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Large portfolio allocation using high-frequency
financial data
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Asset allocation strategy involves dividing an investment
portfolio among different assets according to their risk lev-
els. In recent decades, estimating volatilities of asset re-
turns based on high-frequency data has emerged as a topic
of interest in financial econometrics. However, most avail-
able methods are not directly applicable when the number
of assets involved is large, since small component-wise es-
timation errors could accumulate to large matrix-wise er-
rors. In this paper, we introduce a method to carry out
efficient asset allocation using sparsity-inducing regulariza-
tion on the realized volatility matrix obtained from intra-
day high-frequency data. We illustrate the new method with
the high-frequency price data on stocks traded in New York
Stock Exchange over a period of six months in 2013. Simula-
tion studies based on popular volatility models are also pre-
sented. The proposed methodology is theoretically justified.
Numerical results also show that our approach performs well
in portfolio allocation by pooling together the strengths of
regularization and estimation from a high-frequency finance
perspective.

Keywords and phrases: Portfolio allocation, Risk man-
agement, Volatility matrix estimation, High-frequency data,
Regularization.

1. INTRODUCTION

Portfolio optimization is the process of determining the
optimal mix of assets to hold in the portfolio, which is a very
important issue in risk management. Asset allocation strat-
egy involves dividing an investment portfolio among differ-
ent assets based on the volatilities of the asset returns. The
origin of modern portfolio theory goes back to the seminal
work of Markowitz [40] which introduced the mean-variance
analysis by solving an unconstrained quadratic optimiza-
tion problem. It was later expanded in the book Markowitz
[39]. This approach has had a significant impact on finan-
cial economics and is widely used by practitioners. Sharpe
[41] introduced the Sharpe ratio to assess the performance
of mutual funds, which is a direct measure of reward-to-risk.
The theory of portfolio optimization works well if the size of
portfolio is small. When the investment portfolio contains
a large number of assets, the Markowitz portfolio becomes
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very sensitive to estimation errors in the expected return
and the conditional covariance or volatility matrix of daily
returns (see e.g., Chopra and Ziemba [14]).

With widely available high-frequency data in recent
years, a broad array of methods have been proposed to
model the volatility under this framework. High-Frequency
financial data usually refer to intraday observations. The ex-
tra amount of information contained in high-frequency data
and keen interests in high-frequency finance motivate re-
searchers to develop better estimators and inference proce-
dures for the volatility matrix. The volatility matrix of asset
returns plays an important role in portfolio allocation, op-
tion pricing, and risk management. However, the main chal-
lenge is that the volatility matrix cannot be estimated accu-
rately when the number of assets is large. To fix ideas, sup-
pose we have a portfolio containing 500 stocks. Then we need
to estimate (5002 + 500)/2 = 125250 distinct entries simul-
taneously in the volatility matrix in order to perform asset
allocation. Even worse, it has to be done each time portfolio
rebalancing occurs. To address this high-dimensional prob-
lem, several innovative approaches for volatility matrix esti-
mation are proposed in the literature. Univariate estimation
methods include, but are not limited to, realized volatility
(Andersen et al. [2]), bi-power realized variation (Barndorff-
Nielsen and Shephard [5]), two-time scale realized volatility
(Zhang et al. [48]), wavelet realized volatility (Fan andWang
[22]), kernel realized volatility (Barndorff-Nielsen et al. [3]),
Fourier realized volatility (Mancino and Sanfelici [38]), pre-
averaging estimator (Jacod et al. [30]), and Quasi-maximum
likelihood estimator (Xiu [46]). For multiple assets, we face
the so-called non-synchronization issue, which refers to a
scenario where high-frequency price data are not aligned
properly among different assets, due to the fact that they
are traded at various mismatched time points. For bivari-
ate cases, Hayashi and Yoshida [28] and Zhang et al. [48]
developed two-time scale methods based on the idea of sub-
sampling and averaging to estimate co-integrated volatility
of two assets. Barndorff-Nielsen and Shephard [6] discussed
estimation of integrated co-volatility for synchronized high-
frequency data. Recent developments in multivariate set-
tings can be found in [45, 15, 4, 42, 24, 8, 9], among others.

To solve the portfolio allocation problem in high dimen-
sional settings, Jagannathan and Ma [31] analyzed the im-
pact of weights constraints in large portfolio allocation, and
showed that solving the global minimum variance portfolio
problem with some constraints on weights is equivalent to
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using a shrinkage estimate of the covariance matrix. Ledoit
and Wolf [33] proposed to shrink the sample covariance ma-
trix toward the identity matrix and illustrate its effective-
ness in portfolio selection. Lai et al. [32] employed a Bayesian
framework for the mean-variance portfolio optimization. Fan
et al. [20] studied portfolio allocation with gross-exposure
constraint combining large volatility matrix estimators un-
der different sampling schemes. Hautsch et al. [27] applied
a blocked realized kernel with multivariate GARCH mod-
els for portfolio optimization. Further developments on this
topic include [37, 1, 18].

In recent big data applications, penalized likelihood
methods such as LASSO (Tibshirani [43]) have been exten-
sively studied for high dimensional variable selection and
regression. A wide array of research is dedicated to the de-
velopment of new methods for risk management based on
regularization (see e.g., Tibshirani [43], Fan and Lv [21]).
However, despite its ability to discover the correct sparse
representation of the model (Donoho and Huo [17]), the
LASSO estimator is in general a biased estimator especially
when the true coefficients are relatively large (Zou [49]).
Several remedies have been proposed in the literature to
discover the sparsity of the true models, while producing
consistent estimates for nonzero regression coefficients, such
as the smoothly clipped absolute deviation (SCAD) (Fan
and Li [19]) and the adaptive LASSO (Zou [49]). Yuan and
Lin [47] and Levina et al. [34] proposed shrinkage estima-
tors of the precision matrix through graphical models. Guo
et al. [25] extended this methodology to accommodate mul-
tiple graphical models. Zou and Wang [50] applied a regu-
larization method in a regression setup. Zou and Zhang [51]
explored possible high performance computing solutions to
a large dimensional risk problem. In this paper, we adopt the
idea of shrinkage estimators and propose a regularized ver-
sion of the inverse of the average realized volatility matrix
estimator of Wang and Zou [45].

