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On the surprising explanatory power of higher

realized moments in practice

KEREN SHEN*, JIANFENG YAO, AND WAI KEUNG LI,

Realized moments of higher order computed from intra-
day returns have been introduced in recent years. The litera-
ture indicates that realized skewness is an important factor
in explaining future asset returns. However, the literature
mainly focuses on the whole market, as well as the monthly
or weekly scale. In this paper, we conduct an extensive em-
pirical analysis to investigate the forecasting abilities of re-
alized skewness and realized kurtosis towards an individual
stock’s future return and variance in the daily scale. It is
found that realized kurtosis possesses significant forecasting
power for the stock’s future variance and in contrast with
the existing literature, realized skewness is lack of explana-
tory power of future daily returns for individual stocks in
the short term.
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1. INTRODUCTION

It is well known that excess kurtosis and negative skew-
ness are stylized facts of stock return distributions. Realized
moments of higher order computed from intraday returns
have been introduced in recent years. This article conducts
an extensive empirical analysis to investigate properties of
realized skewness and realized kurtosis, especially the fore-
casting abilities of two higher order moments towards the
stock’s future return and variance. It is found that real-
ized kurtosis possesses significant forecasting power for the
stock’s future variance.

Neuberger [15] first considers realized skewness of the as-
set price returns. Amaya et al. [1] further define realized
kurtosis. These realized moments are constructed by the em-
pirical sum of the corresponding powers of returns, which
we call the naive estimator. However, the naive estimator is
consistent only in the absence of microstructure noise, which
must be handled with more sophisticated approaches.

Based on the pre-averaging method in Jacod et al. [12]
for constructing realized variance, Liu et al. [13] introduce
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the pre-averaging estimator for realized skewness and kur-
tosis. In addition, they prove the consistency of the esti-
mators in the presence of microstructure noise. They also
find that realized skewness of the market price has signifi-
cant forecasting power for the one-month-ahead excess eq-
uity market returns, by evidence from both in-sample and
out-of-sample analysis. Furthermore, Choi and Lee [8] find
that the relationship between realized skewness and sub-
sequent stock returns depends on the impact of informa-
tion releases. The relationship is negative when there is no
high-impact information release, but it becomes positive if
such releases appear. In addition, Schneider et al [16] show
that the beta and volatility based low risk anomalies are
driven by return skewness, both theoretically and empiri-
cally. In Amaya et al. [1], the authors investigate whether
realized skewness and realized kurtosis are informative for
next week’s stock returns. They find that realized skewness
has a significant negative effect on future stock returns. The
authors also demonstrate the significance in the economic
sense that buying stocks with the lowest realized skewness
and selling stocks with the highest realized skewness gener-
ates a profit significantly. In addition, realized kurtosis ex-
hibits a positive relationship with the weekly returns, even
though the evidence is not always robust and statistically
significant. Continuing the exploration along this line, we
investigate whether higher realized moments have explain-
ing power on daily returns and variances of future assets,
estimated by realized variance.

In the empirical study, we show that in contrast with
Amaya et al. [1] and Liu et al. [13], realized skewness shows
not enough explanatory power for future daily returns. On
the other hand, realized kurtosis, which is able to reflect
the price jump size, shows strong evidence of forecasting
power for future realized variances. We conduct regression
analysis towards 70 randomly selected stocks from different
industries and with capitalization sizes. Fifty four out of the
70 stocks are shown to have this property. Moreover, we find
that the square root of realized kurtosis has an even better
forecasting ability for future realized variances.

In addition, we compare the forecasting ability of realized
kurtosis with other well-known variables, which may help
in predicting asset’s volatility, namely trading volume and
signed daily return. In Chan and Fong [7], the authors con-
duct regression analysis of realized volatility against trad-
ing volume, trading frequency, average trading size and or-
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der imbalance. Trading volume is comprised of trading fre-
quency and average trading size, while order imbalance is
the difference between the number of trades initiated by
buyers and sellers. The authors find that daily trading vol-
ume and trading frequency give equally good predictions
on realized volatility, while average trading size and order
imbalance add little explaining power. Therefore, in our em-
pirical analysis, we only include daily trading volume as a
possible covariate. Furthermore, signed returns are also in-
formative for the volatility, especially the negative returns,
which is usually interpreted as the leverage effect. The ef-
fect is first discussed by Black [3] and Christie [9], and is
due to the fact that a negative return leads to an increase
in the debt-to-equity ratio, resulting in an increase in the
future volatility of the return [4]. In this article, we include
both positive and negative daily returns as covariates. We
find that in the presence of trading volume and signed daily
returns, realized kurtosis generally still has great predictive
power.

In summary, the main findings of the paper are the fol-
lowing:

e Realized skewness and kurtosis appear to be highly
asymmetric and fat-tailed.

o Realized skewness lacks explanatory power for the fu-
ture daily returns for individual stocks in the short
term.

e Realized kurtosis exhibits significant forecasting power
for the future realized variance.

e Realized kurtosis incorporates some information con-
tained in trading volume.

e Some nonlinear relationships may exist between real-
ized kurtosis and future daily volatility.

The rest of the paper is organized as follows. Section 2
reviews the estimators of higher realized moments. In Sec-
tion 3, we examine the forecasting ability of higher realized
moments for the future daily returns and return variances,
for a chosen stock. The robustness of the result in Section 3
is checked in Section 4. Section 5 concludes the paper.

2. METHODOLOGY
2.1 Model setup

Define an adapted process {X;,t > 0} on some probabil-
ity space (2, F, P) as follows:

t t
th/ usds+/ odW, + > AX,
0 0

s<t

(1)

where {us,0 < s <t} is an adapted locally bounded process,
{05,0 < s < t} is a cadlag volatility process, and A X =
Xs— X is the jump of X at time s. Assume that the jump
of X arrives through a finite jump process, for example, the
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compound Poisson process. The quadratic variation for the
T-th day is defined as:

(X, X]r = /TT1

2.2 Naive estimator

o2ds +

> (AX)

T—1<s<T

Let the grid of observation times of the T-th day be given
by G = {to,t1," - ,ts}, which satisfies that

T—-1=ty<t1 <---<t,=T.

For simplicity, we assume that the observation point is
equidistant, which is frequently used in the literature, i.e.
t; —t;—1 = 0 for any 1 < i < n. Realized variance (rvar) for
the T-th day is defined as:

n

roar = Z(Xt,; - Xti—l)Q'

i=1

(2)

In the absence of microstructure noise, when n goes to in-
finity,

(3)

rvar =, [ X, X]r.
Similarly we define realized skewness (rskew) and realized

kurtosis (rkurt) for the T-th day as:

n

rskew := Z(Xti - X )3,
i=1

(4)

n

rkurt ;= Z(Xti - X h

i=1

(5)

In addition, realized skewness and realized kurtosis can be
normalized as:

rskew
6 kew := ———
(6) nrskew —YTY

rkurt
(7) nrkurt = W

When n goes to infinity, normalized realized skewness and
kurtosis have the following limits in probability [13]:

Yoror1coer(DsX)?

