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Time-varying copula models for longitudinal data

EsrA KURUM*, JoHN HUGHES', RUNZE LI, AND SAUL SHIFFMAN

We propose a copula-based joint modeling framework
for mixed longitudinal responses. Our approach permits all
model parameters to vary with time, and thus will enable
researchers to reveal dynamic response—predictor relation-
ships and response-response associations. We call the new
class of models TIMECOP because we model dependence us-
ing a time-varying copula. We develop a one-step estimation
procedure for the TIMECOP parameter vector, and also de-
scribe how to estimate standard errors. We investigate the
finite sample performance of our procedure via three simu-
lation studies, one of which shows that our procedure per-
forms well under ignorable missingness. We also illustrate
the applicability of our approach by analyzing binary and
continuous responses from the Women’s Interagency HIV
Study and a smoking cessation program.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62GO0S;
secondary 62H20.
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1. INTRODUCTION

Analyses of multivariate longitudinal outcomes are now
common, but current models for such data cannot reveal the
nature of time-varying dependence among the coordinates of
a d-dimensional response unless d = 2 and the two processes
in question are Bernoulli and Gaussian [43]. What is needed
is a modeling approach that is flexible enough to permit
the estimation of time-varying parameters for a response of
higher dimension, having coordinate processes of practically
any type. In this paper we develop a modeling framework
that addresses these concerns.

A number of joint models for longitudinal binary and
continuous responses are well established [see, for example,
7, 10, 26, 61, 57, 16, 29, 47, 43]. The main challenge in de-
veloping such models is that there is no natural multivariate
distribution for responses of mixed type. One way to over-
come this problem is to introduce a latent variable under-
lying the binary response, and assume that the continuous
response and the latent variable are jointly Gaussian. The
resulting joint distribution can then be factored, leading to
one of two formulations: (1) a marginal distribution for the
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continuous response along with a conditional distribution
for the binary response given the continuous response, or
(2) a marginal distribution for the binary response along
with a conditional distribution for the continuous response
given the binary response. Some approaches of this sort are
not limited to binary and continuous outcomes, but can also
handle other types of outcomes and d > 2 [see, for example,
61, 16].

A second solution to the above mentioned problem is the
joint mixed-effects model [28, 29]. In this approach a ran-
dom effect is assumed for each outcome, and the outcomes
are associated via a joint distribution for the random effects.
As pointed out by Verbeke et al. [73], fitting these mod-
els becomes computationally burdensome as the number of
outcomes increases, and maximum likelihood estimation is
possible only when the dimension is low or strong assump-
tions are made. An example of the latter can be found in Roy
and Lin [58], where corresponding random effects for various
outcomes are assumed to be perfectly correlated. Another
potential drawback of the mixed-effects approach is con-
founding [34], which may inflate the variance of fixed-effects
estimators, preventing the discovery of important response—
predictor relationships.

A third solution is to join a set of marginal distributions
using a copula. (See Nelsen [52] for an introduction to cop-
ulas, and de Leon and Chough [13], Heinen and Rengifo
[33], Madsen and Fang [49], Masarotto and Varin [51], Smith
et al. [67], Song et al. [71], Wu and de Leon [74] for in-
formation on copula-based regression models.) This is the
approach we adopt for the remainder of this article.

In a longitudinal study the relationship between a re-
sponse and predictors, or the association between a pair of
responses, may change over time. The inability of ordinary
models to capture these dynamic patterns led Kiiriim et al.
[43] to develop time-varying models [3] for longitudinal bi-
nary and continuous responses. Kiirtim et al. [43] adopted
the latent variable approach and first type of factorization
described above. This implies a two-step estimation proce-
dure. In the second stage of the procedure, the association
between the responses takes the form of a time-varying re-
gression coefficient. The advantage of this method is that it
allows all parameters, including association parameters, to
be time varying. But the method of Kiiriim et al. [43] relies
on the assumption that the latent variable and the contin-
uous response follow a joint normal distribution. Moreover,
their method is limited to estimating the time-varying asso-
ciation between only two longitudinal outcomes.
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In this paper we develop a flexible and intuitive frame-
work for modeling multivariate longitudinal data. Although
we focus on revealing time-varying dependence relation-
ships, our framework can easily accommodate all manner
of time-varying parameters for the coordinate processes: re-
gression coeflicients, variances, etc. To achieve this goal, we
exploit the modularity of copula-based modeling, which al-
lows us to model the marginal distributions and dependence
structure separately before joining them by way of the prob-
ability integral transform [66]. In our view, this is perhaps
the simplest and most natural way to construct a multivari-
ate distribution for discrete or mixed responses, and is even
more intuitive when the responses are continuous.

Our main contribution is twofold. First, our approach
brings time-varying parameters to multivariate longitudinal
modeling. This will allow researchers to uncover complex
dynamic patterns of dependence and response—predictor re-
lationships. Second, our approach brings arbitrary response
type and dimension greater than two to time-varying joint
modeling, i.e., our approach, unlike the approach of Kiiriim
et al. [43], is not limited to a binary—continuous response.
Moreover, our model requires neither latent variables nor
factorization, and so does not rely on the assumptions re-
quired by Kiirtim et al. [43] to estimate time-varying depen-
dence parameters.

Our motivating data were collected as part of the Na-
tional Institutes of Health-funded Women’s Interagency
HIV Study (WIHS). The WIHS was spurred by alarming
trends:

e Between 1990 and 1994, the rate of increase in AIDS
cases reported for women (89%) was three times that
for men (29%).

e The 1994 rate of AIDS cases among African-American
women was twice that for Hispanic women and 17 times
that for white women.

e By 1995, HIV infection had become the third leading
cause of death among U.S. women between the ages
of 25 and 44, and the leading cause of death among
African-American women in this age group.

Although the Multicenter AIDS Cohort study (MACS) [39],
a 10 year-long study of 5,000 homosexual /bisexual men, 90%
of whom were white, contributed much to our understand-
ing of HIV progression, the progression of HIV to AIDS,
and survival after AIDS, the increasing rate of AIDS among
women necessitated a similar longitudinal study for women
and communities of under-represented race. For this reason,
the WIHS was established to study the impact of HIV infec-
tion in U.S. women. One of many objectives of the program
is to investigate nutritional, socioeconomic, and behavioral
risk factors that may be related to the rate of disease pro-
gression [2].