The data that motivate this research comprise the tick-
by-tick stock prices from the New York Stock Exchange
(NYSE). Due to the highly liquidity and vast trading vol-
ume, the data set contains high frequency asset price data
with some idiosyncratic features, including unequally spaced
time intervals, nonsynchronization issue, and price discrete-
ness (see e.g., Wang and Zou [45] for some illustrations of
these issues). Figure 1 depicts the sheer size of the one year’s
trading volume for these stocks. Figure 2 shows the trans-
action frequency of the 100 stocks in S&P 100 in a day.
It demonstrates a U shape pattern indicating heavy trading
activities at the opening and closing of the market. The nor-
mal trading hours of the NYSE are from 09:30 until 16:00
EST. Therefore, we discard any transactions beyond these
hours from our analysis for simplicity.

In this article, we propose a new method to perform
efficient portfolio allocation by applying sparsity-inducing
regularization on the integrated volatility matrix estimated
via intra-day ultra-high-frequency data. The method com-
bines the strengths of high dimensional volatility matrix es-

Figure 1. Volume summary of the top 100 traded assets in
the New York Stock Exchange in 2013.

Figure 2. The red line represents the third quantile; the green
line represents the second quantile; the blue line represents
the first quantile. The color bar represents the frequency of

the transaction at any given time. We can clearly see a smiley
curve indicating that the trading volume is large at the

opening hours and closing hours, while comparatively quiet at
noon time.

timation using high-frequency financial data, and sparsity-
inducing regularization techniques that are increasingly
popular in the high dimensional variable selection litera-
ture. These results may easily be extended to mean-variance
and tangency portfolios under the modern portfolio theory.
From a financial point of view, the shrinkage estimate of the
volatility matrix may be interpreted as some implied volatil-
ity matrix with the portfolio manager’s view embedded.

The rest of this paper is structured as follows. We out-
line the framework of our method and propose an improved
estimator of the inverse volatility matrix in Section 2. The
asymptotic properties are discussed in Section 3. Section
4 presents numerical evidence on the performance of our
method. Finally, we summarize our findings and offer some
concluding remarks in Section 5.
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2. METHODS

Consider a portfolio consisting of p assets. The log price
X(t) = (X1(t), · · · , Xp(t))

� of the component assets follows
an Itô process governed by

(1) dX(t) = μ(t) dt+ σ(t) dB(t),

where B(t) is a p-dimensional standard Brownian motion,
μ(t) is a drift term taking values in R

p, and σ(t) is a spot
volatility matrix of size p×p. We assume both μ(t) and σ(t)
are continuous in t ∈ R. The integrated volatility matrix of
the assets over the period [t, t+ h] is given by

(2) Σt,t+h =

∫ t+h

t

σ(s)σ(s)� ds.

Suppose the allocation vector is w ∈ R
p over the same time

span. The ex-post variation given below

(3) R(w,Σ) = w�Σt,t+hw

measures the risk the portfolio is exposed to over [t, t+ h].
The classic Markowitz mean-variance portfolio analysis

tends to minimize (3) while retaining the expected portfo-
lio return to a target level. However, the estimation error
in portfolio mean return could affect the portfolio weights
and produce a suboptimal portfolio (see, for instance, Jagan-
nathan and Ma [31]). This prompts us to adopt another pop-
ular portfolio strategy: the global minimum variance portfo-
lio, which is the minimum risk portfolio with weights that
sum to one. The optimal weights are proportional to certain
functionals of the inverse integrated volatility matrix, see
e.g., Lai et al. [32]. Following Jagannathan and Ma [31] and
Fan et al. [23], we consider the following risk optimization,
subject to two different constraints:

(4) minw�Σt,t+hw, s.t. ‖w‖1 ≤ c and w�1 = 1,

where ‖·‖1 refers to the L1 norm and c is the gross exposure
parameter that characterizes the total exposure allowed in
the portfolio. An optimization case with c = 1 corresponds
to the no-short-sales restriction as in Jagannathan and Ma
[31], whereas c = ∞ yields the global minimum risk port-
folio. For the sake of brevity, we limit our analysis to these
two cases. But our methodology can be easily adapted to
other choices of the gross exposure level c.

In what follows, we will discuss the estimation of the in-
tegrated volatility matrix Σt,t+h.

2.1 Average realized volatility matrix for
high-frequency financial data

This section provides a review of the averaging realized
volatility matrix (ARVM) estimator of Wang and Zou [45]
for the integrated volatility matrix. For ease of exposition,

we restrict ourselves to
∫ 1

0
σ(s)σ(s)� ds, which is simply

written as Σ.

Prices of the assets that make up the portfolio are col-
lected from each transaction and are thus recorded at dis-
crete time points, {ti,j , j = 1, 2, . . . , ni, i = 1, 2, . . . , p},
where ni would vary from equity to equity and 0 ≤ ti,j ≤ 1.
The observed log price Yi(ti,j) on the i-th asset is a noisy
version of its true log price Xi(ti,j) and is assumed to obey
an additive noise model

(5) Yi(ti,j) = Xi(ti,j) + εi(ti,j),

where εi(ti,j) represents market microstructure noise at time
ti,j , and is assumed to be i.i.d. with mean zero and finite
fourth moments and to be independent of Xi(t) at all leads
and lags.

