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Robust estimate of regional treatment effect in
multi-regional randomized clinical trial in global
drug development
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With the globalization of drug development, and thus
clinical trials over multiple regions, determining and infer-
ring the regional effects of a treatment under study are of
increased interests in the global drug development, and is
becoming a new research field. Existing methods mostly use
subjectively specified models, and will be more or less de-
viated from the true one. In practice, we often have some
prior knowledge of the model, but are not sure how well
it will fit the data. To address this problem, we propose
a semiparametric model, which is a mixture with a known
parametric and an unknown nonparametric component. The
parametric component represents our prior knowledge about
the model, and the nonparametric part reflects our uncer-
tainty. In this way, the prior knowledge is effectively incor-
porated into the robust model, due to the nonparametric
component. The model parameters are estimated by max-
imizing the corresponding profile likelihood, and the null
hypothesis of no regional effect is tested using the profile
likelihood ratio statistic. We derive the asymptotic proper-
ties of the estimators. Simulation studies are then conducted
to evaluate the performance of the model, and results show
the clear advantages of the proposed method over existing
parametric model. Then model is then used to analyze a real
multi-regional clinical trial data as an illustration.

Keywords and phrases: Clinical trial, Hypothesis test,
Multi-regional effects, Profile likelihood, Semiparametric
model.

1. INTRODUCTION

Clinical trials are increasingly being conducted over mul-
tiple regions globally, e.g., Europe, Asia and North Amer-
ica. The US Food and Drug Administration (FDA) reviewed
1926 clinical trials conducted during 2001-2007, showed that
50% of them were multi-regional trials and included both US
domestic and foreign sites (O’Neill, 2009). The globalization
of pharmaceutical products has become the key to success
for drug development. Investors in new drug development
are required to do more at less cost and faster rates. How-
ever, there are also new challenges due to ethnic factors, as
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the pharmacodynamic or clinical data in the original pop-
ulation could vary with the population in the new region.
Whether a disease treatment is efficacious may well depend
on ethnic factors in clinical outcomes. Some regions, e.g.,
China and Japan, often require local trials in addition to a
multi-regional clinical trial (MRCT) to support the efficacy
and safety claims of the treatment in order to get the prod-
uct registered in those regions. The impact of ethnic factors
on the treatment is an important issue and has been inten-
sively studied from several different perspectives. For exam-
ple, the most current methods focus on the assessment of
the consistency or similarity of the treatment effects among
different ethnic groups. The design and conduct of MRCTs
to ensure the acceptability of results for regulatory decision
making presents significant challenges for industry and reg-
ulators (MHLWJ, 2007; O’Neill, 2009). Thus, to determine
whether the treatment under study has regional effects, re-
gional treatment differences, and infer such effects is of main
interests in global drug development, and is becoming a new
research field. O’Shea and DeMets (2001) discussed some
statistical issues in this problem. Kawai et al. (2008) and
Uesaka (2009) considered sample size allocation in multi-
regional clinical trials. Research on this topic is growing,
for example, Victers et al. (1998), Akkerhuis et al. (2000),
Wedel et al. (2001), Blaire et al. (2008), Hung et al. (2010),
Chen et al. (2010), Wang (2010), Quan et al. (2010), Shi
(2010), Huang et al. (2012), Quan et al. (2013, 2014). Bridg-
ing clinical studies, with supplemental investigation on new
regions based on foreign clinical trial data, is also on-going,
as in Chow et al. (2002), Liu and Chow (2002), Hsiao et al.
(2003, 2007).

Existing statistical methods on MRCT are mostly para-
metric. If the model is correctly specified, the model is sim-
ple to use and inference will be efficient. However, if the
model is incorrect, for example in practice any subjectively
specified model is more or less deviated from the true one,
the inference can be biased (Huber, 1967; Pfanzagl, 1969).
On the other hand, although the nonparametric model is
robust to model specification, generally it is not efficient.
Often we know the data model to some extent, but we are
unsure of how accurate it can represent the true model. To
incorporate the prior knowledge and for robustness, we pro-
pose a semiparametric model for the analysis of MRCT, in
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which the prior knowledge about the true parametric model
is implemented into the model along with a nonparametric
component to reflect the uncertainty about the true model,
which is a mixture of the known model and an unknown
nonparametric component. The mixing proportion which is
the extent of the correctness of the postulated parametric
component is estimated from the data itself. It is known
that parameter estimate in mixture model is difficult, and a
common practice is to work on the corresponding ‘complete
data’ non-mixture model, treating the latent memberships
as missing data, then use the EM algorithm is used for es-
timating the parameters. The nonparametric component in
our model is treated as a nuisance parameter and is pro-
filed out. The parameter of interest, including the regional
effects, is estimated via the resulting profile likelihood. The
profile likelihood ratio statistic is used to test the existence
of regional differences. Simulation studies are conducted to
evaluate the performance of the proposed method. The re-
sults show that when the true model is deviated, as any
model is more or less deviated, the proposed method can
outperform the subjectively specified one. Then the model
is used to analyze a real multi-regional clinical data as an
illustration. Relevant technical proofs are put into the Ap-
pendix in the supplementary material.

2. THE PROPOSED METHOD

The observed data is (yi,xi, δi), i = 1, ..., n for n inde-
pendent individuals from k-regions, where yi is the quan-
titative response of the clinical trial under study, xi ∈ Rd

is the covariate, and δi = (δi,1, ..., δi,2k)
′ is the region in-

dicator of the i-th subject. It has only one none-zero com-
ponent, with δi,j = 1, if this individual is from the j-th
region (j = 1, ..., k) and with treatment 1 (control), and
δi,k+j = 1, if this individual is from the j-th region and
with treatment 2 (new). Denote the whole observed data as
(Yn,Xn,Δn), with Yn = (y1, ..., yn)

′, Xn = (x1, ...,xn)
′

and Δn = (δ1, ..., δn)
′.

The goal is to estimate the regional effects on the treat-
ments differences and test the consistency of the trial, or
the null hypothesis of no regional effects on the difference
of the two treatments. One may analyze the data for each
region separately, but the joint analysis will be more infor-
mative by using all the data as there are common covariate
effects among the regions, and this will help the estimation
of regional effects to be more accurate.