Researchers have taken a special interest in the smoking
behavior of HIV patients because it is known that smoking
affects the immune system [25, 31, 36, 27]. But the findings
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are inconsistent. For instance, Nieman et al. [54] found that
smokers progressed to AIDS more rapidly than nonsmok-
ers, whereas the analyses performed by Galai et al. [27] and
Burns et al. [5] on two different data sets found no difference
between smokers and nonsmokers in the risk of developing
AIDS. We will investigate this matter further by applying
our model to two WIHS variables: CD4 cell percentage (a
measure of HIV progression) and smoking status.

Our analysis will differ from the above mentioned analy-
ses in two important ways. First, our analysis will not em-
ploy survival methods, for our data are not censored, and
we do not wish to define a patient lifetime that ends when
the patient has progressed to AIDS. We wish to explore the
dynamics of the relationship between CD4 cell percentage
and smoking status throughout the study. Second, some of
the above mentioned analyses excluded patients who altered
their smoking behavior during the study. It is not unusual
for behaviors to change during a longitudinal study, and ig-
noring these changes may lead to biased results.

We will treat CD4 percentage and smoking status as re-
sponse variables so that we can estimate the time-varying
partial association [8] between them, i.e., we aim to reveal
the association between CD4 percentage and smoking status
conditional on predictors of interest, one of which is shared
by the outcomes. We could regress one of CD4 percentage
and smoking status on the other, but it is not obvious how
to assign the role of response or predictor to either vari-
able. (In HIV studies it is customary to regress CD4 cell
percentage on smoking status, assuming that smoking leads
to a change in CD4 cell percentage. But Mamary et al. [50]
showed that the percentage of smokers among HIV patients
is higher than the percentage of smokers in the general adult
population. In addition, HIV patients tend to have a pes-
simistic view of their survival, which might result in lack of
motivation to quit smoking or even an increase in cigarette
consumption. These results suggest that being an HIV pa-
tient could be predictive of smoking, which implies that one
should regress smoking status on CD4 cell percentage.) And
a regression model would not allow us to reveal the na-
ture of this association having controlled for the predictors,
such as depression, nor would it allow us to reveal response—
predictor relationships for both variables. We could of course
achieve the latter goal by fitting two univariate regression
models, but this would provide no information about the as-
sociation, which is of interest to us. Moreover, joint model-
ing can lead to considerably more precise estimators [28, 70].
This gain in efficiency grows as the strength of dependence
increases, especially for smaller samples.

We will also apply TIMECOP to binary and continuous re-
sponses from a smoking cessation study. Several studies have
focused on understanding the motivation for smoking so
that more successful smoking cessation programs can be de-
signed. The intuitive link between urge to smoke and smok-
ing, and the importance of urges in some theories of smok-
ing, makes urge to smoke interesting to prevention scientists



[64]. Besides urge to smoke (our continuous response), the
data set contains a number of additional outcomes, including
alcohol consumption, coffee consumption, presence of oth-
ers smoking, and food consumption (all binary). We used
the latter four variables to create our binary response, since
it has in fact been observed that these stimuli increase the
odds of smoking [17, 63, 37, 64].

The relationship between the above mentioned stimuli
and smoking (and therefore, perhaps, urge to smoke) might
vary over the course of the study, particularly before and
after a subject quits smoking. However, previous studies ig-
nored the possible changes in this relationship over time.
Our main goal is to study the time-varying partial associa-
tion between these factors and urge to smoke using our joint
modeling approach. Exploring the dynamics of this associ-
ation would help prevention scientists to achieve their goal
of designing smoking cessation programs with high success
rates.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our time-varying copula model for longitudi-
nal mixed outcomes; our estimation procedure, which uses
local regression techniques; and bandwidth selection. Sec-
tion 3 assesses the finite sample behavior of our approach
via simulation, and shows that our procedure can handle ig-
norable missingness. Sections 4 and 5 apply our method to
a subset of the WIHS data and to smoking cessation data,
respectively. And Section 6 contains concluding remarks.

2. TIME-VARYING COPULA MODELS

In longitudinal and ecological studies, response—predictor
associations may change with time, temperature, or geo-
graphical location. Varying coefficient models, which allow
regression parameters to change with some underlying co-
variate(s), were developed to address the inability of ordi-
nary regression models to capture these dynamic relation-
ships.

Varying coeflicient models were introduced by Cleveland
et al. [9] and popularized by Hastie and Tibshirani [32]. A
linear varying coefficient model takes the form

(1)

where Y is the response variable, * = (z1,...,x,)" is
a vector of predictors, U is a scalar covariate, B(U) =
(81(U),...,Bp(U)) are unknown coefficient functions, and
¢ is an error such that E(e | &, U) = 0. Since varying coeffi-
cient models are local linear models [22], kernel smoothing
is a natural approach to estimation for model (1), and so
we use kernel smoothing for the class of models developed
below: time-varying copula models for longitudinal data,
TIMECOP for short. The TIMECOP framework permits not
only regression coefficients but all parameters, including de-
pendence parameters, to be time varying.

Suppose we have m independent subjects. For subject 4
we observe the d-variate process Y ;(t) = (Y;1(¢), ..., Yiqa(t))

Y =2'8(U) +c¢,

at random times ¢; = (t;1,...,¢n,)’. That is, we observe
Yi; = Yi(ty) = Yaltiy), .- Yia(tiy) (G = 1,....m).
The number of observations and the observation times may
vary from subject to subject.