(fTT—l oids + ZT—lgng(AsX)Q)S/Q7
Yr_1<s<r(AsX)!

(fiTﬂ 03ds + 3 r_1<s<r(DsX)?)? .

We call the above realized moments the naive ones, for ex-
ample, the naive realized skewness.

(8)

nrskew —,

9)

nrkurt —,

2.3 Pre-averaging estimator

In practice, it is commonly admitted that microstructure
noise is inherent in the high-frequency price process so that
we are not able to observe directly X;,, but Y;,, a noisy
version of X, at times ¢ = 0, --- ,n. In this paper, we assume



that

(10) Y, = Xy, + e,

where €;, are i.i.d. microstructure noise with mean zero and
variance 7%, and ¢;, and X;, are independent of each other.

To reduce the effect of microstructure noise, the pre-
averaging method [13] is used within blocks of length k.
In the i-th block, the pre-averaging return is constructed
as

k’!l
n J
(11) i,knY(g) = Zg(k__)(yvtu-j - Y;fz‘+j—1)a
Jj=1
and
h (L) J—l
(12) k_ - k ))2(}/15141_5/;574;'71)2’
le "

with a non-negative piece-wise differentiable Lipschitz func-
tion g, satisfying g(x) = 0 when ¢ (0,1) and g(p) =
fo g?(z)dz > 0. From the empirical analysis, we use g(x) =
min{z, 1 —a} for 0 < x < 1, which is often used in the
literature. As a result, the pre-averaging realized measures
are constructed as follows:

(13)
1 1 n—=kny 1 n—kny
roar:=——| — AT Y (9)2P—=— moY(g)],
5 (k > (8L, g ;< PRl >>>
n—kn
1 1
(14) rskew = —— (k_ Z ) ;
1 —kn,
(15) rkurt = 7@ ( Z ) ,
g(4 i—1
and
rskew rkurt
(16) nrskew := p—yoR nrkurt ;= o

In the presence of microstructure noise, following [13], the
above pre-averaging estimators have the following limits in
probability when k,,,n — oo and &, /n — 0:

Yoroi1cser(DsX)?

(f;{—l oids + ZT—lgng(AsX)2)3/2 7
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3. EMPIRICAL DATA ANALYSIS

Some existing literatures indicate that realized skewness
is an important factor in explaining future asset returns.
However, these literatures mainly focus on the whole market
and on the monthly or weekly scale [13, 1]. In this section,
we test the cross-sectional forecasting performance of real-
ized skewness for the individual stock and the daily scale.
Furthermore, we examine whether higher moments, namely

(17)

nrskew —,

(18)

nrkurt —,

realized skewness and realized kurtosis, have any explaining
power for the variances of the stock prices.

3.1 Data and exploratory analysis

Our empirical analysis is based on the transaction prices
from Wharton Research Database (WRDS) for Interna-
tional Business Machines (IBM). The sample period starts
on January 2, 2005 and ends on December 31, 2013 and the
daily transaction records start from 09:30 to 16:00. We have
a total of 2265 days for the stock. We only report the results
for the pre-averaging estimator of the stock to save space, as
the conclusion is generally the same for the naive estimator,
which is computed by the summation of the corresponding
power of the 5-minute log-returns. We check the robustness
of the result of this section by exploring other stocks in Sec-
tion 4. We find that the properties we see in this section
generally apply.

We first conduct data cleaning with the procedures in-
troduced in Brownlees and Gallo [5] and Barndorff-Nielsen
et al. [2]. The steps are as follows:

1. Delete entries with a time stamp outside 9:30 - 16:00
when the exchange is open.

2. Delete entries with a transaction price equal to zero.

3. If multiple transactions have the same time stamp, use
the median price.

4. Delete entries with prices which are outliers. Let {p; } ¥,
be an ordered tick-by-tick price series. We call the i-th
price an outlier if |p; — p;(m)| > 3s;(m), where p;(m)
and s;(m) denote the sample mean and sample stan-
dard deviation of a neighborhood of m observations
around ¢, respectively. For the beginning prices which
may not have enough left hand side neighbors, we get
m — i neighbors from 741 to m+ 1. Similar procedures
are used for the ending prices. We take m = 5 here.

Daily returns are computed as the difference of the
logrithm of the closing prices for the current and previous
days. Realized moments are estimated by the pre-averaging
method. We take A, := 1/n = 1 minute, k, = 10 and
g(z) = min(z, 1 — z).

The descriptive statistics for IBM daily returns (dret), re-
alized variance (rvar), realized skewness (rskew), realized
kurtosis (rkurt), normalized realized skewness (nrskew)
and normalized realized kurtosis (nrkurt) are shown in Ta-
ble 1. In addition, their plots are shown in Figures 1 — 6.

In Table 1, we find that the daily returns exhibit a slightly
negative skewness, and that realized skewness also shows
some negative skewness, while all other measures show pos-
itive skewness. All measures show larger kurtosis than that
of the normal distribution, i.e. fat tails. In addition, from
Figures 1 to 6, we can see that realized variance exhibits
the clear volatility clustering phenomenon. It seems that
realized skewness and realized kurtosis show a similar pat-
tern. Meanwhile, normalized realized skewness and normal-
ized kurtosis seem more random and behave like white noise.
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Table 1. Descriptive statistics for the daily return and realized moments

dret roar rskew rkurt nrskew nrkurt
Maximum 1.11x107%  5.85x107° 7.94x107° 5.64x107° 1.45 2.61
Minimum -8.78x1072 8.40x107% -4.67x107* 5.02x107'? -1.26 0.04
Mean 2.88x107%  1.42x107* -1.96x10"7 3.58x1078 0.01 0.09
SD 1.40x1072  3.10x107* 1.01x10™° 1.19x107¢ 0.13 0.09
Skewness -0.17 9.00 -43.3 46.4 0.53 18.5
Kurtosis 9.23 117 2004 2188 14.7 487
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Figure 1. Daily log-returns of International Business

Machines.
©
o
S
b=t
Q
¢ 3
= O
©
g |
hel
£ g
8 o
o
o
S |
d T T T T T
0 500 1000 1500 2000
day

Figure 2. Daily realized variance of International Business
Machines.

We fit simple time series to the pre-averaging realized
variance, realized skewness, realized kurtosis, etc. From the
Ljung-Box test (Table 2), we conclude that normalized re-
alized skewness and normalized realized kurtosis can be
treated as white noise.

3.2 Predicting daily returns

As mentioned earlier, realized skewness has been thought
to have explaining power for the future daily returns of the
equity market. Now, we employ the regression models to
investigate whether the conclusion holds for the individual
stock and the daily horizon. Here, we regress daily returns
with respect to the previous day’s realized variance, real-
ized skewness and realized kurtosis (and their normalized
counterparts).
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Figure 3. Daily realized skewness of International Business

Machines.
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Figure 4. Daily realized kurtosis of International Business
Machines.