To utilize our knowledge about the data distribution and
allow for more model flexibility/robustness, we proposed the
following semiparametric model.

2.1 The semiparametric model specification

We focus on the case of fixed effects, i.e., that the re-
gional effects is a fixed vector of parameters. The case of
random effects will be discussed on the basis of the former.
Let β = (β1, ..., βd)

′ be the regression coefficients of the co-
variate xi’s, and α = (α1, ..., α2k)

′ be the regional effects of

the two treatments, i.e. α1, ..., αk are the effects of the first
treatment for regions 1, ..., k; αk+j are those for the second
treatment. The relationship between the responses and the
covariates can be written as

yi = β′xi + δ′iα+ εi, E(εi) = 0. (1)

Often we have some prior knowledge about the model, or
distribution of the error εi’s, given by a known density func-
tion g(·), but this initial knowledge is not justified yet and it
is not clear to what extent this model is true. To reflect this
uncertainty, we specify the model as the additive mixture

f(ε) = λg(ε) + (1− λ)h(ε), h ∈ H, (2)

where g(ε) = g(y−β′x− δ′α) and h(ε) = h(y−β′x− δ′α),
g(·) is a known density function represent our knowledge
about the model, h(·) is an unknown density function,
0 < λ ≤ 1 is a parameter (unknown) and represents the
degree of our belief that g is true. When λ = 1, the spec-
ified parametric model g is perfect, and when λ = 0, the
component g is totally mis-specified and model is fully non-
parametric. We leave λ as a parameter to be estimated from
the observed data. We define H to be the collection of all
densities which are not a mixture of g(·), so that model (2)
is identifiable. This requirement of H is natural, for if h(·)
is a mixture with g(·), then we can just absorb part of g(·)
into λg(·).

A related proposal was in Olkin (1987), in which the mix-
ture form is

λg(ε|θ) + (1− λ)f̂n(ε)

where g(·|θ) is a given parametric density and f̂n(·) is a
kernel density estimator.

2.2 Estimation of model parameters

Since h(·) is unknown, it is an infinite dimensional nui-
sance parameter. Also, it is known that the direct estimate
of the parameters in the mixture model (2) is not easy.
A common alternative method is to re-write (2) as a non-
mixture under the ‘complete data’ with a missing member-
ship indicator, then use the EM algorithm to compute the
parameter estimates under the ‘complete data’ likelihood.
To be specific, let ξi be 0-1 valued latent random variables,
P (ξi = 1) = λ, ξi = 1 if εi comes from model g(·). Since
the ξi’s are un-observed, we treat them as “missing data”.
Let zi = (yi,xi, δi, ξi) and Zn = (z1, ..., zn) be the ‘complete
data’. Let θ = (α′,β′, λ)′ be the vector of all the parameters
to be estimated. Under the complete data, the likelihood is

Ln(θ, h|Zn) =

n∏
i=1

[
λg(yi − β′xi − δ′iα)

]ξi
[
(1− λ)h(yi − β′xi − δ′iα)

]1−ξi
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and the corresponding log-likelihood is

	n(θ, h|Zn) =

n∑
i=1

(
ξi
[
log g(yi − β′xi − δ′iα)

+ log λ
]
+(1−ξi)

[
log h(yi−β′xi−δ′iα)+log(1−λ)

])
(3).

A common method to eliminate the infinite dimensional
nuisance parameter h is to find the profile log-likelihood
	̃n(θ) = suph 	n(θ, h). However, such supreme may not exist
or may be infinity. The typical way to handle this supreme
is to maximize the log-likelihood over step functions of h(·)
with jumps at the observed points, like the empirical dis-
tribution. The Cox proportional hazards model is a typical
example, in which the log-likelihood function is maximized
over the nonparametric base line hazard function in step
function form, to get the ‘partial likelihood’, which is in-
deed a profile likelihood. Thus we set

h(yi − β′xi − δ′iα) = hi, (i = 1, ..., n)

then the corresponding complete data log-likelihood is re-
written as

	n(θ|Zn) =
n∑

i=1

(
ξi
[
log g(yi − β′xi − δ′iα) + log λ

]

+(1− ξi)
[
log hi + log(1− λ)

])
. (4)

To eliminate the nuisance parameters h = (h1, ..., hn), for
fixed θ and Δ, we maximize the above log-likelihood over h
subject to

∑n
i=1 hi = 1 and using the Lagrange multipliers.

So for fixed θ we maximize 	n(θ) − ζ(
∑n

i=1 hi − 1) over h,

and get the estimates of h as solution ĥ = (ĥ1, ..., ĥn), as
(Appendix)

ĥi =
1− ξi∑n

j=1(1− ξj)
, (i = 1, ..., n). (5)

Plugging ĥ into (4), we get the profile log-likelihood

	̃n(θ|Zn) =
n∑

i=1

(
ξi
[
log g(yi − β′xi − δ′iα) + log λ

]

+(1− ξi)
[
log ĥi + log(1− λ)

])
. (6)

The profile MLE (Severini and Wong, 1992; Murphy and

Van der Vaart, 2000) of θ based on (6) is θ̂,

θ̂ = arg sup
θ

	̃n(θ|Zn).

However, since ξ := (ξ1, ..., ξn) is missing, the estimates

ĥ and θ̂ cannot be directly computed, instead we use the
EM-algorithm (Dempster et al., 1977), for computation

of maximum likelihood estimates under the missing data
model, see also Tan, Tian and Ng (2009, chap. 2) for bio-
medical applications of this algorithm. For this, let h(0) and
θ(0) = (β(0),α(0), λ(0))′ be any starting values of h and θ

(typically h
(0)
i = 1/n and (β(0),α(0)) can be set as the MLE

of (β,α) under model g(·), set γ(0) = 1/2. At the r-th iter-
ation define, in the E-step,

Hn(h,θ|h(r),θ(r)) = Eξ[	̃n(θ|Zn))|Yn,Xn,h
(r),θ(r)], (7)

where the expectation is with respect to ξ, and as if the true
data is generated from parameters θ(r) and h(r). The com-
putation of (7) is given in the Appendix. In particular, the
r-th step estimate of the ξi’s (for i = 1, ...., n; r = 0, 1, 2,...),
are

ξ
(r)
i =

λ(r)g(yi − β
′(r)xi − δ′iα

(r))

λ(r)g(yi − β
′(r)xi − δ′iα

(r)) + (1− λ(r))h
(r)
i

,

(r = 0, 1, 2, ...).