We assume that coordinate k of the response has marginal
distribution function Fj;, and density/mass function fi,
both of which may depend on time-varying parameters
0 (t), some of which may be regression coefficients 3y, (t).
For example, in the oft-cited bivariate continuous—binary
case we might adopt a Gaussian linear model for one coor-
dinate:

Yir(t) ~ N{aiy (£)8, (), 0% (1)}

and a logistic model for the other:

Yia(t) ~ B([1 + exp{~z5(t) B2 ()} 1),

where B(p) denotes a Bernoulli random variable with mean
p, and x;1(t) and x;2(t) are vectors of predictors for subject
i, measured at time ¢. Although it is often convenient to
work within the familiar generalized linear model (GLM)
framework, in which case our local model (Section 2.2) is
reminiscent of the vector GLM [71], there are of course many
other options for the marginal specifications: extreme value
distributions, beta regression models, zero-inflated models,
skew-normal models, heavy-tailed distributions, etc.

We model dependence using a time-varying d-copula
Cywy{us(t), ..., ua(t)}, where v(t) are copula parameters
[52]. A convenient choice is the Gaussian copula [38, 69]

PR @ {ur (D)}, ..., @7 H{ua()}],

where ®g() is the cdf of a d-variate multinormal random
variable with mean vector 0 and correlation matrix R(t),
and ®~! is the univariate standard normal quantile function.
Other attractive choices are the ¢ copula [15], which can
accommodate tail dependence, or the skew t copula [68],
which can accommodate tail dependence and asymmetric
dependence.

We use a one-step estimation procedure based on opti-
mization of an approximation to the local kernel-weighted
log likelihood of @(t) = (6(t),...,0,(t),v'(t))". The ap-
proximation is based on the distributional transform (DT)
(explained below) and was first proposed by Kazianka and
Pilz [40] for fitting Gaussian copula geostatistical models.

2.1 Likelihood inference for Gaussian copula
models

In this subsection we revert temporarily to an ordinary
likelihood setting. This will ease notation and allow us to
motivate our likelihood approximation as simply and clearly
as possible. In Section 2.2 we will reintroduce time varying-
ness and describe our approach to local likelihood inference
for TIMECOP.
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Likelihood inference is fairly straightforward for Gaussian
copula models with continuous marginals. To see this, first
note that the density for the Gaussian d-copula is

_ on{® (). @ ()}
[T, 4@ (u))

 |R| Y% exp {—%z'(R_1 - I)z} ,

cr(u)

where z = (21,...,2q9) = (27 (u1),...,® " (ug)) and I is
the d x d identity matrix. If the desired marginal distribu-
tions Fi,..., Fy are continuous also, the likelihood of the
parameters @ given the data y has the form

d
L0 | y) o crR{F1(y1), .- -7Fd(yd)}Hfi(yi);

where f; is the density function corresponding to Fj;. This
implies the log likelihood

(2)

d
1 1 _
00| y) = —5log|R| - 52/ (R™" —T)z + > _log fi(ys).
i=1

where z; = ®"1{F;(y;)}. This log likelihood can be opti-
mized to arrive at the maximum likelihood estimate of 6.

When some of the marginal distributions are discrete,
the likelihood does not have the simple form given above
because z; = ® {F;(y;)} is not standard normal (since
F;(y;) is not standard uniform if F; has jumps). In this
case the true likelihood is more complicated [44, 71] and
becomes unwieldy as the number of discrete coordinates
increases. An appealing alternative to the true likelihood
is an approximation based on the distributional trans-
form.

It is well known that if Y ~ F' is continuous, F(Y') has
a standard uniform distribution. But if ¥ is discrete, F(Y)
tends to be stochastically larger, and F(Y ™) = lim, »y F(z)
tends to be stochastically smaller, than a standard uni-
form random variable. This can be remedied by stochas-
tically “smoothing” F' at its jumps. This technique goes at
least as far back as Ferguson [24], who used it in connec-
tion with hypothesis tests. More recently, the distributional
transform has been applied to stochastic ordering [59], con-
ditional value at risk [4], and the extension of limit theorems
for the empirical copula process to general distributions [60].

Let W ~ U(0,1), and suppose that Y ~ F and is inde-
pendent of W. Then the distributional transform

GW,Y)=WF(Y ™)+ (1-W)F(Y)

follows a standard uniform distribution, and F~*{G(W,Y)}
follows the same distribution as Y.

Kazianka and Pilz [40] suggested approximating G(W,Y)
by replacing it with its expectation with respect to W:
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GW,Y)~E,G(W,Y)
=E{WFY")+(1-W)FY)}
=E,WFY )+ E,(1—-W)F(Y)
=FY )E,W+ F(Y)E,(1-W)

_ YD)+ FE)

= 5 .

To construct the approximate log likelihood, then, we re-

place F;(y;) in (2) with

Fily;) + Fi(y)
2

for each discrete coordinate of the response. Note that this
becomes

Fi(yi — 1) + Fi(y:)
2

if the distribution has integer support.

This approximation, although crude, performs well as
long as the discrete distribution in question has a sufficiently
large variance, in which case we suggest using the approxi-
mation when the true likelihood is too cumbersome to ob-
tain. We employed the approximation in the trivariate sim-
ulation study. We used the true likelihood in the bivariate
simulation study and data applications, for those scenarios
involved binary outcomes, for which the DT-based approx-
imation tends to perform poorly.

2.2 Local likelihood inference for timecop

Now we return to TIMECOP, for which we recommend
local likelihood inference. That is, we estimate 6(¢) at time
to by maximizing the local kernel-weighted log likelihood

m  n;

K{0(to) | T} =Y > H{B(to) | yiy 3K A{(to — ti;)/h}/h,

i=1 j=1

where T = (t1 -+ ), £{0(to) | y,;} is the log likelihood of
0(to) given the outcomes for subject ¢ at time point ¢;;, K is
a kernel, and h is a bandwidth. In this section, we describe
how to use the approximate log likelihood described in the
previous section. Specifically, if we partition the response
vector so that the first d; coordinates are continuous and
the remaining coordinates are discrete, we have

(3)  £{0(to) | s} = — = log|R|

- (z;j,z;"j{){Rfl—I}(z’ z57)

[ Rt

N =N

d
+ Y " log fir{yir(ti;)},

k=1

where

zij = (' [Fu{yar (ti)}, -, @ [Fig, {wia, (£55)}])’
ij = ((I)il{ui(d1+1)(tij)}’ SRR q)il{uid(tij)})/-



The distributional transform approximation enters through
computation of the w;(t;;) (k=di+1,...,d):

oy Fudyi ()} + Fudyir(ti;)}
ulk(tlj) - 9 .