We employ the following regression models:
(19) dretir1 = ag+arrvars + agrskews + asrkurt, + €41,

and
(20)

dretyr1 = ag + aprvary + agnrskew; + agnrkurt, + €;41.

The above equations are predictive regressive models for
forecasting one-day ahead daily returns with different re-
alized measures. Tables 3 and 4 show the result of the re-
gression models.

From Tables 3 and 4, one may find that there is no lin-
ear relationship with daily returns and previous-day realized
variance, normalized realized skewness and normalized real-
ized kurtosis. Meanwhile, the coefficients of realized skew-
ness and kurtosis are significant. Realized skewness shows a



Table 2. Ljung-Box test of the series with lag 10

rvar rskew rkurt nrskew  nrkurt
p-value <22x107% 9.9x107"" <22x107'° 0.49 0.80
0 2
g o | Table 3. Regression model (19) for daily return with previous
g - day realized moments
o oo
k| Z ai(rvar) az(rskew) as(rkurt) RZ F test
§ o Estimate -1.86  4.54x10° 4.15x10° 0.0l
F SE 1.16  1.09x10°  9.65x10°
g o | p-value 0.11  2.94x107° 1.75x107° 3.20x1074
S T * % % * % %
T T T T T
0 500 1000 1500 2000
day . . . .
Table 4. Regression model (20) for daily return with previous
Figure 5. Daily normalized realized skewness of International day realized moments
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Figure 6. Daily normalized realized kurtosis of International
Business Machines.

positive effect on daily returns. This finding is different from
some literature that realized skewness has a negative effect
for daily returns. There is a possibility that daily scale and
individual aspects greatly make a difference in explaining
this. To confirm the above findings, the daily return is re-
gressed against the previous-day’s realized skewness solely
for those 70 stocks mentioned in Section 4 by the following
regression equation:

(21)

It is found that realized skewness has significant explana-
tory power for the future daily returns in only 17 out of 70
cases. For those stocks with large capitalization size, realized
skewness shows significant effects with about 20% chance;
while for medium and small sizes, the chances become 10%
and 45%, respectively. As a result, the explanatory power
may be associated with the capitalization size of the stock
that realized skewness shows little effect on the future daily
return for stocks with relatively large cap size. This may
be because the stocks with a smaller cap size are relatively

dretyy; = ag + agrskewy + €441.

ai(rvar) az(nrskew) asz(nrkurt) R F test
Estimate  0.33 5.84x10~%  1.93x10°° 0.0003
SE 1.01 2.53x1073  3.75x1073
p-value 0.74 0.81 0.61 0.91

less liquid and they absorb the incoming news at a slower
rate. From above analysis, we conclude that for individual
stocks, especially those with large capitalization sizes, real-
ized skewness does not have enough forecasting power for
the one-day ahead daily returns.

3.3 Predicting the variance
3.3.1 Regression analysis

In this subsection, we regress realized variance against the
previous day return, realized skewness, realized kurtosis and
so on. We would like to determine the variables which exist
to explain the realized variances. We employ the following
regression models.

(22) rvariiq = ag+aidrety + asrskew; + agrkurt; + €1 q,

and
(23)
rUariLq = oo + apdrety + agnrskew + asnrkurt; + €444,

where d = 1 for this subsection. The above equations are
predictive regression models for forecasting one-day ahead
realized variance with different realized measures. Tables 5
and 6 show the result of the regression models.

Tables 5 and 6 show that realized kurtosis is extremely
significant in explaining future realized variances, while the
daily return also has a significant effect, indicating a possi-
ble leverage effect. We will explore this effect more in later
subsections. The coefficients estimated are positive for re-
alized kurtosis, suggesting that larger price jumps lead to
larger price fluctuations in the near future. The coefficient
of realized skewness is also significant. We see that other
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Table 5. Regression model (22) for realized variance with previous day realized moments, d = 1
a1 (dret) as(rskew) as(rkurt) R? F test
Estimate -3.39x10~° 5.82 69.0 0.03
SE 5.10x107* 2.30 19.4
p-value  3.75x107!! 0.01 3.83x1074 7.03x10714
k) 3k 3k * * %k Xk

Table 6. Regression model (23) for realized variance with previous day realized moments, d = 1
a1 (dret) as(nrskew) az(nrkurt) R? F test
Estimate -3.18x107° -3.58x107°  1.27x107°  0.02
SE 5.82x107*  6.51x107°  8.31x107°
p-value 5.13x1078 0.58 0.88 2.11x107°
) 3k >k

Table 7. Regression model (22) for realized variance with previous day realized moments, d = 2
aa (dret) az(rskew)  az(rkurt) R? F test
Estimate -6.11x10"°  1.63x10"  1.57x10°  0.08
SE 8.90x10™* 3.05 2.55x10"
p-value 1.18x107*  1.05x1077 1.11x107° <2.2x10716
* %k % * >k %k * %k %

Table 8. Regression model (22) for realized variance with previous day realized moments, d = 5
a1 (dret) az(rskew)  as(rkurt) R? F test
Estimate -4.23x107° 9.87 1.09x10*  0.04
SE 9.06x10™* 3.10 2.60x10*
p-value 3.39x107%  1.49x107% 3.19x107° 7.32x10710
* k k *k * k%

realized measures show no forecasting power; for example,
normalized realized kurtosis. This may be because the size
of the jumps has been normalized “out.”

To confirm this explanation of realized kurtosis on one-

day-ahead realized variance, we regress realized variance
against the previous-day’s realized kurtosis, solely for those
70 stocks mentioned in Section 4, by the following regression
equation:
(24) rvari 1 = g + agrkurt; + €.
We find that realized kurtosis has significant explanatory
power for the future realized variance in 65 out of 70 cases.
For those stocks with a large capitalization size, realized
kurtosis shows a significant effect with about 90% chance;
while for medium and small sizes, the chance becomes 90%
and 100%, respectively. In consequence, realized kurtosis has
explanatory power for the one-day ahead volatility of stocks
for different capitalization sizes.

3.3.2 Regression analysis with longer horizon
We have seen that realized kurtosis has forecasting power

for the one-day ahead realized variances and we explore
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whether the same conclusion holds for a longer forecasting
horizon. As a result, the same regression model (22) with the
longer horizon is shown here, with horizons of 2-days, 5-days
and 22-days, i.e. d = 2,5, 22, corresponding to a trading pe-
riod of two days, one week and one month, respectively. The
results are shown in Tables 7 — 9.

When the horizon for prediction becomes longer and
longer, the predicting power of realized kurtosis on realized
variance becomes less and less, which is really natural. We
find that when d = 2, realized kurtosis has an extremely
significant effect on the regressand; and when d = 22, the
effect becomes very significant. Moreover, the coefficient for
realized kurtosis is always positive, which is the same in the
case when d = 1. In addition, when the time horizon is long
(d = 22), realized skewness shows no explaining power for
the future realized variance, while the daily return still has
some effect on the future realized variance.