Let τ = {τr, r = 1, · · · ,m} be the predetermined sam-
pling points on an evenly spaced grid. For the i-th asset,
define previous-tick times
(6)
τir = max{ti� : ti� ≤ τr, � = 1, · · · , ni}, r = 1, · · · ,m.

Based on τ we define realized co-volatility between assets i
and j by
(7)

Σ̂ij(τ ) =

m∑
r=1

[Yi(τi,r)− Yi(τi,r−1)] [Yj(τj,r)− Yj(τj,r−1)] ,

and the realized volatility matrix by

(8) Σ̂(τ ) =
(
Σ̂ij(τ )

)
.

Let n be the average sample size n = p−1
∑p

i=1 ni. We con-
struct K = [n/m] classes of non-overlapping regular grids,
τ k = {n−1(k − 1) + τr, r = 1, . . . ,m}, k = 1, . . . ,K. For in-
stance, consider τ as a 5-sec samping grid. Thenm = 4680 if
assuming 6.5 trading hours per day and τr = 4680−1r. Sup-
pose that the data we collected are 1-sec returns, as a result
of which ni = 23400 and n = 23400. This yields K = 5
non-overlapping grids. They are τ 1 = {τr, r = 1, . . . ,m},
τ 2 = {23400−1 + τr, r = 1, . . . ,m}, . . ., τ 5 = {23400−14 +
τr, r = 1, . . . ,m}.

For each grid τ k, we construct Σ̂ij(τ
k) as in (7), based on

which we define realized co-volatility Σ̂ij = K−1
K∑

k=1

Σ̂ij(τ
k)

between assets i and j and realized volatility matrix

Σ̂ = (Σ̂ij) = K−1
K∑

k=1

Σ̂(τ k).

Set η = diag(η1, · · · , ηp), where ηi is the variance of noise
εi�. We estimate ηi by

η̂i =
1

2ni

ni∑
�=1

[Yi(τi,�)− Yi(τi,�−1)]
2,

and denote by η̂ = diag(η̂1, · · · , η̂p) the estimator of η. The
ARVM estimator of Σ is defined by
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(9) Σ̃ = (Σ̃ij) = Σ̂− 2mη̂,

that is, we estimate element Σij of Σ by Σ̂ij for i �= j and

Σ̂ii−2mη̂i for i = j. The diagonal elements of Σ̃ agree with
the two-time scale realized volatility (TSRV) of Zhang et al.
[48]. Wang and Zou [45] has showed that

(10) ‖Σ̃−Σ‖d = OP (n
−1/6), d = {1, 2,∞},

after accounting for other random sources in the data, such
as price discreteness and nonsynchronization errors. The
convergence rate is improved to OP (n

−1/4) in Tao et al.
[42] that established the optimal minimax risk for estimat-
ing large integrated volatility matrix under the subgaussian
tail assumption.

2.2 Regularization

When there is a large number of assets involved, the in-
tegrated volatility matrix Σ is of large size with 2−1p(p+1)
distinct entries to be estimated. For a moderate to large
p, the realized volatility matrix Σ̃ may not pose a reason-
ably well estimator of Σ. See Bickel and Levina [10, 11],
among others. Consequently, the precision matrix acquired
by directly inverting Σ̃ is usually unreliable and inaccurate.
Regularization is needed to reduce the number of effective
entries to a reasonable level so that we can concentrate on
producing good estimators for these relatively small number
of effective entries in the precision matrix.

In Wang and Zou [45], hard-thresholding is adopted to
regularize Σ̃. Here, we consider penalized estimate of Σ and
its inverse matrix Ω = Σ−1, the precision matrix. This is
inspired by the impact of weight constraints in portfolio risk
optimization. In particular, Jagannathan and Ma [31] docu-
mented that solving the global minimum variance portfolio
problem with constraints on weights is equivalent to using a
shrinkage estimate of the integrated volatility matrix. These
results apply also to mean-variance and tangency portfolios.
From a financial point of view, the shrinkage estimate of in-
tegrated volatility matrix can be interpreted as an implied
covariance matrix incorporated by the portfolio manager.

The penalized estimation proceeds as follows. The inte-
grated volatility matrixΣ is initially estimated by Σ̃ = (σ̃ij)
defined in (9). Under the penalized likelihood framework, we
apply the SCAD penalty pλ(·) and solve the following opti-
mization problem

(11) min
Ω

− log |Ω|+ tr(Σ̃Ω) +
∑
i �=j

pλ(ωij),

where ωij represents the (i, j)-element of Ω. The appeal
of (11) is that it yields a sparse estimator of the precision
matrix. Note that (11) is not a convex programming due
to the non-convexity of pλ. We next use the local linear ap-
proximation algorithm outlined in Zou [49]. It is an iterative
algorithm. Denote the solution at the end of the hth itera-

tion by Ω̂(h) = (ω̂
(h)
ij ). The algorithm updates the solution

as follows. At iteration h+1, we solve a convex optimization
problem

(12) min
Ω

− log |Ω|+ tr(Σ̃Ω) +
∑
i �=j

p′λ(|ω
(h)
ij |)|ωij |

where p′λ(·) is the first derivative, and denote its solution by

Ω̂(h+1) = (ω̂
(h+1)
ij ). We repeat this process until convergence

is obtained.
Note that (12) can be solved directly by calling the

“glasso” package in R with penalty weight p′λ(|ω
(t)
ij |) for i �= j

and 0 otherwise. If the initial estimate Σ̃ is invertible, we
set Ω̂(0) = Σ̃−1. Otherwise, we may simply make Ω̂(0) a zero
matrix. For consistency in the selection of nonzero entries
in the precision matrix, we follow Lian [35] and employ a
Bayesian Information Criterion (BIC) in selecting the tun-
ing parameter λ.