We obtain @(to) using the quasi-Newton method of Byrd
et al. [6] so that estimated dependence and scale parameters
can be appropriately constrained.

We used local constant estimation in our simulation stud-
ies, i.e., we assumed that 0(t) is constant on a neighborhood
of ty. It is straightforward to use a higher-order polynomial
approximation to 8(tp), but even a linear approximation—in
which one assumes that

0(to) = O(t) + O(t)(to — 1)

for ¢t on a neighborhood of typ—increases the computational
burden quite a bit while reducing bias only slightly.

In the final step of our procedure we estimate the vari-
ance of O(ty). Here we use results obtained by Fan et al.
[18]. We begin with the approximate conditional variance
(conditional on T'), which has a sandwich form:

(4) A
X(to) =V{0(to) | T}
~ K(to)H 1 (to) T (to)H ™ (to)
= k(t0)[({0(to) | TH 'VII{O(to) | TH[E{0(to) | T},

where r(to) = Y070, Y7, K*{(to —ti;)/h}/h* and H(to) is
the Hessian matrix, which can be estimated by #{8(to) | T}
as a side effect of optimization. The variance of the score,
J (to), can be estimated by

Sy 2 VV{B(to) | i } K {(to — tij)/h}/h
Yoty 2ojiy K{(to — tij)/h}/h ’

where V denotes the gradient.

Invoking asymptotic normality [30, 14] and using 3(to),
we construct a pointwise (1—a)100% confidence interval for
the vth element of 0(ty) as

(5) 0, (t)) £ 11 — a/2)\/ 2, (o),
where 3, (t) is the vth diagonal element of 3 (o).

Note that our procedure does not account for intra-
subject dependence, but theory suggests that intra-subject
dependence can safely be ignored (for estimation of 6(t))
when the number of subjects is sufficiently large. As shown
in Lin and Carroll [45], the method of kernel generalized es-
timation equations (kernel GEE) yields a root-n consistent
estimator regardless of the working correlation structure.
Furthermore, kernel GEE with working independence corre-
lation matrix yields the most efficient estimator for the non-
parametric regression function in a longitudinal setting. The

procedure proposed here shares the spirit of kernel GEE, and
so we suspect that our estimator is root-n consistent and is
likely the most efficient. Theoretical justification is beyond
the of scope of this paper and must be left to a future in-
vestigation.

As for inference, Fan et al. [18] noted that the inter-
vals given by (5) might be too narrow for some datasets
(due to intra-subject dependence), in which case one can
get better coverage by using the wider intervals obtained
from an undersmoothed fit. Undersmoothing is effective here
because any two kernel-weighted intra-subject observations
are nearly uncorrelated when h is sufficiently small and the
serial dependence is short- or medium-range [19]. See Sec-
tion 3 for details regarding appropriate undersmoothing for
TIMECOP.

Practical application of our approach depends on selec-
tion of a suitable bandwidth. For this we recommend a form
of cross-validation proposed by Fan and Zhang [22]. We leave
out a single subject at a time rather than a single observa-
tion, since the latter approach is inappropriate when there is
intra-subject dependence [35]. After removing the ith sub-
ject, we estimate 0(-) based on the remaining subjects. After
doing this for each of the m subjects, we combine the results
to form the cross-validation score

evV(n) =-S5 040" (1) | w1},

i=1 j=1

where 9\1(75”-) is the leave-i-out estimate for time t;;. We
compute the cross-validation score for a range of bandwidths
and select the bandwidth that minimizes the score.

We recommend that a bimodal kernel [12] be used be-
cause doing so leads to a more accurate estimate in the
presence of intra-subject dependence. Informally, a bimodal
kernel removes serial dependence by down weighting obser-
vations that are very close to ty. This prevents undersmooth-
ing by preventing the estimation procedure from “mistak-
ing” local similarity for structure that should be fitted. We
use the member of the so called e-optimal class of bimodal
kernels recommended by De Brabanter et al. [12]. Specifi-
cally, we use

4 S1—u){|ul <1} ifful>e¢
43¢ —¢g2 %—1_52|u| if |u] <e

with € = 0.1, where 1{-} denotes the indicator function.

3. SIMULATED APPLICATION

We investigated the finite sample performance of our esti-
mator using a simulation study designed to mimic the WIHS
data that we analyze in Section 4. The response in our study
was binary—continuous. Specifically, we let Y;1(t) be a Gaus-
sian process with mean x/, (¢)3; (t) and variance o2(t), and
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Yi2(t) be a Bernoulli process with mean

[+ exp{-z(t)By(1)}] ",

as described above in Section 2. For the time-varying coef-
ficients B, (t) and B,(t), we used

B (t) = (Bio(t), Br1(t), Br2(t), B1s(t))’
= 0.2 (cos 27t, sin 2t, — sin 27t, 1 + sin 27t)’

By (t) = (B20(t), B21(t)) = 0.2 (sin27t, 1 + cos 2nt)’,

with Bro(t) an intercept and i1 (t), S12(t), and S13(¢) slopes.
We simulated the predictors, independently, from the stan-
dard normal distribution. Y;;(t)’s time-varying standard de-
viation was o(t) = 0.8+ 0.2 sin 27t. And the cross-sectional
correlation function was p(t) = 0.2 + 0.15sin 27¢.

Although it does not enter into our estimation procedure,
we simulated both processes with CAR(1) dependence:

pl(S,t) — 2—7|s—t|
p2(8at) = 577'87t|a

for any two times s and ¢ in the unit interval. These func-
tions correspond to consequential but short-range depen-
dence. Specifically, if we define the effective range to be the
distance |s—t| at which the correlation between two observa-
tions has dropped to 0.05, these functions have an effective
range of approximately 0.2.

