to capture the
viral load trajectory reasonably well within some time
period. Although equation (B.2) is widely used in HIV
dynamic studies, it is only applied to the early segment
of the viral load data since the viral load trajectory may
change to a different shape in later stage; see Figure 1(b).
Thus, it may not be reasonable to assume that the viral
decay rate is a constant during long-term treatment such
as 48 weeks in the study to be considered in this paper.
In other words, equation (B.2) is only short-term HIV
dynamic model. To model the long-term HIV dynamics, a
natural extension is to assume that the viral decay rates
change over time, which may be a function of time-varying
covariates such as CD4 cell count. Thus, we introduce an
extended function as follows.

(B.3) V (t) = exp{p1 − λ1t}+ exp{p2 − λ2(t)t}

where the decay rate λ2(t) is a time-varying function. Intu-
itively, this equation is more reasonable because it assumes
that the the second viral decay rate can vary with time as
a result of drug resistance, medication adherence and other
relevant clinical factors likely to affect changes in the viral
load during the late period of treatment. Therefore, all data
obtained during whole study period can be used by fitting
this model. We also assume that λ1 > λ2(t), for all time t
in order to guarantee that there is the first phase of curve
decay.

APPENDIX C. PROOF OF PROPOSITIONS

Proof of Proposition 1. (i) It will be convenient to view
the number of repeated observations ni (i = 1, ..., n) as in-
teger valued random variables iid with N , with P (N =
kj) = pj (j = 1, ..., r). Thus the yi’s are iid and the zi’s
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are iid. Let l+(θ) = l(θ|Yn,Zn) + log π(θ1). By definition

of θn = (θ̌1,n, θ̂2,n), we have l
(1)
+ (θn) = 0, thus

−l
(1)
+ (θ0) = l

(1)
+ (θn)− l

(1)
+ (θ0) = l

(2)
+ (θ̃n)(θn − θ0),

where θ̃n lies between θn and θ0. By assumption of

set A, θn ∈ A, and for all large n, −n−1l
(2)
+ (θn) ≥

infθ∈A[−n−1l
(2)
+ (θ)] ≥ (1/2) infθ∈A I+(θ) > 0, i.e. there is

an n0 such that, minn≥n0 |n−1l
(2)
+ (θ̃n)| > 0. Thus for large n,

θn − θ0 =

(
− n−1l

(2)
+ (θ̃n)

)−1

n−1l
(1)
+ (θ0) → 0, (a.s.)

since n−1l
(1)
+ (θ0)

a.s.→ Eθ0
[∂ log f (1)(Y,Z|θ0)/∂θ] = 0.

(ii) Now we also have θ̃n → θ0 (a.s.), so by the extended
continuous mapping Theorem [26],

−n−1l
(2)
+ (θ̃n) = −[n−1l(2)(θn) + o(1)]

P→ I(θ0).

Also, n−1/2l
(1)
+ (θ0) = n−1/2l(1)(θ0) + o(1), so by central

limit theorem

n−1/2l
(1)
+ (θ0)

D→ N(0, I(θ0))

and so by Slutsky’s theorem,

√
n(θn − θ0)

=

(
− n−1l

(2)
+ (θ̃n)

)−1

n−1/2l
(1)
+ (θ0)

D→ N(0, I−1(θ0)).

We point out that in this case the Fisher information matrix
is

I(θ) = −
r∑

j=1

∫ ∫
l(2)(θ|y, z)f(y, z|θ, kj)pjdydz.

Proof of Proposition 2. In this case, l+(θ) = l(θ) +
hm(θ1),

θn − θ0 =

(
− n−1l

(2)
+ (θ̃n)

)−1

n−1l
(1)
+ (θ0) → 0, (a.s.)

since n−1l
(1)
+ (θ0)

a.s.→ Eθ0
[∂ log f

(1)
+ (Y,Z|θ0)/∂θ] = 0, with

f+(y, z|θ) = f(y, z|θ)+fp(y, z|θ1), f(y, z|θ) be the density
of the observed current data and fp(y, z|θ1) be the density
function of the prior data.

Note l(1)(θ0) and h
(1)
m (θ1,0) are independent, so by the

definition of AIP,

n−1/2l
(1)
+ (θ0) = n−1/2l(1)(θ0) + (m/n)1/2m−1/2h(1)

m (θ0)

D→ N(0, I(θ0) + cJ(θ0)),

n−1l
(2)
+ (θ̃n) = n−1l(2)(θ̃n) + (m/n)m−1h(2)

m (θ̃n)

P→ I(θ0) + cJ(θ0),

and so

√
n(θn − θ0) =

(
− n−1l

(2)
+ (θ̃n)

)−1

n−1/2l
(1)
+ (θ0)

D→ N(0, [I(θ0) + cJ(θ0)]
−1).
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