In the M-step, for fixed θ, define

h(r+1) = h(r+1)(θ) = arg sup
h

Hn(h,θ|h(r),θ(r)),

which is just (5) with the ξi’s replaced by the ξ
(r)
i ’s,

h
(r+1)
i =

1− ξ
(r)
i∑n

j=1 ξ
(r)
j

, (i = 1, ..., n).

Then it is known (for example, Dempster et al., 1997)
that, under suitable regularity conditions, as r → ∞ one
has

θ(r) → θ̂.

2.3 Asymptotic properties of parameter
estimation

To study the asymptotic behavior of the estimators, the
following notations will be used. Denote ġ(s) = dg(s)/ds,
ḣ(s) = dh(s)/ds; Similarly, g̈(s) = d2g(s)/ds2. Let 	(θ, h) =
log f(ε|θ, h) with f(ε) = f(ε|θ, h) given in (2), thus θ =
(β′,α′, λ)′ and θ0 = (β′

0,α
′
0, λ0)

′ be the true parameter
values for generating observed data under model (2); a b+
k + 1 dimensional parameter. The following conditions will
be used.

(C1). For fixed Δ and all large n, the log-likelihood (4) has

a unique profile MLE θ̂.
(C2).

∫ √
f(ε|θ0, h0)dε < ∞.

(C3). {f(·|θ, h) : θ ∈ Θ, h ∈ H} is bounded.
(C4). h0(·) is uniformly continuous.
(C5). ġ(·) and ḣ(·) are bounded continuous.
(C6). The Ω given in Theorem 2 is non-singular.
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Theorem 1. Assume (C1)-(C4), then for the profile

MLE θ̂,

θ̂
a.s.→ θ0.

For vectors a = (a1, ..., ab)
′ and x = (x1, ..., xd)

′, denote
a⊗ x = (a1 + · · ·+ ab)(x

′, ...,x′)′, a bd-dimensional column
vector. When dim(a) = 1, a⊗ x = ax.

Let ġ(ε) = ∂g(ε)/∂ε, ḣ(ε) = ∂h(ε)/∂ε,

	̇0(θ, h|y, z)

= −λġ(y − β′x− δ′α) + (1− λ)ḣ(y − β′x− δ′α)

f(y, z|θ, h) z,

where z = (x′, δ′)′.

Theorem 2. Assume (C1),(C5) and (C6), then the profile

MLE θ̂ is efficient for θ in the semiparametric model (2),
(β0,α0) is adaptively estimable,

√
n
(
θ̂ − θ0

) D→ N(0,Ω−1(θ0)),

Ω(θ0) = Eθ0,h0
[i∗i∗

′
],

where i∗ is the efficient score for θ in the presence of the
nuisance h. In particular

√
n
[
(β̂

′
, α̂′)′ − (β′

0,α
′
0)

′] D→ N(0,Ω−1
0 (θ0)),

Ω0(θ0) = Eθ0,h0
[i∗0i

∗′

0 ],

where i∗0 = 	̇0(θ, h|y, z) is the efficient score for (β′,α′)′ in
the presence of the nuisance h.

Note that in the model we assumed the δi’s are iid δ,
and min1≤j≤k P

(
δ = ej

)
> 0, where ej is the k-dimensional

column vector with the j-th entry be 1 and others be 0’s.
Thus nj/n → P

(
δ = ej

)
> 0.

From Theorem 2, we see that (β̂
′
, α̂′)′ is efficient for

(β′
0,α

′
0)

′. Although the (β′,α′)′ components in i∗ are com-
puted explicitly, but the λ component is generally not.

2.4 Testing the null hypothesis

As mentioned before, after the parameter estimation, we
need to test the null hypothesis that there is may or may
not be regional effects. This null hypothesis can be written
as H0 : αk+j − αj = Constant for j = 1, ..., k (independent
of j) vs the alternative H1: not H0. For parametric model,
commonly used test statistics include the likelihood ratio
statistic, score test statistic and the Wald statistic. In the
parametric case the three equivalent statistics are asymptot-
ically chi-squared distributed. Here we use the profile likeli-
hood ratio statistic as it does not involve the computation of
first and second order partial derivatives of the profile likeli-
hood. The following theorem tells us that this test statistic
parallels the Wilks (1938) result for parametric models, and

can be used to test H0 vs H1. For this, we define the profile
likelihood ratio statistic below. Recall θ̂ is the profile MLE of
θ under the log profile likelihood 	̃n(θ), and dim(α) = 2k.
Let Θ0 = {(β, α1, ..., αk, α1 + γ, ..., αk + γ, λ} be the pa-
rameter space under H0, β̃ be the profile MLE of β0 under
H0,

θ̃ = arg sup
θ∈Θ0

	̃n(θ).

Computation of θ̃ follows the same way for that of θ̂. Define
the profile likelihood ratio as

Λn = 2
(
	̃n(θ̂)− 	̃n((θ̃)

)
.

Theorem 3. Assume conditions of Theorem 2, under H0,

Λn
D→ χ2

k−1,

where χ2
k−1 is the chi-squared random variable with k − 1

degrees of freedom.

The proofs of all the Theorems are in the Appendix of
the supplementary material.

However, it is known that the log-likelihood ratio statistic
will some times give an inflated type I error. Alternatively,

the score test or Wald test can be used. Let
˙̃
	n(θ|f̂n) =

∂	̃n(θ|f̂n)/∂θ. The score test statistic is given by

Sn =
˙̃
	n(θ̂0|f̂n)Ω(θ̂0)

˙̃
	′n(θ̂0|f̂n),

under H0, asymptotically Sn ∼ χ2
1.

For Wald test in the general case, denote θ = (θ1,θ2) with

dim(θ) = d and dim(θ1) = d1, and θ̂ = (θ̂1, θ̂2). Consider
the null hypothesis H0 : θ1 = θ1,0. The Wald test statistic
is given by

Wn = (θ̂1 − θ1,0)
′Cov−1(θ̂1)(θ̂1 − θ1,0).