We simulated a single dataset as follows. For subject ¢,

1. let n; = 10;

2. simulate n; measurement times ¢t; = (¢;1, .. .,
the standard uniform distribution;

3. for j =1,...,ny, construct the 2 x 2 correlation matrix
with off-diagonal entries p(t;;), and use the Cholesky
root to impose the correlation on (W1 (¢i5), Wia(ti;)) ~
N(0,1);

4. construct the n; x n; correlation matrices Ry (¢;)

tin,)’ from

and Ro(t;) according to the CAR(1) specifi-
cation given above, and wuse the correspond-
ing Cholesky roots to impose the correla-
tion structures on  (Wii(ti1),..., Wir(tin,))! and
(Wia(ti1), -« -, Wia(tin,))';

5. form Z = (Wl (til)a Wz (til)a ey W’Ll(tln,)a

Wia(tiin,))';
6. apply the probability integral transform (PIT) to each
element of Z to arrive at

U = (Ui (tin), Uia(tin), - - -, Ui (tin, ), Uin(tin,))'
= (@ Za(ta)}, 2 H{ Zi2(ti1)}, - .,
O Y Zir(tin,)}, @ {Zia(tin,)})',

the elements of which are uniformly distributed; and
7. apply the inverse PIT to U to produce the response

(Yar(tig), Yia(ti) = (Fyy {Uin (ti)}, Fig {Uia(ti5)}),
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where F;;' and Fj,* are the inverse cdfs corresponding
to the desired Gaussian and Bernoulli marginal distri-
butions described above and j =1,...,n;.

Note that the simulated outcomes need not have precisely
the same dependence structure as the underlying copula re-
alization [41, 48]. This is because, for non-Gaussian out-
comes, the margins impose bounds (the so called Fréchet—
Hoeffding bounds) on the achievable correlation. For exam-
ple [56], the maximum correlation for two binary random
variables with expectations p; and ps is

min p1(1—=p2) [p2(1—p1)
p2(1—p1)" \ p1(1—p2) |

We used a pilot study to choose several bandwidths.
For each bandwidth we simulated and fitted 500 datasets,
each having m = 300 subjects, and estimated O(t) =
(BL(1),a(t), B5(t), p(t)) at 200 grid points equally spaced
over the unit interval. Figures 1 and 2 show the results for
ho = 0.1, the bandwidth that minimized the cross-validation
score described in Section 2.

Our procedure performed well overall for this scenario
with respect to bias, as the biases are generally small. The
standard errors for the selected bandwidth of hg = 0.1 were
very accurate for the slope functions (511 (¢), B12(t), B13(t),
and B21(t), and so the coverage rates for those functions
were very close to the desired 95%. For the other parame-
ters, especially o(t) and p(t), the procedure tended to yield
optimistic confidence intervals. We remedied this by using
a smaller bandwidth for variance estimation. Specifically,
we used h; in O(n~1'/4) since the asymptotically optimal
bandwidth is in O(n~'/%). For our simulation scenario, this
leads to h; = 0.067. We see from the plots in Figures 1
and 2 that this bandwidth yielded accurate confidence in-
tervals.

It is of interest to observe the performance of our method-
ology in a missing completely at random (MCAR) scenario
[46] since missingness of this type is common in longitudi-
nal studies. We designed our MCAR study as follows: for
any subject and any time point, if the value of the second
predictor for the continuous response is greater than some
cutoff value, delete that observation. Our goal was to create
approximately 15% missingness in each simulated data set.
Since the second predictor is standard normal, a cutoff value
of 1.03 allowed us to achieve our target rate. Figure 3 shows
selected results under this missingness scenario, for the same
bandwidth that was used in the first study. The plots show
that our procedure performed comparably for the two stud-
ies, which suggests that our approach can handle ignorable
missingness.

Our approach performs well with considerably fewer sub-
jects if the binary data are replaced by, say, count data.
To demonstrate this we present selected results from a
second simulation study. For the second study we simu-
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Figure 1. Part 1 of the results from our simulation study. Each row shows three plots for a given time-varying parameter. The
first plot shows the true function (solid) and the empirical bias of our estimator (dotted). The second plot shows the true
function (dashed), the empirical pointwise 95% confidence band (solid), and the mean theoretical pointwise 95% confidence
band (dotted). The third plot shows the desired coverage rate (solid) and the empirical pointwise coverage rates (dotted).

lated a trivariate process for 100 subjects. The first co-
ordinate was Gaussian and identical to the process used

were

in the first study. The second coordinate was Poisson

with mean exp{x},(t)B,(¢t)} and the same serial depen-
dence as the Bernoulli process from the first study. And
the third coordinate was Beta{a(t),2} with a(t) = 5+
0.2sin 27t and serial dependence p3(s,t) = 107%5~t/. The

p12(t) = 0.2 4+ 0.15sin 27t
p13(t) = 0.2+ 0.15 cos 27t
p23(t) = 0.3 4+ 0.15sin 27t

three dependence functions for the joint process at time ¢

Gaussian—Poisson

Gaussian—Beta

Poisson—Beta.
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Figure 2. Part 2 of the results from our simulation study. Each row shows three plots for a given time-varying parameter. The
first plot shows the true function (solid) and the empirical bias of our estimator (dotted). The second plot shows the true
function (dashed), the empirical pointwise 95% confidence band (solid), and the mean theoretical pointwise 95% confidence
band (dotted). The third plot shows the desired coverage rate (solid) and the empirical pointwise coverage rates (dotted).

The results are shown in Figure 4. Note that we once again
undersmoothed to obtain accurate confidence intervals for
the non-slope parameter functions.