Additionally, from Tables 5, 7 and 8, it is odd to see that
the R-Square of shortest-horizon is the smallest. We have
done the same experiment for those stocks mentioned in
Section 4. It is found that for those stocks that realized kur-
tosis shows significant explanatory power for future realized
variance (65 out of 70), in most situations (61 out of 65), the



Table 9. Regression model (22) for realized variance with previous day realized moments, d = 22

a1 (dret) as(rskew) as(rkurt) R? F test
Estimate -2.12x107° 4.35 8.10x10*  0.04
SE 9.08x107% 3.11 2.60x10"
p-value 0.02 0.16 1.92x1073 6.44 x 10719
* kk

Table 10. Regression model (25) for realized variance with previous day trading volume

a1 (tvol) R? F test
Estimate  4.81x10~ 1! 0.17
SE 2.05%x10712
p-value <22x10716 <22x10716
* %k %k

Table 11. Regression model (26) for realized variance with previous day trading volume and realized kurtosis

a1 (tvol) s (rkurt) R? T test
Estimate  4.05x10~ 11 1.96x10"  0.18
SE 2.05x10712 5.25
p-value <22x1071%  1.99x107* <22x1071¢
* %k % *k k %k

R-Square shows normal pattern, i.e. the predicting power of
realized kurtosis decays when the horizon of prediction in
lengthened. As a result, we think that the abnormal pattern
appears for the stock IBM may be because there is a strong
spurious relationship between realized kurtosis and two-day
ahead realized variance or it is just bad luck.

3.3.3 Adding other covariates

In practice, there exist some other covariates used to ex-
plain and/or forecast the price volatility, for example, trad-
ing volume of the stock within a period, and negative daily
returns. Trading volume is a covariate used to explain the
volatility in the finance field, which tends to be larger in the
case of higher volatility. In addition, negative daily returns
reflect the so-called leverage effect. In this subsection, we
regress realized variance against the previous day realized
kurtosis, positive and negative daily returns and trading vol-
ume. We find that realized kurtosis still exhibits significant
explaining power in the presence of other covariates.

Let tvol denote trading volume, dret™ positive daily
return, and dret” negative daily return. We employ the

We observe from Table 10 that the previous day’s trading
volume has a significant positive relationship with realized
variance. The appearance of a large trading volume is prob-
able due to the new information released to the market. As
a result, the volatility of the stock becomes larger in this
situation. When we add realized kurtosis to the regression
model, it is found from Table 11 that in the presence of
trading volume, realized kurtosis exhibits an extremely sig-
nificant effect on the future realized variance, and trading
volume is still significant. The reason may be that realized
kurtosis already contains some of the information contained
in the trading volume. One possible explanation is that re-
alized kurtosis measures the jumps within the day, which
may correspond to the large trading volume for one partic-
ular trade. Consequently, these two measures may have a
relationship with each other. Moreover, the addition of the
realized kurtosis improves the R? from 0.17 to 0.18.

We next consider the effect of positive and negative daily
returns towards realized variance. We employ the following
equations:

following regression models for analysis: (27)  rvarign = ag +aadret) +azdret; + €,
and
25 rvariy1 = ag + agtvoly + €441,
(25) o LT (28) rvariy1 = ag+ardret] +agdret; + azrkurt; + ey .
and
The results are shown in Tables 12 and 13.
(26) rvariy 1 = ag + aytvoly + asrkurt; + €y, It is found from Table 12 that both positive and nega-

The estimated results are shown in Tables 10 and 11.

tive daily returns have significant effect on realized variance.
When we add realized kurtosis in the regression equation,
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Table 12. Regression model (27) for realized variance with previous day signed daily returns

aq (dret™) az(dret™) R? F test
Estimate 1.03x1072 -1.67x1072  0.20
SE 7.84%x107% 7.74%x1074
p-value <22x1071%  <22x10716 <22x1071¢
* >k %k k >k %k

Table 13. Regression model (28) for realized variance with previous day signed daily returns and realized kurtosis

ai(dret™) az(dret™) az(rkurt)  R? F test
Estimate 1.02x1072 -1.65x102 1.34x10Y  0.21
SE 7.83%x1074 7.77%x1074 5.17
p-value <22x1071%  <22x1071% 9.37x107® <22x10716
*k %k %k * %k %k k%

Table 14. The comparison of the in-sample and out-of-sample prediction performance

In-sample analysis: Regression model (30)
a1 (rvar) az(rkurt) R? F test
Estimate ~ 7.45x10" -5.59x 10" 0.466
SE 1.80x1072 4.64
p-value <22x107% <22x1071 <22x10716
k ok ok k ok sk

we can see from Table 13 that realized kurtosis is very sig-
nificant for realized variance. However, R? does not greatly
improve, from 0.20 to 0.21.

In addition, we employ the following regression models to
see whether realized kurtosis still maintains some explaining

3.3.4 Out-of-sample forecasting

We investigate whether adding realized kurtosis into the
regressive models improves the out-of-sample forecasting ac-
curacy. We focus on the following three regression models:

power when the first lag of realized variance is included: (32) rvaryy1 = oo + ardrety + asrskewy + €441,
(33) rvariy; = ag + atvoly + €441,

(29) TVATH1 = 0 + Q1TVar: + €441, (34) rvarii1 = ag + andrety + asdret; + €41,

and and

(30)  rvariy; = ag + agrvary + agrkurt; + €pq. (35) TUari+1 = Qo +oarvary + €yl

We see from Table 14 that in Equation (30), realized kur-
tosis shows an extremely significant effect in the presence of
realized variance. Additionally, the model, including realized
kurtosis, has less error in its forecasting. Therefore, realized
kurtosis indicates some additional information besides the
past history of realized variance.

After adding the realized kurtosis, the regression models
become:

(36) rvariy1 = ag+ aqdret, + asrskew; + asrkurt, + €41,
(37)

(38) rvary, 1 =ag+ aydret] + asdret; + azrkurt; + €41,

rvariy; = ag + atvoly + asrkurt; + €441,

Finally, we combine all the pertinent covariates together and
in regression model (31).
(39) VATl = Qg + arrvary + aorkurt; + €p41.
_ + -
roaryyy = ao +arrkurt; + astuoly + agdret,” + audret, We compare the out-of-sample prediction performance
(31) +  asrvars + €q4a. of Model (32) against Model (36), Model (33) against

We can see from Table 15 that realized kurtosis still ex-
hibits an extremely significant effect on the future realized
variance.
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Model (37), Model (34) against Model (38), and Model
(35) against Model (39). We use two metrics to do the
comparison, the normalized mean square error (MSE) and
the Clark and McCraken (CM) test. The normalized MSE



Table 15. Regression model (31) for realized variance with all covariates

a1 (rkurt) az (tvol) as(dret™) ay(dret™) as (rvar) R? F test
Estimate  -5.23x107  -4.05x10~ ™ 2.26x10~° -7.39x10"°  6.65x10"%  0.50
SE 4.60 2.12x107*2  7.34x107* 7.41x107¢ 2.09%x1072
p-value <2x1071¢ 0.98 2.09x107% <2x1071% <2x1071 <22x10716
k% k %k *kk k ok %k *k k %k

Table 16. The comparison of the out-of-sample prediction performance

MSE, MSE, CM statistic 0.90 0.95 0.99
Model (32) and Model (36)

(36) versus (32)  3.44  3.46 174 0.322 0.489 0.908
Model (33) and Model (37)

(37) versus (33)  1.37  1.39 1.68 0.322 0.480 0.908
Model (34) and Model (38)

(38) versus (34) 550  5.61 1.96 0.322 0489 0.908
Model (35) and Model (39)

(39) versus (35)  0.58 _ 0.68 1.94 0.322 0.489 0.908

is defined as:

> (predicted realized variance — true value)?
> (true value)?