If Cov(θ̂1) is known, Wn ∼ χ2
d1
; If Cov(θ̂1) is estimated,

Wn/d1 ∼ Fd1,n−d.

In our case, let d̂ = (d̂1, ..., d̂k)
′ = (α̂k+1 − α̂1, ..., α̂2k −

α̂k)
′, and

C =

⎛
⎜⎜⎝

1 −1 0 0 . . . 0
0 1 −1 0 . . . 0
0 0 . . . 0 . . . 0
0 0 . . . 0 1 −1

⎞
⎟⎟⎠ ,

then H0 can be written as the contrast Cd = 0. So the Wald
statistic in our case is

Wn = (Cd̂)′Cov−1(Cd̂)Cd̂,

and we use estimated covariance, so underH0,Wn ∼ Fk,n−d,
d = dim(θ).
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2.5 Other issues

There are some other issues commonly encountered with
MRCT, here we only give a brief account.

Random effects model. As pointed out by many authors
(Senn, 1998; Fedorov et al. 2005; Quan et al., 2013;), a trial
result obtained from a fixed effects model is trial specific
and may not be generalizable because the expectation of
α̂ depends on the sample size configuration across the re-
gions and the α̂i’s. On the other hand, results from a ran-
dom effects model, taking into consideration the variability
among regions, may be more generalizable and applicable in
a global sense. However, due to its large variability, the ran-
dom effects model requires a much bigger sample size than
the fixed effects model to achieve the same power to detect
an overall treatment effect. We can also implement random
effects into our model.

Interaction. We can also consider interactions among the
sub-regions. For k sub-regions, there are k(k+1)/2 interac-
tions, to reduce the number of parameters, we may consider
the correlations among interactions.

Shrinkage estimation. In Quan et al. (2014), each regional
effect Δj = α2j − α2j−1 is estimated using only the data
from each region. To use the full data information, they also
considered shrinkage estimators. For this, let Δ̂j = α̂2j −
α̂2j−1 be the estimate of Δj using only the data from sub-
region j, and Δ0 be some global value. They considered
shrinkage estimators of the form

Δ̌j = cjΔ̂j + (1− cj)Δ0 = Δ0 + cj(Δ̂j −Δ0).

In particular, for the fixed effects model, it is assumed
that Δ̂j ∼ N(Δj , σ

2/nj) with σ2 known. They find the op-
timal shrinkage estimator, in the sense of minimizing the
mean squared error, to be

Δ̌j = cΔ̂j + (1− c)Δ0, (j = 1, ..., k),

where Δ0 = n−1
∑k

j=1 njΔ̂j , n =
∑k

j=1 nj , c =∑k
j=1 nj(Δ̂j −Δ0)

2/[
∑k

j=1 nj(Δ̂j −Δ0)
2 + kσ̂2], and σ̂2 is

an estimate of σ2.
To get variance estimate of Δ̌j , let ω̂ij be the estimated

covariance of Δ̂i and Δ̂j , which can be obtained from vari-
ances/covariances of α̂2i, α̂2i−1, α̂2j , α̂2j−1. Since

Δ̌j = [cj + (1− cj)nj/n]Δ̂j +

k∑
i �=j

(1− cj)(nj/n)Δ̂i :

=

k∑
i=1

ajiΔ̂i,

The estimated variance of Δ̌j is approximated by

ρ̌2j =

k∑
i=1

k∑
r=1

ajiajrω̂ir.

For random effects model with Δj ∼ N(Δ, τ2), they take
cj = τ2/(τ2 + 2σ2/nj), σ2 = V ar(εj), nj (which is the

sample size for sub-region j), α0 =
∑k

j=1 wjΔ̂j/
∑k

j=1 wj ,

and wj = 1/(τ2 + 2σ2/nj).

3. SIMULATION STUDY AND
APPLICATION

3.1 Simulation study

We simulate n = 1000 i.i.d. data with response yi and
with covariates xi = (xi1, xi2, xi3). We first generate the
covariates, sample the xi’s from the 3-dimensional normal
distribution with a mean vector μ = (3.1, 1.8,−0.5)′ and
covariance matrix Γ, with

Γ1/2 =

⎛
⎝ 0.73 −0.07 0.55

1.34 −0.14 0.57
1.52 −0.37 1.53

⎞
⎠ .

Then we generate the response data, which, given the covari-
ates, are from the mixture λ0g + (1− λ0)h, with λ0 = 0.42.
The yi’s are generated as

yi = β′
0xi + δ′iα0 + εi, (i = 1, ..., n),

β0 = (β1, β2, β3) to be specified, α0 = (α1, ..., α10)
′ to be

specified; δi = (δi,1, ..., δi,10), P (δij = 1) = 1−P (δij = 0) =
0.2 (j = 1, ..., 10). We specify g be the density of N(0, σ2).
We specify h as the density of exponential distribution with
rate r.

We simulated two datasets. The first has two regions,
with two contrast treatments, under four different parame-
ter sets θ0, representing significant regional effects and no
regional effects respectively. Then we estimate the parame-
ter θ = (β,α, λ, σ) via the profile MLE from the proposed
semiparametric model, and compare the corresponding re-
sults of the MLE from the commonly used normal model,
as displayed in Table 1. SHE stands for shrinkage estimator
with fixed effects, which is computed for both the normal
and semiparametric models. sd is the estimated standard
deviation of the corresponding estimate.