Additional simulation studies suggest that TIMECOP per-
forms well for several, or even many, outcomes in realistic
scenarios similar to those considered above, i.e., for at least
100 subjects and at least ten observations per subject, say.
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4. APPLICATION TO HIV DATA

In this section we apply our proposed methodology to
data from the Women’s Interagency HIV Study (WIHS).
These data contain information on 372 women recruited
between 1994 and 1995 from HIV primary care clinics, re-
search programs, community outreach sites, women’s sup-
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port groups, drug rehabilitation programs, and HIV testing
sites in Chicago, Los Angeles, New York City, San Francisco,
and Washington, DC. Participants were evaluated at WIHS
sites every six months with an extensive interview that in-
cluded physical and oral examinations, blood and gyneco-
logical specimen collection, and collection of information re-

garding participants’ daily activities (such as their sexual
behaviors and tobacco use). Our analysis is restricted to
292 participants who were HIV positive. Among these sub-
jects, 26% self-identified as Latina or Hispanic, 45% of the
women were of African-American non-Hispanic origin, and
12% were of white non-Hispanic origin. Sixty-six percent of
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Figure 4. Selected results from our trivariate simulation study. Each row shows three plots for a given time-varying parameter.
The first plot shows the true function (solid) and the empirical bias of our estimator (dotted). The second plot shows the true
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band (dotted). The third plot shows the desired coverage rate (solid) and the empirical pointwise coverage rates (dotted).

the participants were smokers, and, while taking part in the
study, 8.3% of the smokers quit smoking while 8.1% of the
non-smokers started smoking. Although our data set con-
tains follow-up information on women aged 25-55 until 2006,
many participants failed to attend some of their scheduled
visits, which led to unequal numbers of measurements and
different measurement times. The number of observations
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for each subject varies from one to eight.

It is known that cigarette smoking has effects on the im-
mune system [25, 27, 31, 36], but it is not yet clear whether
any of these effects influence the progression of HIV. Burns
et al. [5] analyzed data on a cohort of 3,221 HIV-seropositive
men and women enrolled in the Terry Beirn Community
Programs for Clinical Research on AIDS. They used pro-
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Figure 5. The results of our data analysis for the continuous response, CD4 cell percentage. For each panel, the solid curve
shows the estimate, the dashed curves show the estimated 95% pointwise confidence band, and the dotted line marks zero.

portional hazards regression analysis to assess the differ-
ences between never, former, and current cigarette smokers
in terms of clinical outcomes, and found no association be-
tween cigarette smoking and the overall risk of disease pro-
gression or death. Similarly, Galai et al. [27] used Kaplan-
Meier analysis and multivariate Cox regression models to in-
vestigate the effect of cigarette smoking on the development
of AIDS in the Multicenter AIDS Cohort Study of homo-
sexual men. Their analysis revealed that smoking was not
significantly associated with progression to AIDS. However,
Nieman et al. [54] found that in a case series of 84 individ-
uals, smokers progressed to AIDS more rapidly than non-
smokers. Their analysis used life tables and compared the
median time to develop AIDS for smokers and nonsmokers.

Given these inconsistent findings, our primary interest

was in investigating the association between HIV progres-
sion (as measured by CD4 cell percentage) and smoking sta-
tus among women with HIV enrolled in the WIHS, while re-
vealing response—predictor relationships for both responses.
Based on the HIV literature [75, 55] and exploratory anal-
yses, we chose a number of predictors. For the continuous
response we used baseline CD4 cell percentage (measured at
the first visit), number of sexual partners, hematocrit value
(the volume percentage of red cells in the blood), mean cor-
puscular volume (a measure of average red blood cell size),
platelet count, and Center for Epidemiologic Studies Depres-
sion (CESD) scale score. For the binary response we used
the CESD scale score and race. All predictors save race are
continuous, and we centered them. The race variable origi-
nally had five levels: African American, white, Asian/Pacific
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Islander, native American/Alaskan native, and other. How-
ever, our subset of the data had just two participants in each
of the Asian/Pacific Islander and native American/Alaskan
native categories. Hence, we recategorized race into three
levels: African American, white, and other.

To minimize modeling bias we assumed a maximally flex-
ible model, which is to say that we permitted all parame-
ters, including the dependence parameter p(t), to be time
varying. If the confidence bands for some parameters sug-
gest that those parameters may be constant with respect
to time, our methodology can be used to fit a semivarying
model [76].

We assume that CD4 cell percentage, Y;i(t), is a
Gaussian process with mean x},(¢t)3,(t) and variance
a?(t), where Bi(t) = (Bio(t), Bu1(t), Bra(t), Pra(t), Bral(t),
Bis5(t), Bis(t)) and =z (t) = (L zinn(t), win2(t), zins(t),
2i14(t), Ti15(t), 416(t)) with for subject

x;11(t): the baseline CD4 (BaseCD4) cell percentage

at the first visit,

the number of sexual partners (PART) at time ¢,
the hematocrit (HCV) value at time ¢,

xi12(t):
(t):

x;14(t): the mean corpuscular volume (MCV) at time ¢,
(t):
(t):

Ti13(t

the platelet count (PLAT) at time ¢,
the CESD scale score at time ¢.

Zi15(t

Ti16(l

We assume that smoking status, Y;2(t), is a Bernoulli process
with mean

[+ exp{—ay(t)B2()}] ",

where B,(t) = (Bao(t),Ba1(t), B2(t))’ and iy(t) =
(1, i1 (1), Tina(t), xi23(t))" with

x;21(t): the CESD scale score of subject i at time ¢,

Z;22(t): the first dummy variable for race (RACE 1)
(2422(t) = 1 if subject 4 is African American),

223(t): the second dummy variable for race (RACE 2)
(z423(t) = 1 if subject 4 is white).

We used the Ky 1 bimodal kernel and chose a bandwidth
of h = 14 using the cross-validation procedure described in
Section 2. Note that the time covariate in this study is the
age of the participant. The estimated time-varying regres-
sion coefficient functions and variance for the continuous
response (CD4 cell percentage) are shown in Figure 5.

e From panel (a) we see that the intercept function is
time varying and increases with age.

e The plot in panel (b) suggests that the effect for base-
line CD4 is time varying and decreases with age. More-
over, the effect is always significant and positive for ages
between 25 and 55.
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e The confidence band in panel (c) suggests that the co-
efficient for number of sexual partners may be time in-
variant. And the effect is significantly different from
zero only between ages 43 and 55.

e The plot in panel (d) suggests that the effect of hemat-
ocrit may be time invariant, but the effect is significant
and positive for ages between 28 and 50.

e According to panel (e), the effect of mean corpuscular
volume may be time invariant, but the effect is signifi-
cant and positive after age 26.

e Panel (f) shows that the effect of platelet count is sig-
nificant and positive after age 29. But the confidence
band is too wide to support the conclusion that the
effect is time varying.

e From panel (g) we see that the effect of CESD score
is always significant and negative, i.e., depression is as-
sociated with a lower CD4 cell percentage. The effect
may be constant with respect to time, however.

e The final panel (just barely) allows us to conclude that
the variance of CD4 percentage is time varying and in-
creases with age.