Moreover, the CM statistic refers to the Clark and Mc-
Cracken [10] Encompassing test, which compares the out-
of-sample prediction ability of nested models. The larger
the CM statistic, the better the latter model is. The result
is shown in Table 16. The column with M SFE; exhibits the
MSE’s of Models (36), (37), (38) and (39), while the column
with M SE, for Models (32), (33), (34) and (35). The last
three columns give the 90th, 95th and 99th percentiles of the
distribution of the statistic derived under the null, which is
from Clark and McCraken (2001) and can be treated as the
critical values. The sample period is the first 2000 days, from
January 3rd, 2005 to December 11th, 2012, and the forecast
period is the next 200 days, from December 12th, 2012 to
September 27th, 2013.

From Table 16, we see that the models including real-
ized kurtosis have less or equal MSE than the ones without
realized kurtosis. For instance, in the comparison of Model
(34) and Model (38), Model (38) with realized kurtosis has
an MSE of 5.50, which is smaller than 5.61 of Model (34).
Consequently, realized kurtosis helps produce less forecast-
ing errors. Furthermore, the out-of-sample performance of
Models (36) - (39) is significantly better than Models (32)
- (35), respectively, as the CM statistics are all larger than
0.908, the 99th percentile.

MSE =

3.4 Conclusions

From the above in-sample and out-of-sample analysis, we
conclude that realized kurtosis does have some forecasting
power for the future daily volatility within a short time pe-
riod. In addition, the in-sample improvement is larger than

the out-of-sample one with realized kurtosis, which suggests
the presence of nonlinear relationships and linear regression
may not be well suited. Moreover, we see that the R? for
the regression model is small, which indicates that in prac-
tice, it is difficult to do the prediction very precisely. That’s
why the addition of realized kurtosis does not seem to be
generating great improvement in the out-of-sample analy-
sis. For those stocks covered in Section 4, it is found that
R? for the regression model changes from case to case and
the maximum value of R? is 0.36, which is quite high. In the
literature, we also witness low R? in the regression analysis
for this field, for example, Bollerslev and Zhou [4] and Liu
et al. [13]. However, the significance of the variable, realized
kurtosis, is still valid in this case.

Furthermore, we use the stepwise regression with the
Akaike information criterion (AIC) to choose the best re-
gressors for the one-day ahead realized variance. We use
positive daily return, negative daily return, realized skew-
ness, realized kurtosis and trading volume as regressors for
initiation. The resulting regressors are positive daily return
and realized kurtosis, which also indicates the significance of
realized kurtosis. We conduct the same procedure to those
70 stocks in Section 4.

4. ROBUSTNESS OF THE RESULT

From the above empirical analysis, we find that real-
ized kurtosis possesses explaining power for the future daily
volatility of the stock IBM, which is a proxy of realized vari-
ance. In this section, we explore the performance of realized
kurtosis for more stocks and give some explanations for the
explaining power.

To check whether the performance of realized kurtosis
is robust across different stocks, we employ 70 stocks from
NYSE, where 20 of S&P 600 (small cap), 20 of S&P 400
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(mid cap) and 30 of S&P 500 (large cap). The stocks are
the following:

1. Small: AVD, CLW, DEL, DKS, EGO, EGP, ENS, FMC,
GEO, HCSG, TART, MATW, NNN, POWL, PKE,
PZZA, RAD, SONC, TE and TRN.

2. Medium: ALGN, ASH, BKH, CBSH, CIM, DF, DSX,
DV, JLL, KBR, KMT, LAMR, LII, MDC, MPW, NEU,
OIS, RRD, TDW and WSM.

3. Large: AIG, AXP, BA, C, CAT, CVX, DD, DIS, GE,
GS, HD, HON, IBM, JNJ, JPM, KO, MCD, MMM,
MRK, NKE, PFE, PG, SBUX,T, TRV, UNH, UTX,
V, VZ and WMT.

The details of these stock variables can be found in Table
A.1 in the appendix. These stocks are from different sectors
of the industry, namely technology, healthcare, industrial
goods, consumer goods, basic materials, utilities, financial,
services and so on, thus providing sufficient samples of the
stocks in the USA market. Note that the tables in this Sec-
tion are all very long, so we put them in the appendix, mak-
ing it easy to read. The sampling period starts from January
2nd, 2009 and ends on December 31st, 2013.

To explore the forecasting power of realized kurtosis on
the daily volatility, we adopt the regression models in Sec-
tion 3, namely Equations (22), (26), (28) and (31). In ad-
dition, we use the stepwise method with the AIC to select
adequate covariates for the regression of the future realized
variance.

In Table A.2 of the appendix, we show the result for the
performance of realized kurtosis. The first column exhibits
the stock variables. The second to fifth columns show the
significance of the coefficient for realized kurtosis in Equa-
tion (22), (26), (28) and (31), respectively. For example,
the second entry in the first row, dret + rskew, indicates
that the second column shows the forecasting performance
of realized kurtosis in the presence of daily return and re-
alized skewness. The numbers shown in the table stand
for the different levels of significance. “0” stands for not
significant, with p-value bigger than 0.1; “0.5” stands for
marginally significant, with p-value between 0.05 and 0.1;
“1” stands for significant, with p-value between 0.01 and
0.05; “2” stands for very significant, with p-value between
0.001 and 0.01; and “3” stands for extremely significant,
with p-value less than 0.001. The last column indicates the
result of the covariate selection. The potential covariates in-
clude realized skewness, realized kurtosis, trading volume
and positive and negative daily returns. The number “1” in
some entries of the last column means that no covariate is
selected.

It is found from Table A.2 that in general realized kurtosis
always shows significant explaining power when trading vol-
ume and negative return are absent. When trading volume
or negative return are added, realized kurtosis sometimes
exhibits no significant power in forecasting the volatility.
However, for the small capitalization group in the covari-
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ate selection, 16 of 20 stocks include the realized kurtosis.
For the medium size group, 13 of 20 stocks include realized
kurtosis as a covariate. For large companies, 25 of 30 stocks
include realized kurtosis. In other words, the performance
of realized kurtosis is stable and is significant in a major-
ity of cases, with respect to stocks with different sizes and
different sectors.

In the above regression analysis, we use realized kurtosis
as a covariate for realized variance. However, the orders of
the two variables are not the same from Equation (18). As a
result, we take the square root of realized kurtosis to make it
of the same order with realized variance, and then conduct
the same regression analysis. The result is shown in Table
A.3. Remember that all rkurt’s in Table A.3 stand for the
square root of realized kurtosis.