For the normal model, there is no λ, so the corresponding
column is empty. MLF (profile) is the MLE of θ0 under
the proposed profile likelihood, MLE(normal) is the MLE of
θ0 under the normal model; [sd] is the estimated standard
deviation of the estimated parameters. For the first two data
sets, we used exponential distribution with rate r = 3, to
separate it from the normal distribution. From the above
table, we see that when the true model is deviated from
the commonly used normal model, for most components of
θ0, the estimates from the semiparametric mixture model
are significantly better than those from the normal model.
For small values of r, although the proposed model gives
better parameter estimations, the estimation of λ will be
far away from its true value, and tend to be close to 0.9.
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Table 1. Parameter estimates under two models (simulated data)

θ β α σ λ

θ0 (1.30, 1.20, -1.60) (-5.60, 2.70,5.25, 0.13) 1 0.420
MLE(normal) (0.9622, -0.3753, -1.556) (-5.0716, 2.2804, 4.5481, 0.0021) 0.904

[sd] [0.2672, 0.5303, 0.4422] [1.2294, 0.5463, 1.0413, 0.2132] [0.310]
SHE(normal) (-5.07131, 2.2803, 4.5478, 0.0021)
MLE(profile) (1.2982, 1.2145, -1.5943) (-5.6258, 2.6811, 4.9565, 0.1136) 0.992 ≈ 1 0.4182

[sd] [ 0.0205, 0.2250, 0.0598] [0.4342, 0.4177, 1.2917, 0.3977] [0.222] [0.0167]
SHE(profile) (-5.6256, 2.6810, 4.9563, 0.1136)
Test H0 vs H1 via statistic Λn 1233 repetitions, 1176 rejections Power = 0.954

θ0 (-2.5, 2, 1.2) (-4.5, 2.35, 6.25, -6.25) 1 0.3
MLE(normal) (-2.4825, -1.2203, 0.4306,) (-3.2818, 2.6916, 6.0876,-4.7985) 1.0

[sd] [0.2672, 0.5303, 0.4422] [1.2294, 0.5463, 1.0413, 0.2132] [0.370]
SHE(normal) (-3.2817, 2.6915, 6.0873, -4.7983)
MLE(profile) (-2.4999, 2.0019, 1.2001) (-4.2894, 2.5526, 5.9702,-6.0395) 0.974 0.3058

[sd] [0.0126, 0.1500, 0.0389] [0.2911, 0.3127, 1.7293,0.2856] [0.326] [0.0254]
SHE(profile) (-4.2893, 2.5525, 5.9700, -6.0393)
Test H0 vs H1 via statistic Λn 1914 repetitions, 1914 rejections Power > 0.999

θ0 (1.30, 1.20, -1.60) (1, 1, 1, 1) 1 0.420
MLE(normal) (1.0331, 0.3333, -1.4754) (-0.0091, 0.0035, -0.00001,-0.0154) 0.906

[sd] [0.18 , 0.3594, 0.2968] [0.2049, 0.2065, 0.2083, 0.2124] [0.120]
SHE(normal) (-0.0079, -0.0011, -0.0030, -0.0113)
MLE(profile) (1.2982 , 1.2009, -1.5978) (1.5646, 1.5629, 1.5706, 1.5598) 0.922 ≈ 1 0.4135

[sd] [0.0108 , 0.1275, 0.0330] [0.2480, 0.2450, 0.2469, 0.2461] [0.110] [0.0141]
SHE(profile) (1.5640, 1.5636, 1.5651, 1.5630)
Test H0 vs H1 via statistic Λn 1293 repetitions, 2 rejections Type I error = 0.0015

θ0 (-2.5, 2, 1.2) (1, 1, 1, 1) 1 0.30
MLE(normal) (-2.3309, -0.0676, 0.5171) (-0.0059, -0.0067, -0.0082,-0.0141) 0.846

[sd] [0.1574, 0.3293, 0.2609] [0.2053, 0.213, 0.2077,0.2045] [0.134]
SHE(normal) (-0.0086, -0.0087, -0.0090, -0.0100)
MLE(profile) (-2.5001, 1.9978, 1.1997) ( 1.9441, 1.9481, 1.9475,1.9455) 0.865 0.2999

[sd] [0.0076, 0.0938, 0.0245] [0.2052, 0.2104, 0.2072, 0.2038] [0.127] [0.0142]
SHE(profile) (1.9456, 1.9459, 1.9459, 1.9457)
Test H0 vs H1 via statistic Λn 1200 repetitions, 1 rejections Type I error < 0.001

χ2(0.95; 4) =9.488

For small r, the exponential and normal densities are not
well separated. This makes the model difficult to estimate
the mixing proportion λ.

Then we test the effects of multi-regions by testing the
null hypothesis H0 : α = 0 vs H1 : α 	= 0. Test results are
also given in Table 1.

The second simulated data has three regions, with two
contrast treatments. The estimation and testing results are
given in Table 2.

3.2 Application to real data problem

The PLATO data has been studied and analyzed by sev-
eral groups; however this data is currently unavailable to
us. Instead we re-analyze the real clinical trial data from
the Study of Denosumab Compared With Zoledronic Acid
(Zometa) in the Treatment of Bone Metastases in Men with
Hormone-Refractory Prostate Cancer, which is an inter-
national, phase 3, Randomized, Double-blind, multicenter
study. The study was conducted in 39 countries and four
regions (Europe, Latin America, North, America, Others)

from May 2006 to December 2008. Overall, 1904 partici-
pants were enrolled. 951 of the patients received 4 mg intra-
venous zoledronic acid plus subcutaneous placebo and 950
patients received120 mg subcutaneous denosumab plus in-
travenous placebo. The patients received these treatments
every 4 weeks until the primary analysis cutoff date. The
main outcome (primary endpoint) is the time to the first
on-study of skeletal-related event (SRE) analyzed for non-
inferiority. The data set was downloaded from a public web-
site (Project Data Sphere). This data set contains only the
control group information, the total sample size is 756. Sev-
eral variables (e.g. Age, Body Mass Index (BMI) and Glea-
son Score) were considered to be potential covariates to the
First On-Study SRE. The Gleason grading system is used
to help evaluate the prognosis of men with prostate cancer
using samples from a prostate biopsy. Our model will be
used to assess the differential regional treatment effects. It
will also be used to determine the covariates influence on
the treatment. This data only contains the control group
information, so the effects of the regional control group
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Table 2. Parameter estimates under two models (simulated data 2)

θ β α λ

θ0 (1.3, -0.52,-1.6) (-4.5,3.5,-5.2,2.8,2.3,-5.7) 0.42
MLE(normal) (0.5059, -1.30, -0.8088) (-2.2922, 2.8002, -2.7499,2.353,2.0246,-3.0515)

[sd] [0.48844, 1.0138, 0.750] [1.1793, 1.3882, 1.4039, 1.174,1.008,1.5542]
MLE(profile) (1.2861, -0.7280, -1.6237) (-3.6726, 3.2247, -4.3664,2.9124,2.7063,-4.8692) 0.4411