3. ASYMPTOTIC PROPERTIES

In this section, we provide theoretical justification for our
proposed shrinkage estimator of the integrated volatility ma-

trix Σ =
∫ 1

0
σ(s)σ(s)� ds.

For the i-th asset, we denote by {τi,r,k, r = 1, 2, . . . ,m} a
collection of previous-tick times associated with the grid τ k

in the spirit of (6), k = 1, . . . ,K. Then the union

(13)

K⋃
k=1

{τi,r,k, r = 1, 2, . . . ,m}

represents all the previous-tick times for the i-th asset.
Our technical assumption stated below in (14) ensures that
the sets {τi,r,k, r = 1, . . . ,m}, k = 1, 2, . . . ,K, are non-
overlapping. Sort all the previous-tick times in (13) in as-
cending order and re-label them as {τ0i,j , j = 1, . . . ,mK}.
Because the data under study are tick-by-tick prices from
very liquid stocks, we sample the data in calendar time
and convert them to 1-sec returns at the very beginning
of our analysis. This renders ni = 23400 and n = 23400.
As a result, K ∗ m = n. Further denote by L(θ) the log-
likelihood function, and Q(θ) the penalized likelihood func-

tion L(θ)− n
∑d

j=1 pλn(|θj |), where θ = vech(Ω) the lower

triangular part of Ω = Σ−1 and d = p(p+ 1)/2. Let

θ0 = (θ10, · · · , θd0)� = (θ�
1,0,θ

�
2,0)

�

be the true value of the parameters. Without loss of general-
ity, assume that θ2,0 = 0. We further introduce the following
conditions to establish the asymptotic theory.

(A1) Assume that the noise εi(ti,�) and the diffusion process
X(t) in models (1)-(5) are independent; εi(ti,�), i =
1, · · · , p, l = 1, · · · , ni are independent normal with
mean zero and Var[εi(ti,�)] = ηi ≤ κ for some positive
constant κ.
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(A2) Assume that each component of the drift μ(t) has
bounded variation, and

max
1≤i≤p

max
0≤t≤1

E[|σii(t)|β ] < ∞,

max
1≤i≤p

max
0≤t≤1

E[|μi(t)|2β ] < ∞,

max
1≤i≤p

E[|εi(ti�)|2β ] < ∞.

for some β ≥ 2.
(A3) There exist some constants C1 and C2 such that

(14)

max
1≤i≤p

ni

n
< C1, max

1≤i≤p
max

1≤�≤ni

|ti,� − ti,�−1| ≤ C2/n.

where n = p−1(n1 + · · ·+ np).

Theorem 3.1. Assume models (1)-(5) satisfy conditions
(A1) - (A3). If max{|p′′λn

(θj0)| : θj0 �= 0} → 0, then there

exists a local maximizer θ̂ of Q(θ) such that ‖θ̂ − θ0‖ =
OP (en + bn) where bn = max{|p′λn

(θj0)| : θj0 �= 0} and bn
converges to 0 as λn → 0; en = n−1/6 with the microstruc-
ture noise present and en = n−1/3 in the absence of the
noise (i.e., ηi ≡ 0 for i = 1, . . . , p).

The theorem below shows that this estimator possesses
sparsity property, that is, all the zero entries in θ can be
detected simultaneously with probability tending to 1.

Theorem 3.2. Assume models (1)-(5) satisfy condi-
tions (A1) - (A3). If limn→∞ n−1/(enλn) = 0, and
lim inf
n→∞

lim inf
θ→0+

p′λn
(θ)/λn > 0, then our estimator in The-

orem 3.1 satisfies

P
(
θ̂2 = 0

)
→ 1, as n → ∞,

where en = n−1/6 for the case with microstructure noise and
en = n−1/3 for the noiseless case.

4. NUMERICAL STUDIES

4.1 Simulation

In this section, we adopted the simulation models along
the line presented in Wang and Zou [45] to illustrate our
method. The goal is to compare the performance of our pro-
posed integrated volatility estimator with that of the regular
ARVM estimator under different sparsity and noise levels.
By sparsity we mean that a large proportion of the elements
in the volatility matrix are small. This phenomenon occurs
frequently in applications of finance and biological fields. Ex-
amples include large dimensional covariance matrices where
only a few elements stand out. Sparsity does not necessar-
ily imply that there is little information in the data about
the covariance values. On the contrary, if the data are exten-
sive, i.e., n is large, the asymptotic approximation is usually
quite accurate. However, in the case when p is also large, it

will introduce a lot of difficulties to estimate the covariance
matrices precisely. In fact, most of the conventional meth-
ods fail in such situations. To illustrate the nature of this
effect, we conducted extensive numerical studies of matrix
sparsity in this section. We generate the diagonal elements
of the spot volatility matrix from four different stochastic
volatility models with leverage effect. These four volatility
processes are the geometric Ornstein-Uhlenbeck process, the
sum of two Cox-Ingersoll-Ross processes (Cox et al. [16] and
Barndorff-Nielsen and Shephard [5]), the volatility process
in Nelson’s GARCH diffusion limit model (Wang [44]), and
the two-factor log-linear stochastic volatility process (Huang
and Tauchen [29]).

Specifically, the true log priceX(t) of p assets is generated
from model (1) with zero drift, namely, the diffusion model,

dX(t) = σ(t)dB(t), t ∈ [0, 1],

where B(t) = (B1,t, . . . , Bp,t)
� is a standard p-dimensional

Brownian motion. To specify the diagonal elements, σii(t),
of the spot volatility matrix σ(t), we choose the following
models to form a large volatility matrix with heterogeneous
diffuse pattern.