It is found that the square root of realized kurtosis per-
forms better in explaining the future daily volatility, as
shown by Columns 2 to 5 of Table A.3. When all possible
covariates are included, the square root of realized kurtosis
shows a significant effect on the future realized variance in
65 of the 70 cases. Furthermore, for the small capitalization
group in the covariate selection, 20 of 20 stocks include re-
alized kurtosis. For the medium size group, 19 of 20 stocks
include realized kurtosis as a covariate. For large compa-
nies, 27 of 30 stocks include realized kurtosis. We see that
the performance of the square root of realized kurtosis is
even better than that of realized kurtosis, for the firms with
all sizes. In addition, it seems that the square root of real-
ized kurtosis, signed returns, and trading volume are able to
account for almost all of the explaining power for the future
daily volatility, in general.

From Equation (18), realized variance converges to the
sum of two parts, the integrated variance and the sum of
the square of jumps. Additionally, realized kurtosis con-
verges to the sum of the fourth power of price jumps. As
a consequence, it is natural to wonder if realized kurtosis
possesses some explaining power for realized variance, as
they both have a jump component. However, this seems
not to be the case. In Huang and Tauchen [11], the au-
thors separate the two components of realized variance to
check for the contribution of the jump component. In the
empirical study, they find that the jump component only
accounts for 7% of stock market price variance, which in-
dicates that it is the continuous component that domi-
nates. As a result, it is worth considering why the previ-
ous day’s price jump affects the continuous price fluctua-
tion. In addition, even if the jump is really important for
daily volatility, we know that the jump of the price al-
ways corresponds to the unexpected arrival of new infor-
mation, so that it is unnatural that the previous-day’s jump
has strong forecasting power on future jumps. Nevertheless,
we separate out the continuous component of realized vari-
ance, estimated by the bipower variation. We conduct all
the regression models with respect to the bipower varia-
tion to see whether the explanatory power of the square
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Figure 8. The forecasting power of the square root of realized
kurtosis towards realized variance in different regression
models.

root of realized kurtosis remains. The result is shown in Ta-
ble A 4.

It is found that on average, the square root of realized
kurtosis remains powerful in predicting the future daily
bipower variation, shown by Columns 2 to 5 of Table A.4.
The performance is comparable with that under realized
variance, which is also shown in the covariate selection col-
umn. For stocks with small capitalization, 20 of 20 stocks in-
clude realized kurtosis. For the medium size, 20 of 20 stocks
include realized kurtosis as a covariate. For large size com-
panies, 27 of 30 stocks include realized kurtosis.

In summary, we use the following graphs to illustrate
the overall performance of the regressors. In Figures 7-9,
each bar represents the forecasting performance in one re-
gression model involving the variables shown below the bar.
Different filling patterns stand for the level of significance
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different regression models.

for realized kurtosis or the square root of realized kurto-
sis, shown by the legend, for example, horizontal line means
realized kurtosis is significant, with p-value between 0.01
and 0.05. Figure 10 compares the performance of realized
kurtosis in forecasting realized variance, the square root of
realized kurtosis in forecasting realized variance, and the
square root of realized kurtosis in forecasting the bipower
variation.

From the graphs, we see that the (square root of) realized
kurtosis always performs better in the absence of trading
volume. Nevertheless, the overall performance of the (square
root of) realized kurtosis is satisfactory. The worst case is
when we add all variables in the regression models for real-
ized kurtosis, where about 90% of the stocks still indicate
the significance of realized kurtosis in forecasting the future
realized variance. From Figure 10, we see that the perfor-
mance of the square root of realized kurtosis forecasting re-
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alized variance is always the best among the three no matter
what the regression model is.

It appears that realized kurtosis, whether taking the
square root or not, measures the price jump size to some
extent. It contains information for the future daily volatil-
ity, possibly due to the following reasons. Firstly, Merton
[14] points out that the continuous part of the stock volatil-
ity may be due to the change in the economic anticipation
and the temporary imbalance between supply and demand.
Moreover, sometimes the price jumps are incidental, which
correspond to the newly arrived news to the market. When
the market is unable to digest the news efficiently, the news
effect aggregates and the jump should have some forecast-
ing power for the future volatility. This is also indicated by
the result that the long horizon forecasting performance of
realized kurtosis becomes worse, since the news has been
digested gradually by the market after a long time. Addi-
tionally, sometimes the price jump is artificial, i.e. the price
jump is due to manipulation by some large financial institu-
tions. In this case, the market will fluctuate corresponding
to the reaction of the public, and partially the follow-up ac-
tions by the institutions. Consequently, the future volatility
has some relationship with previous price jumps. Certainly,
some other undiscovered reasons remain.

5. CONCLUSIONS

In this paper, we analyze whether higher realized mo-
ments have explaining power for future daily returns or re-
alized variance. We find that realized skewness does not
provide enough evidence of the effect on daily returns, in
contrast with the literature. On the other hand, realized
kurtosis exhibits significant forecasting power for the future
realized variance in a short period. Furthermore, the square
root of realized kurtosis shows even better forecasting abil-
ity. In addition, the two high-order realized moments appear
to be highly asymmetrical and fat-tailed, which may have
great practical importance for financial asset returns and
can be studied further.

However, it is found that in the regression analysis, the
R? is relatively low (the largest R? detected is 0.36 among
all stocks), even though the effect of realized kurtosis is sig-
nificant, which indicates that the prediction cannot be very
precise when linear regression models are used. This phe-
nomenon also suggests that some nonlinear regression mod-
els may be used to fit the relationships between realized
variance and realized kurtosis, which will be pursued in the
future.
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APPENDIX

Table A.1. Information of the selected stocks. In the Sector
column, Tech stands for Technology, Bmat for Basic
materials, Util for Utilities, Fin for Financial, Serv for

Services, Igood for Industrial goods, Cgood for Consumer
goods, and Heal for Healthcare.