[sd] [0.1137, 1.04897, 0.2237] [1.9321, 2.5697, 1.9553,2.251,2.0701,1.9652] [0.0901]
Test H0 vs H1 via statistic Λn 1416 repetitions, 150 rejections Type I error =0.106

θ0 (1.3, 1.1,-1.6) (-4.0,2.6,3.05,3.03,-6.23,-4.08) 0.42
MLE(normal) (0.6735, -0.1305, -1.1005) (-1.8094, 2.0015, 2.2611,2.2526,-3.1019,-1.8668)

[sd] [0.3915, 0.7262, 0.5685] [1.0677, 1.1100, 1.2513, 1.2437,1.7803,1.1006]
MLE(profile) (1.2861, 1.0039, -1.6024) (-3.5842, 2.5007, 2.7933,2.8027,-5.8118,-3.6572) 0.4376

[sd] [0.1010, 0.9267, 0.2116] [2.0238, 2.1236, 2.2013,2.1848,2.0776, 2.0221] [0.0852]
Test H0 vs H1 via statistic Λn 1783 repetitions, 1607 rejections Power =0.901

Table 3. Parameter estimates under two models (real data1)

θ β α σ λ

MLE(normal) (-0.1237, 0.1611, -0.7777) (-2.5361, -2.5664, -2.5084,-2.3377) 4.24
[sd] [0.2672, 0.5303, 0.4422] [1.0378, 1.1601, 1.209, 1.2581] [0.898]

SHE(normal) (-2.5268, -2.5513 -2.5044 -2.3662)
MLE(profile) (-0.0466, 0.1396, -0.0200) (-4.2825, -4.5008, -4.5606,-4.5757) 4.45 0.7364

[sd] [0.0370, 0.0377, 0.0463] [0.1096, 0.1325, 0.1380,0.1533] [0.881] [< 0.0001]
SHE(profile) (-4.2828, -4.5008, -4.5605, -4.5755)

Table 4. Parameter estimates under two models (real data 2)

θ β α σ λ

MLE(normal) (-0.1212, -0.1863, 0.1259) (-5.3685, -5.3311, -5.407,-5.2556) 5.059
[sd] [0.0359, 0.0371, 0.0375] [0.0529, 0.0751, 0.0839, 0.1407] [0.2060]

SHE(normal) (-5.3685, -5.3311, -5.4070, -5.2556)
MLE(profile) (-0.1008, -0.1663, 0.0657) (-5.0683, -5.9314, -5.4072,-5.6640) 5.362 0.7086

[sd] [0.0358, 0.0371, 0.0374] [0.0530, 0.0749, 0.0838, 0.1342] [0.2056] [< 0.0001]
SHE(profile) (-5.0683, -5.9314, -5.4072, -5.6640)

test is only hypothetical. An example of this would be, if
the regional treatment group effects are approximately the
same across all regions, such as (-2.5015, -2.5571, -2.5249,
-2.3720). This would result in a Wald’s statistic of 0.1782,
which is less than the critical value of 2.39 and resulting in
acceptance of the null hypothesis of no regional treatment
difference. Contrarily, if the treatment effects significantly
differ among the various regions, such as (-1.243, -0.9983,
-2.0752, -2.4556), it would result in a larger Wald’s statis-
tic of 6.5749 > 5.99 and the rejection of the null hypothe-
sis.

According to the estimated coefficient for each variable,
the potential covariates do not have much effects on the
First On-Study SRE.

Another study is a randomized, Double-Blind, Multicen-
ter Study of Denosumab Compared With Zoledronic Acid
(Zometa) in the Treatment of Bone Metastases in Subjects
with Advanced Breast Cancer. This study uses the same
treatment for the case and control group for a different pur-
pose.

For this study, the data set was also downloaded from
a data share website (Project Data Sphere). Like the first
real data, this data set only contains the control group in-
formation. The total sample size is 711 and several variables
(i.e. pulse rate, respiratory rate, and systolic blood pressure)
were considered to be potential covariates. Our model will
be used to assess the differential regional treatment effects.
It will also be used to check the influence the covariates influ-
ence have on the treatment. A hypothetical null hypothesis
test can be made as was for the first real data.

Table 4 shows the results from our model. According to
the estimated coefficients, the potential covariate give little
effect on the First On-Study SRE.

Concluding remarks. We proposed a semiparametric
model to analye the multi-regional clinical trial study. The
model has a specified known parametric component, and an
unknown nonparametric component, it accounts for covari-
ates in the analysis, and is robust with respect to model mis-
specifications. The profile likelihood method is used to com-
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pute the model parameters, including the regional effects.
The null hypothesis of no regional effects (αi = 0) or no
regional treatment differences (αk+j −αj = γ, j = 1, · · · , k)
can be tested via the semiparametric likelihood ratio statis-
tic. Simulation studies show the method outperform the
parametric model when it is not correctly specified, which
is promising. The method was then used to analyze real
multi-regional clinical trial data. The PLATO data is a well
studied trial for this topic; however, the data is not yet avail-
able to us. An application has been submitted for access to
this data. When the PLATO data is available we will apply
the proposed method to analyze the data. In future stud-
ies, we will extend the model and implement random effects
into the semiparametric model (2), quantify the information
loss when g(·) is the true distribution, and the distribution
of random effects with either parametric or semiparametric
specifications.

ACKNOWLEDGEMENTS

The research of Tan is partially supported by
R01CA164717.

APPENDIX A. PROOFS AND
ASYMPTOTICS

Derivation of (5). Take derivative of 	n(θ|Zn) in (4) with
respect to hi, with Lagrange multiplier η(

∑n
i=1 hi − 1) for

the constraint
∑

i=1 hi = 1, and set it to zero,

0 =
1− ξi
hi

− η, (i = 1, ..., n).

Multiply both sides of the above by hi and sum over i, we
get η =

∑
i=1(1− ξi), and

ĥi =
1− ξi∑n

j=1(1− ξj)
, (i = 1, ..., n).