Figure 6 shows the estimated time-varying regression co-
efficient functions for the binary response (smoking status)
along with the estimated time-varying association, p(t), be-
tween CD4 cell percentage and smoking status.

e Panel (a) shows that the intercept function is time vary-
ing and increases with age.

e Panel (b) suggests that the coefficient for CESD score
is time varying. The coefficient is significant until age
50 and decreases with age. We see that the effect is pos-
itive, which implies an association between depression
and smoking. The association is evidently weaker for
older patients.

e In panel (c) the upper and lower three-curve groups are
the estimates and confidence bands for the RACE 1 and
RACE 2 variables, respectively. The confidence bands
reveal that the coefficient for RACE 1 is time varying
while the coefficient for RACE 2 may be time invariant.
We see that the coefficient for RACE 1 is always sig-
nificant and positive, and until age 45 is greater than
the coefficient for RACE 2. That is, African Americans
have higher odds of smoking than do patients of other
races. After age 45 the confidence bands for RACE 1
and RACE 2 overlap, which indicates that the differ-
ence between the two groups becomes insignificant. We
also observe that RACE 2 is not a significant predictor
of smoking.

In Section 1 we mentioned that joint modeling can re-
sult in more precise estimation of marginal parameters. To
demonstrate this for the WIHS data, we fitted a univari-
ate time-varying model for each of the outcomes. In each
univariate model, the other response was included as an ad-
ditional predictor. Figure 7 compares standard errors for the
joint model to those for the univariate models, for selected
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Figure 6. The results of our data analysis for the binary response (smoking status), and the estimated time-varying association
between smoking status and CD4 cell percentage. For each panel, the solid curve shows the estimate, the dashed (or
dashed-dotted) curves show the estimated 95% pointwise confidence band, and the dotted line marks zero.

parameters. We see that joint modeling leads to consider-
able efficiency gains near the endpoints. The difference is
negligible between ages 35 and 45, which is not surprising:
approximately 55% of our data were observed in this time in-
terval, and, as Gueorguieva and Agresti [29] argue, for larger
sample sizes the efficiency gained through joint modeling is
less pronounced.

Finally, let us interpret the last panel of Figure 6, which
shows the estimated time-varying partial association. Judg-
ing from the confidence band in this plot, we do not have
sufficient evidence to conclude that p(t) is time varying. But
we can conclude that the partial association is always sig-
nificant and negative, i.e., for women enrolled in the WIHS,
decreased CD4 cell percentage is partially associated with
smoking. Although we studied women only, this finding pro-
vides evidence that smokers progress to AIDS more rapidly
than nonsmokers. In addition to its negative association
with CD4 percentage, smoking is known to decrease the ad-
herence to highly active antiretroviral therapy [23]. Smoking
also poses additional threats to HIV-positive patients, such
as pulmonary-related complications (pneumonia, asthma,
and chronic obstructive pulmonary disease) and increased
incidence of opportunistic infections [1, 11, 42]. Therefore,
the findings of our study and others suggest that smoking
cessation counseling is a necessary component of any pro-
gram that seeks to enhance quality of life and disease man-

agement for HIV patients. Niaura et al. [53] provided a re-
view of existing cessation techniques for HIV patients, and
also suggested ways to improve research studies so that more
effective cessation treatments can be discovered.

Since some of the parameters may be constant with re-
spect to time, a semivarying model is probably the most ap-
propriate model for these data. Although our method can
be adapted to the semivarying setting, it seems clear that
fitting such a model to the WIHS data would not result in
substantive changes to our conclusions.

5. APPLICATION TO SMOKING
CESSATION DATA

In this section we apply TIMECOP to the smoking cessa-
tion data mentioned in the introduction.

According to a 2004 report by the U.S. Department of
Health and Human Services [72], cigarette smoking is one of
the leading preventable causes of several diseases, including
coronary heart disease, acute myeloid leukemia, and blad-
der, esophageal, laryngeal, lung, oral, and throat cancers.
Therefore, prevention scientists have designed studies to ex-
plore the motivation behind smoking and factors that might
promote smoking. These studies revealed that alcohol, cof-
fee, food, and presence of others smoking increase the odds
of smoking [17, 63, 37, 64].
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Figure 7. Comparison of standard errors for our joint analysis and separate univariate analyses of CD4 cell percentage and
smoking status. In each univariate analysis, the other outcome was included as an additional predictor. Panels (a), (b), and (c)
show results for CD4 cell percentage, and panels (d) and (e) show results for smoking status. For each panel, the solid curve
and dashed-dotted curve show the standard errors for the joint and univariate models, respectively.

Urge to smoke is another variable that is often of interest
in smoking cessation research because of (1) the intuitive
link between urge to smoke and smoking, and (2) the im-
portance of urges in some theories of smoking (for instance,
many theories posit that the influence of emotional states
on smoking is impacted through the urge to smoke). Shiff-
man et al. [64] investigated the association between urge to
smoke and smoking and concluded that there is a strong
and positive association between these variables, especially
for lower levels of urge to smoke.

A drawback of the previous analyses was that they did
not explore the dynamics of the association between these
factors and smoking. However, we suspect that the rela-
tionship between these stimuli and smoking (and therefore,
perhaps, urge to smoke) might vary over the course of a
cessation study, especially before and after a subject quits
smoking. Thus we created a binary response by combining
the factors that might lead to smoking (specifically, the bi-
nary outcome is zero iff none of the factors is present), and
applied TIMECOP with the new binary outcome and urge to
smoke as response variables.

The data were collected using hand-held palm-top com-
puters that prompted each participant at random times.
When prompted, the subjects recorded their answers to a
series of questions about their current setting and activi-
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ties as well as current mood and urge to smoke. The data
collection process is described below.