Stock Firm Sector
AVD American Vanguard Corp Bmat
CLW Clearwater Paper Corp Cgood
DEL Deltic Timber Corp Igood
DKS Dick’s Sporting Goods erv
EGP Eastgroup Properties Inc Fin
EGO Eldorado Gold Bmat
ENS EnerSys Igood
FMC FMC mat
GEO The GEO Group Fin
HCSG Healthcare Services Grouc{a Serv
TART Integra Life Sciences Holdings Corp | Heal
MATW | Matthews International Corp Serv
NNN National Retail Properties Fin
PKE Park Electrochemical Corp Tech
POWL | Powell Industries Inc Igood
PZZA Papa John’s International Inc Serv
RAD Rite Aid Serv
SONC Sonic Corp Serv
TE TECO Energy Util
TRN Trinity Industries Serv
ALGN Align Technology Inc Heal
ASH Ashland Inc Bmat
BKH Black Hills Corp Util
CBSH Commerce Bancshare Fin
CIM Chimera Investment Fin
DF Dean Foods Cgood
DSX Diana Shipping Serv
DV DeVry Education Serv
JLL Jones Lang LaSalle Fin
KBR KBR Inc Serv
KMT Kennametal Inc Igood
LAMR | Lamar Advertising Corp in
LIT Lennox International Inc Igood
MDC MDC Holdings Inc Igood
MPW Medical Properties Trust in
NEU Newmarket corp Bmat
OIS Oil states international inc Bmat
RRD R.R. Donnelley & Sons Company Serv
TDW Tidewater Bmat
WSM Williams-Sonoma Inc Serv
AIG American International Group Fin
AXP American Express Fin
BA Boeing Tgood
C Citigroup n
CAT Catepillar Igood
CVX Chevron Bmat
DD E.I. du Pont de Nemours Bmat
DIS Walt Disney Serv
GE General Electric Igood
GS Goldman Sachs in
HD Home Depot Serv
HON Honeywell International Igood
IBM International Business Machines ech
JINJ Johnson & Johnson Heal
JPM JPMorgan Fin
KO Coca-Cola Cgood
MCD McDonald’s Serv
MMM 3M Igood
MRK Merch & Co eal
NKE NIKE Cgood
PFE Pfizer Heal
PG Procter & Gamble Cgood
SBUX Starbucks Corp Serv
T AT&T Tech
TRV Travelers Fin
UNH UnitedHealth Heal
UTX United Technologies Igood
\% Visa in
VZ Verizon Communications Tech
WMT Wal-Mart Stores Serv




Table A.2. The performance of realized kurtosis towards realized variance. The second to fifth columns show the significance of
the coefficient for realized kurtosis in Equations (22), (26), (28) and (31), respectively. The numbers shown in the table stand
for the different level of significance. ‘0" for p-value bigger than 0.1, “0.5" for p-value between 0.05 and 0.1; “1” for p-value
between 0.01 and 0.05;, “2” for p-value between 0.001 and 0.01; and “3” for p-value less than 0.001. The last column indicates
the result of the covariate selection. The potential covariates include realized skewness, realized kurtosis, trading volume and

positive and negative daily returns. The number

“l” in some entries of the last column means that no covariate is selected.

Stock

dret & rskew

<
Q
=

dretT & dret—

=
=

covariate selection

AVD
CLW
DEL
DKS
EGO
EGP
ENS
FMC
GEO
HCSG
IART
MATW
NNN
PKE
POWL
PZZA
RAD
SONC
TE
TRN

ot

dret™ + dret~ + tvol + rkurt

dret™ + dret™ + tvol 4 rkurt

drett + dret™ + tvol + rkurt

drett + dret~ + tvol + rkurt

drett + dret™ + tvol + rkurt

tvol

dret™ + dret™ + tvol + rskew

dret™ + dret™ + tvol + rskew + rkurt
drett + dret™ + rskew

dret™ + tvol + rkurt

dret™ + dret™

drett + dret™ + tvol + rkurt

dret™ + dret™ + tvol + rskew + rkurt
drett + dret™ + tvol + rkurt

drett + dret— + tvol + rskew + rkurt
dret™ + tvol + rskew + rkurt

dret™ + dret™ + rskew + rkurt

drett + dret™ + rkurt

dret™ + dret™ 4+ tvol + rskew + rkurt
drett + dret~ + tvol + rskew + rkurt

ot

ALGN
ASH
BKH
CBSH
CIM
DF
DSX
DV
JLL
KBR
KMT
LAMR
LII
MDC
MPW
NEU
OIS
RRD
TDW
WSM

[S3[e

ot

dret™ + dret™

drett + dret™ + tvol + rskew + rkurt
drett + dret~ + tvol 4 rskew

dret™ + dret™ + tvol + rskew + rkurt
dret™ + dret™ + tvol + rskew + rkurt
tvol + rkurt

drett + dret™ + tvol + rskew + rkurt
dret™ + tvol + rskew

dret™ + dret™ 4+ tvol + rskew + rkurt
dret™ + dret~ + tvol + rskew + rkurt
drett + dret™ + tvol + rkurt

dret™ + dret™ + tvol + rskew + rkurt
drett + dret™ + tvol 4 rskew

drett + dret™ + tvol + rskew

dret™ + dret~ + tvol + rskew + rkurt
dret™ + dret™ + tvol

drett + dret™ + rkurt

dret™ + dret™ 4+ tvol + rskew + rkurt
drett + dret~ + tvol 4 rskew

drett + dret™ + tvol + rkurt

AIG
AXP
BA

C
CAT
CVX
DD
DIS
GE
GS
HD
HON
IBM
JNJ
JPM
KO
MCD
MMM
MRK
NKE
PFE
PG
SBUX
T
TRV
UNH
UTX
\%

VZ
WMT

dret™ + dret~™ + rskew + rkurt

drett + dret~ + tvol + rkurt

dret™ + dret™ + tvol + rskew + rkurt
drett + dret™ + rskew + rkurt

dret™ + dret™ + tvol + rskew + rkurt
drett + dret— + tvol + rskew

dret™ + dret~ + tvol + rskew + rkurt
drett + dret™ + tvol + rskew + rkurt
dret™ + tvol + rskew

drett + dret™ + tvol 4 rskew

drett + dret™ + tvol + rkurt

drett + dret™ + tvol + rskew + rkurt
dret™ + rkurt

dret™ + dret™ 4+ tvol + rskew + rkurt
drett + dret™ 4+ tvol + rskew + rkurt
dret™ + tvol + rkurt

dret™ + rskew + rkurt

tvol

drett + dret™ + rskew + rkurt

dret™ + tvol + rkurt

dret™ + rskew + rkurt 4 tvol

tvol

dret™ + rskew + rkurt 4 tvol

drett + dret— + tvol + rskew + rkurt
dret™ + dret™ + tvol + rskew + rkurt
drett + dret™ + tvol + rskew + rkurt
dret™ + tvol + rskew + rkurt

dret™ + dret™ 4+ tvol + rskew + rkurt
drett + dret~ + tvol 4+ rkurt

drett + dret~ + tvol + rskew + rkurt
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Table A.3. The performance of the square root of realized kurtosis towards realized variance

Stock dret & rskew | tvol | dret™ & dret” | all | covariate selection

AVD 3 3 3 3 dret™ + dret™ + rkurt + tvol

CLW 3 3 3 3 drett + dret™ + tvol + rkurt

DEL 3 3 3 3 dret™ + dret™ + tvol + rkurt

DKS 3 3 3 3 dret™ + rkurt

EGO 3 3 3 3 dret™ + dret™ + rkurt

EGP 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
ENS 3 3 3 3 dret™ + dret™ + rkurt

FMC 3 3 3 3 drett + dret™ + rkurt

GEO 3 3 3 3 dret™ + dret™ + rkurt

HCSG 3 3 3 3 dret™ + rkurt

TART 3 3 3 3 dret™ + dret™ + rskew + rkurt
MATW | 3 3 3 3 drett + dret™ + tvol + rkurt