Computation of (7). From (6),

Eξ[	̃n(θ|Zn))|Yn,Xn,h
(r),θ(r)]

=

n∑
i=1

(
E
[
ξi|Yn,Xn,h

(r),θ(r)
]
log g(yi − β′xi − δ′iα)

+ E
[
(1− ξi)|Yn,Xn,h

(r),θ(r)
]
log ĥi

)

and

ξ
(r)
i := E

[
ξi|Yn,Xn,h

(r),θ(r)
]

= P

(
ξ = 1

∣∣∣∣Yn,Xn,h
(r),θ(r)

)

= P

(
ξ = 1

∣∣∣∣yi,xi, h
(r)
i ,θ(r)

)

=
λ(r)g(yi − β

′(r)xi − δ′iα
(r))

λ(r)g(yi − β
′(r)xi − δ′iα

(r)) + (1− λ(r))h
(r)
i

.

This gives (7).

Proof of Theorem 1. Recall the density f(·) = f(·|θ, h)
given in (2). Let F be the distribution of f , f̂(·) = f(·|θ̂, ĥ),
and F̂ be the distribution function of f̂ . Denote f0(·) =

f(·|θ0, h0). Let B be the Borel field on R, H(f̂ , f) be the

Hellinger distance between f̂ and f , and ||f̂ − f || be the

variational distance, between f̂(·) and f(·),

H(f̂ , f) = 2−1/2

[ ∫ (
f̂1/2(ε)− f1/2(ε)

)2

dε

]1/2
,

||f̂ − f || = 2 sup{|F̂ (B)− F (B)| : B ∈ B}

=

∫
|f̂(ε)− f(ε)|dε.

Recall the inequality ||f̂ − f || ≤ 2H(f̂ , f) (see Bickel et al,

1993, p464). We will show that H(f̂ , f0) → 0, a.s., so that

||f̂ − f0|| → 0, a.s., which implies |ĥn(·) − h0(·)| → 0 a.s.

on Hn (defined below), and by condition (C4) supt |ĥn(t)−
h0(t)| → 0 a.s., and thus f̂n(·) → f0(·), a.s., a.e. (L), with
L being the Lebesque measure on R. Since the model is
identifiable, we must have θ̂ → θ0 (a.s.), and get the desired
result.

Below we showH(f̂ , f) → 0 a.s.. For fixed θ0 and h0 ∈ H,
let rθ,h(·) = (

√
f(·|θ, h)/f0(·)−1)1(f0 > 0), Hn = {h ∈ H :

h be of the form hi,0, hi,1} (as given in Section 2.2), Rn =
{rθ,h : θ ∈ Θ, h ∈ Hn}, and R = {rθ,h : θ ∈ Θ, h ∈ H}. It
is seen that Hn ⊂ H, Rn ⊂ R. let Pn and P be empirical
and the true distribution of the observed data. By Lemma
1.1 of van de Geer (1993), since (θ̂, ĥ) is the semiparametric
MLE of (θ0, h0) in model (2),

H2(f̂ , f0) ≤ 2(Pn − P )

(
1(f0 > 0)[

√
f̂/f0 − 1]

)
= 2(Pn − P )rˆθ,ĥ

.

So to show H(f̂ , f) → 0 a.s., it suffices to show
supr∈Rn

|(Pn − P )r| → 0 a.s., and since Rn ⊂ R, it suf-
fices to show

sup
r∈R

|(Pn − P )r| → 0, a.s.

i.e., R is a Glivenko-Cantelli class with respect to P .

For this, for a given probability measure P on B, let
||g||L1(P ) =

∫
|g(y)|P (dy), N[ ](ε,R, L1(P )) be the mini-

mum number of ε-brackets to cover R under norm L1(P ),
i.e. the minimum number k of pairs (lj , uj), lj , uj ∈ R such
that ∀r ∈ R, there is (lj , uj) (1 ≤ j ≤ k) with lj ≤ r ≤ uj

and ||uj − lj ||L1(P ) ≤ ε.
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Below we need to evaluate N[ ](ε,R, L1(P )). Let F =
{fθ,h

: θ ∈ Θ, h ∈ H}. Note that for all f1, f2 ∈ F ,

∣∣∣∣
∣∣∣∣
(√

f1
f0

− 1

)
1(f0 > 0)−

(√
f2
f0

− 1

)
1(f0 > 0)

∣∣∣∣
∣∣∣∣
L1(P )

=

∫ |f1/2
1 (ε)− f

1/2
2 (ε)|

f
1/2
0 (ε)

f0(ε)dε

=

∫
|f1/2

1 (ε)− f
1/2
2 (ε)|f1/2

0 (ε)dε

= C||
√
f1 −

√
f2||L1(Q),

where C is some positive finite constant, Q is the proba-
bility measure corresponding to

√
f0 (after normalization),

and by condition (C2) this measure is well defined. Now, let

F1/2 = {
√

fθ,h : θ ∈ Θ, h ∈ H}. Since f0 is fixed, the above

equality gives N[ ](ε,R, L1(P )) ≤ N[ ](ε/C,F1/2, L1(Q)),
for some 0 < C < ∞.

Since by (C3), F1/2 is a collection of bounded continuous
functions on (R+)b, so by Corollary 2.7.4 in van der Vaart
and Wellner (1996, p.158), with notations (V, d, α, r) there
corresponds to (1, 1, 1, 1) here,

logN[ ](ε,F1/2, L1(Q)) = O(
1

ε
).

Thus, for some generic positive finite constant C,

N[ ](ε,R, L1(P )) ≤ N[ ](
ε

C
,F1/2,

L1(Q)) ≤ exp{C/ε} < ∞, ∀ ε > 0,

and so by Theorem 2.4.1 in van der Vaart and Wellner (1996,
p.122), R is a Glivenko-Cantelli class with respect to P , and
completes the proof.

Proof of Theorem 2. Let i∗(θ) be the efficient score of

θ = (β′,α′, λ)′ in model (2). For fixed θ, let ĥ = ĥ(θ)
be the maximizer of likelihood (3) on Hn, with Hn given
in the proof of Theorem 1. Note that (C5) implies h0(·) is

uniformly continuous, so as n → ∞, ĥ will be uniformly
close to the global maximizer of h, and conditions (8)-(11)
in Murphy and van der Vaart (2000, p.456) can be satisfied,
and by their Theorem 1, their expressions (4) and (5) hold,
and their (5) gives the desired result, see also Proposition 2
in Severini and Wong (1992), i.e.,

√
n(θ̂ − θ0)

D→ N(0,Ω−1(θ0)),

Ω(θ0) = Eθ0
[i∗(θ0)i

∗′
(θ0)].