1. Geometric Ornstein-Uhlenbeck (OU) model

(15) d log σ2
ii(t) = −0.10 log σ2

ii(t)dt+ 0.25dWt,

where Wt is a standard Brownian motion. The initial
value σ2

ii(0) is finite and independent of Wt. We take
Corr(Bj,t,W1,t) = −0.62 for j = 1, . . . , p. Note that
the stationary distribution of log σ2

ii(t) is N(0, 0.3125).
2. Nelson GARCH diffusion model

(16) dσ2
ii(t) =

(
0.1− σ2

ii(t)
)
dt+ 0.2σ2

ii(t)dWt,

where Wt is a standard Brownian motion, and ini-
tial value σ2

ii(0) is finite and independent of Wt. We
take Corr(Bj,t,Wt) = −0.5 for j = 1, . . . , p. The sta-
tionary distribution is Inverse Gamma(IG) distribution:
σ2
ii(t) ∼ IG(51, 5).

3. Superposition of two Cox-Ingersoll-Ross(CIR) pro-
cesses

(17) σ2
ii(t) = v1,t + v2,t,

where vl,t, l = 1, 2, follows a CIR model

(18) dvl,t = λl(ξl − vl,t)dt+ 0.743vl,tdWl,t

with λ1 = 0.043, λ2 = 3.74, ξ1 = 0.108, and ξ2 = 0.401.
Because 2λlξl > ω2

l , the stationary distribution exists
and they are

v1,t ∼ Gamma(0.391, 0.552) and

v2,t ∼ Gamma(1.453, 0.552).

We also assume that Corr(Bj,t,Wl,t) = −0.25 for j =
1, . . . , p and l = 1, 2.
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4. Two-factor log-linear stochastic volatility model

(19) σ2
ii(t) = s- exp(0.04v1,t + 1.5v2,t − 1.2),

where

dv1,t = −0.00137v1,tdt+ dW1,t,(20)

Corr(Bj,t,W1,t) = −0.3,

dv2,t = −1.386v2,tdt+ (1 + 0.25v2,t)dW2,t,(21)

Corr(Bj,t,W2,t) = −0.3,

and

s- exp(u)

(22)

=

{
exp(u) if u ≤ log(1.5);
1.5(1− log(1.5) + u2/ log(1.5))1/2 if u > log(1.5).

Because v2,t follows an inverse gamma distribution
[see below], we truncate the exponential function after
log(1.5) in order to ensure a linear growth after log(1.5).
Note that v1,t from (20) has solution

v1,t = v1,0e
−0.00137t +

∫ t

0

e−0.00137(t−s)dW1,s,

which is coming from an OU process and has stationary
distribution

v1,t ∼ N(0, 364.964).

Though v2,t is not GARCH diffusion, u2,t = v2,t + 4 is
GARCH diffusion by noticing that

du2,t = 1.385(4− u2,t)dt+ 0.25u2,tdW2,t

= 1.386(4− u2,t)dt+ 0.212
√
1.386u2,tdW2,t.

As a result, u2,t has a stationary distribution u2,t ∼
IG(45.352, 177.408). This result would help us to obtain
the initial value for v2,t, i.e., inverse the number that is
drawn fromGamma(45.352, 177.408) and then subtract
4.

The off-diagonal elements of σ(t) are tapered off with a
tuning (or correlation) process κ(t), which is given by

(23) κ(t) =
exp{2u(t)− 1}
exp{2u(t) + 1} ,

where

(24) du(t) = 0.03[0.64− u(t)]dt+ 0.118u(t) + dWκ(t),

and

Wκ(t) =
√
0.96W c(t)− 0.2

p∑
j=1

Bj,t/
√
p,

and W c(t) is a standard 1-dimensional Brownian mo-
tion independent of B(t). Model (23) is taken from

Figure 3. Risk profile with low noise level, smaller risk is
better.

Barndorff-Nielsen and Shephard (2004). Because the ini-
tial value of the κ(t) process determines the decay pat-
tern along the diagonal, we simulate the data generat-
ing process X(t) with six different initial values: κ(0) =
0.537, 0.762, 0.905, 0.964, 0.980, and 0.995. The six cases rep-
resent different sparsity levels of the volatility matrices.
When κ(0) is small, almost all the off-diagonal elements
are negligible since the decay of the correlation is very fast.
When we increase the initial values and κ(0) gets closer to
one, the matrices have a much slower decay bands along
the diagonal. In particular, κ(0) = 0.537 is the most con-
centrated case, and κ(0) = 0.995 corresponds to the most
diffuse case.

In the simulation study we take p = 512 assets and
nj = 200 intraday observations for j = 1, . . . , p. To mimic
the effect of microstructure noise, we add a Gaussian noise
with mean zero and variance corresponding to low, medium,
and high noise levels to the simulated log prices, following
Wang and Zou [45]. We simulate 500 volatility matrices of
size 512×512 and calculate the overall risk for the portfolios
utilizing ARVM, TSRV and SCAD based volatility estima-
tors, i.e., the matrix L1 and L2 error ‖Σ̂ − Σ‖d, d = 1, 2.
Figures 3-5 reveal that in terms of the portfolio’s over-
all risk based on either the volatility matrix’s L1 norm or
L2 norm, the SCAD penalization based portfolio allocation
strategy outperform the ARVM and TSRV based strate-
gies. Although it’s worth noting that as the volatility ma-
trix becomes more and more diffuse (or equivalently less
and less sparse), the ARVM based strategy performs as
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Figure 4. Risk profile with medium noise level.