NNN 3 3 3 3 dret™ + dret™ + rskew + rkurt

PKE 3 3 3 3 dret™ + tvol + rskew + rkurt

POWL | 3 3 3 3 drett + dret™ + rskew + rkurt

PZ7ZA 3 3 3 3 dret™ + tvol + rskew + rkurt

RAD 3 3 3 3 drett + dret™ + rskew + rkurt
SONC 3 3 3 3 dret™ + dret™ + tvol + rkurt

TE 3 3 3 3 drett + dret™ + rskew + rkurt

TRN 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
ALGN 3 3 3 3 dret™ + dret~ + rskew + rkurt

ASH 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
BKH 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
CBSH 3 2 3 3 dret™ + dret™ + tvol + rskew + rkurt
CIM 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
DF 3 3 3 3 tvol + rkurt

DSX 3 3 3 3 drett + dret™ + rskew + rkurt

DV 3 3 3 2 dret™ + tvol + rskew + rkurt

JLL 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
KBR 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
KMT 3 3 3 3 drett + dret™ + rskew + rkurt
LAMR | 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
LII 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
MDC 0 0 0 0 dret™ + dret™ + tvol + rskew

MPW 3 3 3 3 drett + dret™ + rskew + rkurt

NEU 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
OIS 3 3 3 3 drett + dret™ + tvol + rkurt

RRD 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
TDW 3 3 3 2 dret™ + dret™ + tvol + rskew + rkurt
WSM 3 3 3 3 drett + dret™ + rkurt

AIG 3 3 3 3 dret™ + dret™ + rskew + rkurt

AXP 3 3 3 3 drett + dret™ + rskew + rkurt

BA 3 3 3 3 drett + dret™ + rskew + rkurt

C 3 3 3 3 drett + dret™ + rskew + rkurt

CAT 3 3 3 3 dret™ + tvol + rskew + rkurt

CVX 0 0 0.5 0 drett + dret™ + tvol + rskew

DD 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
DIS 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
GE 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
GS 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
HD 3 3 3 3 dret™ + tvol + rkurt

HON 3 3 3 3 dret™ + tvol + rskew + rkurt

IBM 3 3 3 3 dret™ + rkurt

JNJ 3 3 3 3 dret™ + tvol + rskew + rkurt

JPM 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
KO 3 3 3 3 tvol + rkurt

MCD 3 3 3 3 dret™ + rskew + rkurt

MMM 2 0 0 0 tvol

MRK 3 3 3 3 dret™ + dret™ + rskew + rkurt

NKE 3 3 3 3 drett + dret™ + rskew + rkurt

PFE 3 3 3 3 dret™ 4+ tvol + rskew + rkurt

PG 1 0 0 0 rskew + rkurt

SBUX 3 3 3 3 dret™ + rkurt

T 3 3 3 3 drett + dret™ + rskew + rkurt

TRV 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
UNH 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
UTX 3 3 3 3 dret™ + tvol + rskew + rkurt

Vv 3 0 0 0 dret™ + dret™ + tvol

V7 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
WMT 3 3 3 3 dret™ + dret” + tvol + rskew + rkurt
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Table A.4. The performance of the square root of realized kurtosis with respect to the bipower variation

Stock dret & rskew | tvol | dret™ & dret” | all | covariate selection

AVD 3 3 3 3 dret™ + dret™ + tvol + rkurt

CLW 3 3 3 3 dret™ + dret™ + rskew + rkurt

DEL 3 3 3 3 drett + dret™ + tvol + rkurt

DKS 3 3 3 3 dret™ + tvol + rskew + rkurt

EGO 3 3 3 3 drett + dret™ + rkurt

EGP 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
ENS 3 3 3 3 drett + dret™ + rkurt

FMC 3 3 3 3 dret™ + dret™ + rkurt

GEO 3 3 3 3 drett + dret™ + rskew + rkurt
HCSG 3 3 3 3 dret™ + rkurt

TART 3 3 3 3 dret™ + rkurt

MATW | 3 3 3 3 dret™ + tvol + rkurt

NNN 3 3 3 3 drett + dret™ + rskew + rkurt

PKE 3 3 3 3 dret™ + tvol + rskew + rkurt

POWL | 3 3 3 3 drett + dret™ + tvol + rkurt

PZ7ZA 3 3 3 3 dret™ + tvol + rskew + rkurt

RAD 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
SONC 3 3 3 3 dret™ + dret™ + rkurt

TE 3 3 3 3 drett + dret™ + rskew + rkurt

TRN 3 3 3 3 dret” + tvol + rskew + rkurt

ALGN 3 2 1 1 dret™ 4+ rkurt

ASH 3 3 3 3 dret™ + tvol + rskew + rkurt

BKH 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
CBSH 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
CIM 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
DF 3 3 3 3 tvol + rkurt

DSX 3 3 3 3 drett + dret™ + rskew + rkurt

DV 3 3 3 3 dret™ + tvol + rkurt

JLL 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
KBR 3 3 3 3 dret™ + tvol + rskew + rkurt

KMT 3 3 3 3 drett + dret™ + rskew + rkurt
LAMR | 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
LII 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
MDC 0 0 0 0 drett + dret™ + tvol + rskew + rkurt
MPW 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
NEU 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
OIS 3 3 3 3 drett + dret™ + rskew + rkurt

RRD 3 3 3 3 drett + dret™ + rskew + rkurt

TDW 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
WSM 3 3 3 3 drett + dret™ + rkurt

AIG 3 3 3 3 dret™ + dret™ + rskew + rkurt

AXP 3 3 3 3 dret™ + dret™ + tvol + rkurt

BA 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
C 3 3 3 3 drett + dret™ + rskew + rkurt

CAT 3 3 3 3 dret™ + tvol + rskew + rkurt

CVX 0 0 0 0 1

DD 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
DIS 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
GE 3 3 3 3 dret™ + tvol + rkurt

GS 2 0 0.5 0 tvol + rskew + rkurt

HD 3 3 3 3 dret™ + tvol + rkurt

HON 3 3 3 3 dret™ + tvol + rskew + rkurt

IBM 3 3 3 3 dret™ 4+ rkurt

JNJ 3 2 2 1 rkurt

JPM 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
KO 3 3 3 3 tvol + rkurt

MCD 3 3 3 3 dret™ + rskew + rkurt

MMM 1 0 0 0 tvol

MRK 3 3 3 3 drett + dret™ + rskew + rkurt

NKE 3 3 3 3 dret™ + rskew + rkurt

PFE 3 3 3 3 dret™ + tvol + rskew + rkurt

PG 0 0 0 0 1

SBUX 3 3 3 3 dret™ 4+ rkurt

T 3 3 3 3 dret™ 4+ rskew + rkurt

TRV 3 3 3 3 dret™ + dret™ + tvol + rskew + rkurt
UNH 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
UTX 3 3 3 3 dret™ + tvol + rskew + rkurt

A\ 3 1 0.5 0 drett + dret™ + tvol + rskew + rkurt
VZ 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
WMT 3 3 3 3 drett + dret™ + tvol + rskew + rkurt
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