I∗(θ0) is the efficient Fisher information in the presence of
the nuisance h(·). Theorem 1 in Murphy and van der Vaart
(2000) also requires some other conditions, such as the score
function is P-Donsker over some neighborhood of the param-
eters, and the Hessian matrix is P-Glivenko-Cantelli over
some neighborhood of the parameters. These conditions can

be easily met under mild conditions, as long as the classH of
h’s is regular. Checking conditions (8)-(11) in Murphy and
van der Vaart is nontrivial (checking conditions of Proposi-
tion 2 in Severini and Wong (1992) may be just as difficult

as they also require the consistency of the derivative of ĥ(·)
at some rate), but it can followed by their lines for check-
ing these conditions for the Cox model, in which the base
line hazard function is maximized only at the observed data
points, like our ĥ.

Although our current set up is for 1-dimensional
y and ε, our below proofs are for multi-dimensional
case for possible extension to this cases. De-
note ġ(s) = (∂g(s)/∂s1, ..., ∂g(s)/∂sb)

′, ḣ(s) =
(∂h(s)/∂s1, ..., ∂h(s)/∂sb)

′; ġġ′(s) = ġ(s)ġ′(s);
g̈(s) = (∂2g(s)/(∂si∂sj))1≤i,j≤b. To compute the derivative
∂	(θ, h)/∂β, we treat β as a db-dimensional column vector
(β11, ..., β1d, ..., βb1, ..., βbd)

′. Let 1b be the b-dimensional
column vector of 1’s. For vectors a = (a1, ..., ab)

′ and
x = (x1, ..., xd)

′, denote a ⊗ x = (a1 + · · · + ab)(x
′, ...,x′)′,

a bd-dimensional column vector. When dim(a) = 1,
a⊗ x = ax.

The computation of I∗ is nontrivial, we only compute I∗0 .
The log-likelihood for model (2) is

	(θ, h) = log f(y, z|θ, h)

= log

(
λg(y − β′x− δ′α) + (1− λ)h(y − β′x− δ′α)

)
.

Under the above log-likelihood, the score for (β′,α′)′ is

	̇0(θ, h) =
∂	(θ, h)

∂(β′,α′)′

= −λġ(y − β′x− δ′α) + (1− λ)ḣ(y − β′x− δ′α)

f(y, z|θ, h) z.

Let Λ be the nuisance space of h ∈ H, Λ⊥ be its orthog-
onal complement, and Π(	̇0|Λ) denote the projection of 	̇0
onto Λ. The efficient score of (β′,α′, λ)′ in the presence of
the nuisance parameter h is

i∗ = Π(	̇0|Λ⊥) = 	̇0 −Π(	̇0|Λ).

Let B0 be the σ field generated by ε, since (β′,α′)′ is
regression/location parameters, by (5.16) in Tsiatis (2006,
p.108), or Proposition 4.3.2 in Bickel et al. (1993, p.108),

i∗0(y, z|θ) = 	̇0(θ, h|y, z)− E
(
	̇0(θ, h|y, z)

∣∣B0

)
= 	̇0(θ, h|y, z)− E

(
	̇0(θ, h|y, z)

∣∣z) = 	̇0(θ, h|y, z).
Proof of Theorem 3. With the presence of infinite dimen-
sional nuisance parameters, Corollary 9.11 in van der Vaart
(1999, p.442-443) gives a simple proof for profile likelihood
for the test θ = θ0 vs θ 	= θ0, below we modify this proof
for our result. By definition of the profile MLE β̃, under our

H0,
˙̃
	n(β̃, α̃1) = 0, so

	̃n(β0, α01)− 	̃n(β̃, α̃1) = (β′
0 − β̃

′
, α0 − α̃)

˙̃
	n(β̃, α̃1)
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+
1

2
(β̃

′ − β′
0, α̃− α0)

¨̃
	n(β̃, α̃1)(β̃

′ − β′
0, α̃− α0)

+ op

(√
n||(β̃′ − β′

0, α̃− α0)||
)2

=
1

2
(β̃

′ − β′
0, α̃− α0)

¨̃
	n(β0, α01)(β̃

′ − β′
0, α̃− α0)

′

+ op

(√
n||(β̃′ − β′

0, α̃− α0)||
)2

.

Let ĩ0 be the efficient score for (β′
0, α0)

′ under H0, and
Ĩ0 = E

(β0,α01,h0)
[̃i0 ĩ

′
0] be the efficient Fisher information.

Similarly as in the proof of Theorem 2, (β̃
′
, α̃)′ is efficient

for (β′
0, α0)

′ under H0, thus one must have

√
n(β̃

′ − β′
0, α̃− α0)

′ = Ĩ−1
0 n−1/2 ˙̃	n(β0, α01) + op(1).

Since n−1/2 ˙̃	n(β0, α01)
D→ N(0, Ĩ−1

0 ), we get

2
(
	̃n(β̃, α̃1)− 	̃n(β0, α01)

)
= −(β̃

′ − β′
0, α̃− α0)

¨̃
	n(β0, α01)(β̃

′ − β′
0, α̃− α0)

′

+ op

(√
n||(β̃′ − β′

0, α̃− α0)||
)2

=
√
n(β̃

′ − β′
0, α̃− α0)Ĩ0

√
n(β̃

′ − β′
0, α̃− α0)

′ + op(1)

= n−1/2 ˙̃	′n(β0, α01)Ĩ
−1
0 n−1/2 ˙̃	n(β0, α01) + op(1)

D→ Z′Z = χ2
d+1,

where Z ∼ N(0, Id+1), Idk is the (d+1)-dimensional identity
matrix, χ2

d+1 is the chi-squared random variable with (d+1)
degrees of freedom.

Similarly,

2
(
	̃n(β̂, α̂)− 	̃n(β0, α01)

) D→ χ2
d+k

and so

2
(
	̃n(β̂, α̂)− 	̃n(β̃, α̃1)

)
= 2

(
	̃n(β̂, α̂)− 	̃n(β0, α01)

)
−2

(
	̃n(β̃, α̃1)− 	̃n(β0, α01)

) D→ χ2
k−1,

the last step above is not straight forward as it looks, but is
the same as the standard proof of Wilks’ Theorem.
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