Figure 5. Risk profile with high noise level.

well as our proposed approach. This is because the volatil-
ity matrix is no longer sparse and the dependence of the
asset components in the portfolio plays an important role
in contributing to the overall risk of the total portfolio.
Therefore, the advantage of having a sparse estimate of
the volatility matrix is less prominent in portfolio perfor-
mance.

4.2 Daily covariance matrix forecast

The discussion so far explains how to obtain an ex-
post measure of the integrated volatility matrix Σt,t+h =∫ t+h

t
σ(s)σ(s)�ds using noisy observations collected be-

tween t and t+h. To make a sensible economic decision, one
is prone to conditional covariance matrix based on which one
could calculate ex-ante optimal weights. To facilitate expo-
sition, let the unit interval correspond to one day and write
Στ for Στ−1,τ , τ ∈ Z, the daily integrated volatility of day
τ . We further define the conditional daily covariance matrix
Στ (1) = E(Στ+1|Fτ ) with Ft = σ(X(s), s ≤ t), which re-
flects one’s belief regarding the future daily variation as of
day τ . For a portfolio that is to be held for one day, the asset
allocation problem is re-stated using the conditional risk

(25) minw�Στ (1)w, s.t. ‖w‖1 ≤ c and w�1 = 1.

Multivariate volatility forecasting is always a challenging
task in financial econometrics. The conditional covariance
Στ (1) is not traceable without knowledge of the volatility

matrix’s dynamic structure. Denote by Σ̂τ the shrinkage es-
timator of the daily integrated volatility matrix Στ . It is
natural to consider E(Σ̂τ+1|Iτ ) as a proxy for E(Στ+1|Fτ ),
where Iτ stands for the information up to day τ . Note that
Fτ is distinct from Iτ , as the latter pertains to the data that
are observed at discrete time points. There have been a few
attempts in the literature to model daily realized volatility
matrices using parsimonious parametric models and to pre-
dict future realized measure. Callot et al. [12] proposed to
use a vector autoregressive process to model the vast con-
ditional covariance E(Σ̂τ+1|Iτ ) where the parameters are
estimated via LASSO. Other existing work on multivari-
ate volatility modeling and forecasting includes Chiriac and
Voev [13], Bauer and Vorkink [7], Hansen et al. [26], among
others.

As vast volatility matrix forecast is not the focus of this
paper, we do not resort to sophisticated forecasting models
for the realized measure Σ̂τ+1. Let Σ̂τ (1) be the estimate of

Στ (1). In our empirical exercise, Σ̂τ (1) is obtained succes-
sively by exponentially weighted moving average. Namely,

Σ̂τ (1) = (1− κ)Σ̂τ−1(1) + κΣ̂τ ,

and κ can take any value ranging from 0 to 1, which reflects
varying degrees of persistence. When κ is 1, this yields the
naive forecast. To our pleasant surprise, there are no sig-
nificant efficiency gains by varying the magnitude of κ in
our real data analysis. This is in part due to the nearly sta-
tionary behavior of the estimated daily integrated volatility
matrix in our setting. Therefore, for simplicity, we choose
the naive forecast in the subsequent analysis.

4.3 Real data application

We apply our method to a portfolio consisting of the
Standard and Poor (S&P) 100 stocks. The purpose of this
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empirical exercise is twofold: to demonstrate the applicabil-
ity of our approach to a real high-frequency financial data
set, as well as to provide insights into regularization in port-
folio allocation using high-frequency data.

The S&P 100 index, a sub-set of the S&P 500, measures
the performance of large cap companies in the United States.
The Index comprises 100 major, blue chip companies across
multiple industry groups. Individual stock options are listed
for each index constituent. Although changing from time to
time, the 100 stocks in the S&P 100 are all major factors in
their industries, therefore play an important role in portfo-
lios held by individuals and institutional investors. Due to
the changing nature of this index, we use the constituents
as of January 1, 2013 to carry out the portfolio allocation.
The S&P 100 represents almost one half of the total mar-
ket capitalization of the U.S., which provides near complete
coverage of the U.S. stock market.

We analyze the intraday tick-by-tick trade prices of the
S&P 100 stocks from January 1 to June 30 in 2013. The data
are extracted from the Trade and Quotes (TAQ) database at
Wharton Research Data Services (WRDS) from the Whar-
ton School at the University of Pennsylvania. The data set
consists of over 400 million observations across six months
and 124 trading days. Since the high-frequency data pos-
sess unique features such as nonsynchronous trading and
unequally spaced time intervals, we process the data using
the same method as in Wang and Zou [45]. To simplify the
matter, we only consider the transactions that occurred in
the normal trading hours from 9:30 AM to 4:00 PM. More-
over, we ignore the overnight price changes and focus on the
impact of volatility matrix on the portfolio performance.

We make asset allocation in accordance with the modern
portfolio theory of Markowitz [40, 39]. Two constraints are
considered in constructing the portfolio: the no-short-sale
constraint (i.e., c = 1) and unconstrained weights in the
portfolio (i.e., c = ∞). The integrated volatility matrix of
the 100 stocks is estimated using three different estimators:
the ARVM estimator of Wang and Zou [45], the proposed
shrinkage estimator that is referred to as SCAD-ARVM, and
the multivariate realized kernel (MRK) estimator of [4]. The
latter is defined as

(26) Kb
t =

Hb
t∑

h=−Hb
t

k(
h

Hb
t + 1

)Γh,b
t ,

where k(x) is a Parzen kernel and Γh,b
t is an autocovariance

matrix. The smoothing bandwidth Hb
t satisfies Hb

t ∝ n(3/5)

as suggested in [4]; in practical applications, investors can
choose different values according to their own risk profile
and the extent of risk tolerance. The flat-top Parzen kernel
function is expressed as

k(x) =

⎧⎪⎨⎪⎩
1− 6x2 + 6|x|3 0 ≤ |x| ≤ 1

2

2(1− |x|)3 1
2 ≤ |x| ≤ 1

0 |x| > 1.