First, the subjects were monitored for a two-week interval
during which they engaged in their ordinary smoking behav-
ior. They were asked to record all their smoking occasions
during this period, and to respond to the random assessment
prompts. Patients were instructed to quit smoking at the
end of this two-week period. When a patient had abstained
for 24 hours, the current day was recorded as that patient’s
quit day. After the subjects quit, they were required to con-
tinue responding to the random assessment prompts and to
record any episodes of smoking (lapses) or strong tempta-
tions. Although all subjects were instructed to quit on a
certain date, different subjects had different quit days, and
the prompts were random. Thus the subjects have unequal
numbers of measurements and different measurement times.

In our analysis we focus on the randomly scheduled as-
sessment data collected two weeks before and after the quit
day, so that we can study the differences between these pe-
riods. We analyzed the data for 206 smokers, each of which
had from 46 to 222 observations.

Based on previous analyses of smoking cessation data
[62, 65, 64, 43], we used the mood variables negative af-
fect, arousal, and attention disturbance as predictors for
urge to smoke. (see [64] for more information regarding these
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Figure 8. The results of our data analysis for the continuous response, urge to smoke. For each panel, the solid curve shows
the estimate, the dashed curves show the estimated 95% pointwise confidence band, and the dotted line marks zero.

scores). We used the same set of predictors for the binary
response. All of these predictors are continuous.

We assume that urge to smoke, Yji(t), is a Gaus-
sian process with mean zf;(t)3;(t) and variance o?(t),
where 3(t) = (B10(t), Br1(t), f12(t), B13(t))" and @;y (1) =
(1,11 (¢), 2412(t), 2513(t))" with for subject 4

2;11(t): the centered score of negative affect at time ¢,
x;12(t): the centered score of arousal at time ¢,

x;13(t): the centered score of attention disturbance at time ¢.

We assume that smoking triggers, Y;o(t), is a Bernoulli pro-
cess with mean

[1 + exp{—aj; (1)B(t)}] ",

where B5(t) = (B20(t), B21(t), Baz(t), B23(t))"

As in the first data application, we used the Ky 1 bimodal
kernel in our estimation procedure and chose a bandwidth
of h = 7 using the cross-validation procedure described in
Section 2. The estimated time-varying regression coefficient
functions and variance for the continuous response (urge to
smoke) are shown in Figure 8.

e The plot in panel (a) suggests that the intercept func-
tion is time varying, and decreases after the quit day.

e The confidence band in panel (b) shows that the co-
efficient for negative affect is time varying. The effect

is always significant and positive, that is, as negative
affect increases, urge to smoke also increases. This ef-
fect increases until five days after the quit day and then
starts to decrease.

e According to panel (¢) we observe that the effect of
attention disturbance may be time invariant, but it
is significantly different from zero and always posi-
tive.

e Panel (d) allows us to conclude that the coefficient for
attention disturbance is time varying. The effect be-
comes significant and negative just prior to quit day.
Approximately at the same date that the coefficient for
negative affect starts to decrease, the effect of attention
disturbance starts to increase.

e The final panel shows that the variance of urge to smoke
varies over time. The variance is almost constant prior
to the quit day, and then it starts to decrease.

Figure 9 shows the estimated time-varying regression co-
efficient functions for the binary response (factors that may
lead to smoking) along with the estimated time-varying as-
sociation, p(t), between this binary response and urge to
smoke.

e From panel (a) we see that the intercept function is
time varying and significant.

e Panel (b) shows that the coefficient for negative affect
score might be time invariant. The effect is significant
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Figure 9. The results of our data analysis for the binary response (potential factors leading to smoking), and the estimated
time-varying association between this binary response and urge to smoke. For each panel, the solid curve shows the estimate,
the dashed curves show the estimated 95% pointwise confidence band, and the dotted line marks zero.

and negative until quit day, after which the effect be-
comes insignificant.

e In panel (c) we observe that the effect of arousal may
be time invariant but is significant and positive.

e The confidence band in panel (d) suggests that the
effect of attention disturbance is significant and just
barely time varying. The effect is positive and decreases
until the quit day. Then the effect becomes nearly con-
stant.

According to the confidence band in the last panel of
Figure 9, which shows the estimated time-varying partial
association, we do not have sufficient evidence to conclude
that p(t) is time varying. However, we observe that this
partial association is always significant and positive, i.e., for
smokers enrolled in this study, exhibiting at least one of
the factors is associated with an increased urge to smoke.
This result could help prevention scientists to design better
cessation programs. For instance, before someone tries to
quit smoking, it may be wise of him/her to decrease the
urge to smoke by mitigating some or all of the factors.

As in the application to HIV data, these results suggest
that some of the parameters may be time invariant, in which
case a semivarying model would be more appropriate. But
fitting a semivarying model to these data would not lead to
substantive changes to our conclusions.
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6. CONCLUSION

In this article we developed a new class of joint mod-
els for longitudinal responses, and an estimation procedure
based on the local likelihood approach. This new class of
models can accommodate (1) responses of mixed type, (2)
time-varying association parameters, and (3) all manner of
time-varying marginal parameters. We demonstrated the ef-
ficacy of our approach via three simulation studies, one of
which showed that our approach performs well under ignor-
able missingness. Then we used our methodology to analyze
a bivariate response taken from the Women’s Interagency
HIV Study. This analysis revealed a significant negative par-
tial association between CD4 cell percentage and smoking
status. We also applied our approach to smoking cessation
data. Our analysis revealed a significant and positive par-
tial association between urge to smoke and factors that may
lead to smoking.

Our proposed methodology assumes that all parameters
have the same degree of smoothness. However, it may be
of interest to develop an estimation procedure capable of
handling multiple degrees of smoothness. Perhaps the two-
step estimation procedure proposed by Fan and Zhang [21]
can be adapted for this purpose.

In this paper we used confidence bands to assess features
of parameter functions. It may be desirable to develop hy-



pothesis testing procedures, in which case results presented
in [20] may prove useful.
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