Figure 6. Flat-Top Parzen Kernel function.

To avoid overnight risks due to sudden changes in the
price and other potential complications, we restrict our hold-
ing period to one trading day in the investment period. The
portfolio is then rebalanced daily to maintain the target as-
set allocation.

At the end of trading day τ , we calculate the optimal
weight ŵτ+1 = (ŵ1,τ+1, . . . , ŵp,τ+1)

� for the next trading
day τ + 1 by solving the optimization problem (25) with

Σ̂τ (1) in place of Στ (1). Denote by rτ = (r1,τ , . . . , r100,τ )
�

the daily return of the 100 stocks on day τ . Following Liu
[36] and Hautsch et al. [27], we calculate the daily portfolio
turnover rate

poτ =

100∑
j=1

∣∣∣∣∣ŵj,τ+1 − ŵj,τ
1 + rj,τ

1 + ŵ�
τ rτ

∣∣∣∣∣ ,
which reflects the approximate transaction cost of the as-
sociated portfolio allocation strategy due to portfolio rebal-
ancing. The portfolio concentration is measured by the norm
of portfolio weight

pcτ =

⎛⎝ p∑
j=1

ŵ2
j,τ

⎞⎠1/2

,

which is minimized for an equally weighted portfolio, i.e.,
ŵj,τ = m−1. We also report the size of short positions in
the portfolio that is the sum of negative portfolio weights:

spτ =

p∑
j=1

ŵj,τ1{ŵj,τ < 0}.

Lastly, we introduce the matrix sparsity rate with the
aim to investigate whether volatility estimate with a larger
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Table 1. Annualized turnover rate (po), portfolio
concentration (pc), short position (sp), and sparsity (spar)
information of various portfolios constructed using the S&P

100 stocks. m stands for median

m(po) m(pc) m(sp) m(spar)

ARVM 0.006 0.183 -0.014 0.996

MRK 0.852 0.318 -0.583 1

SCAD-ARVM 0.421 0.192 -0.176 0.182

SCAD-ARVM 0.237 0.182 0 0.033
(no-short-sale)

Table 2. Ex-post performance of various portfolios
constructed using the S&P 100 stocks, where σ is the overall

risk, sr is the Sharpe ratio, and m stands for median

m(σ) SD(σ) m(sr) SD(sr)

ARVM 0.056 0.019 0.583 0.525

MRK 0.050 0.016 0.516 0.701

SCAD-ARVM 0.037 0.059 0.636 0.693

SCAD-ARVM (no-short-sale) 0.029 0.092 0.543 0.539

sparsity rate can result in better portfolio performance. The
sparsity rate of a n-by-p matrix A is calculated as the num-
ber of non-zeros inA divided by its total number of elements:

spar =

∑
xi∈A 1(xi �= 0)

np
.

Table 1 reports the median turnover rate, the median
portfolio concentration, the median size of short position,
and the median sparsity rate. Following the practice in
Hautsch et al. [27], we consider median here instead of sam-
ple mean. All the statistics are annualized. In contrast to the
MRK estimator, the proposed strategy is preferred as it is
less costly to implement by comparing their turnover rates.
Particularly, the no-short-sale constraint lowers transaction
costs. Moreover, the SCAD-ARVM estimator with no-short-
sale constraint results in the lowest concentration and thus
the most diversified portfolio. The plain ARVM estimator,
though yielding a portfolio with the lowest cost, lower con-
centration, and fewer short positions, is less efficient and less
numerically stable than the SCAD-ARVM estimator with
no-short-sale constraint due to a high sparsity rate.

To assess the performance of the portfolios, we also com-
pute the global minimum variance and the Sharpe ratio
for each trading day. Table 2 reports the median and the
standard deviation of the overall risk and the Sharpe ratio
for portfolios constructed using ARVM, MRK, and SCAD-
ARVM estimators. The proposed shrinkage estimator out-
performs the MRK estimator, in that the former results in
a lower risk and a higher Sharpe ratio (reward to variabil-
ity). In addition, the portfolios without short sale constraint
pose more risk in the holdings, albeit a higher reward to
risk; and the relative risk increase is higher in magnitude

than the compensation in the risk-adjusted return. It is in-
teresting as a future direction to further investigate to what
extent short sale constraints would attribute to asset allo-
cation since many portfolio managers are prohibited from
taking short sale positions.

It is worth noting that the Sharpe ratio should not be
used as the only approach to choose investments, rather it is
designed for evaluating the performance and risk character-
istics of financial assets or funds. In our empirical exercise,
we compare portfolios containing the S&P 100 stocks us-
ing different asset allocation strategies. Nonetheless, a risk-
averse investor may want to invest in a portfolio with a lower
Sharpe ratio. Sharpe Ratios should be used to compare in-
vestments that fit within the investor’s risk tolerance and
return profile ([41]).

5. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a new method to carry out
efficient asset allocation by applying sparsity-inducing reg-
ularization on the integrated volatility matrix estimated
via intra-day ultra-high-frequency data. The method com-
bines the strengths of high dimensional volatility matrix es-
timation using high-frequency financial data, and sparsity-
inducing regularization techniques that are increasingly
popular in the high dimensional variable selection litera-
ture. The regularization-based portfolio selection strategy
offers several advantages. First, it can significantly reduce
the accumulation of small component-wise estimation errors
which can in turn lead to large overall portfolio risk. This
helps answer questions about performance and risk as part
of a broader investment decision-making process. Second,
our framework can easily accommodate different positions
such as short sale constraints. Third, by imposing a sparse
structure on the integrated volatility matrix, we can improve
portfolio allocation efficiency through exploring a smaller as-
set universe and achieve better numerical stability. We illus-
trated the proposed method with the high-frequency price
data on stocks traded in New York Stock Exchanges over
a period of six months in 2013. The results show that our
approach performs well in portfolio allocation while pooling
together the strengths of regularization and estimation from
a high-frequency finance perspective. Our hope is that using
such tools can help the decision-maker find proper ways to
evaluate the risks of their portfolios at hand.
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APPENDIX A. PROOFS

In this section, we prove our approach possesses asymp-
totically consistent and sparsistent properties. Here we fol-
low the price model setup in [45] for large volatility matrix
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estimation, and portfolio risk optimization setup as in Ja-
gannathan and Ma [31] and Fan et al. [23].

A.1 Proof of Theorem 1

Proof. Suppose asset price follow the geometric Brown-
ian motion model, the log returns Yt has iid Gaussian er-
rors. Note that in the penalized estimation setting, the log-
likelihood L(θ) = −n

2 log(2π) + n
2 log |Ω| − n

2 tr(ΣΩ) can be

estimated consistently by L(θ̂) = −n
2 log(2π) + n

2 log |Ω̂| −
n
2 tr(Σ̃Ω̂) for any consistent estimator Σ̃, i.e., ‖Σ̃ − Σ‖d =
Op(en), d = {1, 2,∞}. Therefore, we next show that the

penalized estimate Ω̂ is also a consistent estimate of Ω.
Let rn = en + bn, we want to show that for any given

ε > 0, there exists a large constant C such that

(27) P

{
sup

‖u=C‖
Q(θ0 + rnu) < Q(θ0)

}
≥ 1− ε.

This implies that with probability at least 1−ε, there exists
a local maximum in the ball {θ0 + rnu : ‖u‖ ≤ C}. Hence,
there exists a local maximizer such that ‖θ̂−θ0‖ = OP (rn).

Since pλn(0) = 0, and pλn(|θ|) ≥ 0 for all θ, we have

Dn(u) ≡ Q(θ0 + rnu)−Q(θ0)

(28)

≤ L(θ0 + rnu)− L(θ0)− n
s∑

j=1

{
pλn(|θj0 + rnuj |)

− pλn(|θj0|)
}
,

where s is the number of components in θ10. Let L
′(θ0) be

the gradient vector of L. By Taylor expansion of L, we have

Dn(u)

≤ rnu
�L′(θ0)︸ ︷︷ ︸
I1

−1

2
u�I(θ0)unr

2
n{1 + oP (1)}︸ ︷︷ ︸

I2

−n

s∑
j=1

[rn p′λn
(|θj0|sgn(θj0)uj + r2n p′′λn

(|θj0|)u2
j{1 + o(1)}]︸ ︷︷ ︸

I3

.

Note that by Theorem 1 of Wang and Zou (2010), we have

for all 1 ≤ j ≤ d, ‖θ̂j − θ0‖ ≤ Cen. Therefore, I1 is on the
order Op(n

1/6rn) for the noise case and Op(n
1/3rn) for the

noiseless case. I2 is on the order Op(nr
2
n) which is equivalent

to Op(n
2/3) for the noise case and Op(n

1/3) for the noise-
less case. By choosing a sufficiently large C, I1 is uniformly
bounded by I2. For I3, by Cauchy-Schwartz inequality we
have

I3 = −n

s∑
j=1

[rn p′λn
(|θj0|sgn(θj0)uj

+ r2n p′′λn
(|θj0|)u2

j{1 + o(1)}]
≤

√
snrnan‖u‖+ nr2n max{p′′λn

(|θj0|) : θj0 �= 0}‖u‖2

= Crn(
√
snan + nrn max{p′′λn

(|θj0|) : θj0 �= 0}C).

This is also dominated by I2. Therefore, by choosing a suffi-
ciently large C, (27) holds. Hence, this completes the proof
of the theorem.

A.2 Proof of Theorem 2

Proof. It is sufficient to show that with probability tending
to 1 as n → ∞, for any given θ1 satisfying θ1−θ10 = Op(en)
and for some small εn = Cen and j = s+ 1, · · · , d,

∂Q(θ)

∂θj
≤ 0 for 0 < θj < εn,(29)

≥ 0 for − εn < θj < 0.(30)

To show (29), note that by Taylor’s expansion, we have

∂Q(θ)

∂θj
=

∂L(θ)

∂θj
− np′λn

(|θj |)sgn(θj)

=
∂L(θ0)

∂θj
+

d∑
l=1

∂2L(θ0)

∂θj∂θl
(θl − θl0)

+

d∑
l=1

d∑
k=1

∂3L(θ∗)

∂θj∂θlθk
(θl − θl0)(θk − θk0)

− np′λn
(|θj |)sgn(θj),

where θ∗ lies between θ and θ0. Note that

n−1 ∂L(θ0)

∂θj
= Op(n

−1/en),

and

n−1 ∂
2L(θ0)

∂θj∂θl
= E[

∂2L(θ0)

∂θj∂θl
] +Op(1).

By the assumption that θ − θ0 = Op(en), we have

∂Q(θ)

∂θj
= nλn

{
−λ−1

n p′λn
(|θj |)sgn(θj) +Op(n

−1/(enλn))
}
.

Since limn→∞ n−1/(enλn) → 0, and lim inf
n→∞

lim inf
θ→0+

p′λn
(θ)/

λn > 0, the sign of the derivative is completely determined
by that of θj . Thus, (29) and (30) follow. This completes the
proof of the theorem.
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