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Adaptive oncology phase | trial design of drug
combinations with drug-drug interaction modeling

YANG YANG*, HONG-BIN FANG, ANINDYA ROY, AND MING TAN*

The goal of a Phase I trial is to find the maximum tol-
erated dose (MTD). In a single-agent dose finding Phase T
trial, the key underlying assumption is that toxicity prob-
ability increases monotonically with the dose level. How-
ever, in multi-agent trials, this assumption may not hold
because the drug-drug interaction potentially can either de-
crease or increase the joint toxicity as compared to either
one used alone, which may lead to an unforeseen toxicity
probability surface. Thus there exists multiple MTDs. We
first develop a novel adaptive dose-finding approach which
can be applied to these kinds of multi-drug combination
trials. With this approach, drug-drug interaction and toxic-
ity probability are modeled jointly through a Bliss indepen-
dence model. The main goal of our dose finding scheme is
to search for mazimum tolerated region (MTR), as opposed
to maximum tolerated dose (MTD), in single agent phase
I trials. The method allows exploration of more combina-
tions in the phase I stage, which is of particular relevance
in oncology since phase I trials on the combinations may
be the only opportunity before launching a costly phase 111
trial, comparing selected combination(s) with a standard of
care. Dose escalation/de-escalation decision rules are deter-
mined by the posterior estimates of both joint toxicity prob-
ability and the corresponding drug-drug interaction, which
can be continuously updated by sequentially assigning new
patients into the trial while more data is being observed.
We evaluate the operating characteristics of the proposed
method through extensive simulation studies under various
scenarios. The proposed method demonstrates satisfactory
performance. In addition, the MTR offers several combina-
tions that investigators may choose to advance to future
trials based on external information from e.g., preclinical
antitumor activities and other trials.

KEYWORDS AND PHRASES: Adaptive Bayesian design, Bliss
independence, Drug combination, Dose finding, Interaction
index function, Maximum tolerated dose (MTD), Maximum
tolerated region, Objective function.

1. INTRODUCTION

The purpose of a Phase I clinical trial of a single-agent is
to find the maximum tolerated dose (MTD), which is a dose
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with acceptable dose-limiting toxicity (DLT) level (proba-
bility). There is a large amount of literature on phase I
trial designs [31, 32, 34], which can be classified largely into
two categories: rule-based methods and model-based meth-
ods. Rule-based methods, such as the 3+3 design, assign the
next cohort of patients using prespecified dose escalation (or
deescalation) rules, given whether toxicity is present or not
in the previous cohort. As an alternative to the rule-based
design, a model-based approach utilizes all data accumu-
lated at a given time during the trial to model the dose-
toxicity curve, and estimate a dose that will have the pre-
specified targeted probability of dose-limiting toxicity. For
instance, the continual reassessment method (CRM), or its
variants [19, 30, 31] based on Bayesian updating of a dose re-
sponse/toxicity model, are most widely used in practice. In
anti-cancer drug development, combination therapy is very
important due to drug resistance in monotherapy. Thus it
is no surprise that in recent years, cancer therapeutics have
focused on combinations of two or more agents in both pre-
clinical and clinical trials. Such developments present un-
usual challenges to clinical trial design. In single agent trials,
the toxicity probability is often assumed to increase mono-
tonically with the dose level, resulting in a simple order of
toxicity probability. Contrarily, the toxicity order in two-
dimensional dose combination space is usually unknown due
to potential interaction in toxicity between the two drugs.
There exists multiple MTDs. Furthermore, because of their
potential synergistic interactions in efficacy, the high dose
combinations of two drugs may not result in better efficacy
(for example, see Fang et al. [13]). Synergistic interaction in
terms of toxicity can also occur, thus the low dose combi-
nations of two drugs may not always have less toxicity. The
issues of drug-drug interaction in finding MTD of two drug
combinations are summarized well in Korn and Simon [21]:
“consideration should therefore be given to more precisely
defining the MTD in combination phase I trials”. The dose
combinations with the potential for greater effect and less
toxicity will be desired in the consequent phase II trial.
Over the last two decades, in response to the need for
an ever increasing number of combination studies, several
model based statistical designs have been developed for
dose-findings with two or more agents in Phase I trials. Si-
mon and Korn [33] suggested a graphical method called “tol-
erable dose diagram” to search an optimal combination re-
gion based on “total equivalent dose”. Thall et al. [40] pro-
posed a model based two-stage Bayesian design for the trial
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of gemcitabine and cyclophosphamide. Like one-dimensional
CRM, dose combinations were first escalated along the diag-
onal direction in their two-dimensional dose region until the
maximum sample size of stage 1 is reached. Then two ad-
ditional treatment combinations were identified based on a
toxicity equivalence contour. Wang and Ivanova [44] pro-
posed a Bayesian design where they used a 3-parameter
model for the toxicity probabilities of the dose combina-
tion with two cytotoxic agents given together. They fixed
the level of one agent and varied the dose level of the other.
Then the two-dimensional dose-finding trial was converted
into a group of one-dimensional dose finding subtrials, and
the MTD was identified in each sub trial. Yin and Yuan [46]
developed a latent contingency table approach for the com-
bined agents. In their two-dimensional dose space, the doses
were allowed to be escalated and deescalated “non-diagonal”
toward a dose combination with acceptable toxicity. Sub-
sequently, Yin and Yuan [45] proposed another Clayton-
copula type regression model to link the joint toxicity proba-
bility with marginal probability. More recently, Wages et al.
[42] laid out the partial orderings of toxicity probabilities
across the treatment combinations, using CRM to estimate
MTDs along these orders.

Different from single agent trials, the interaction between
two agents may have significant impact on the joint toxic-
ity probability of the dose combination. The different states
of interactions are generally described as being independent,
synergistic or antagonistic. The independence model implies
that the two drugs have no apparent interaction with re-
spect to toxicity. Synergy occurs when the combined agents
exhibit greater toxicity than when they act independently.
Antagonism refers to the situation where one drug reduces
or neutralizes the toxicity of another [5, 17]. In the majority
of existing dose-finding methods for combined agents, mono-
tonicity of toxicity is assumed [40, 44, 45, 46, 47]. It says
that, the joint toxicity probability is increasing with doses of
either agent. Underneath this assumption, it is assumed that
only synergistic and independent effects take place between
the agents uniformly for all situations where the monotonic-
ity is assumed. However, the biochemical and biological ef-
fects of the combined agents are complex. Antagonism can
also happen, where the joint toxicity probability may de-
crease when one agent is added to another. This is rarely the
case in practice, but we usually do not know the direction of
the interaction when designing a trial on drug combination.
More importantly, it is not reasonable to assume that the
interaction in toxicities is consistent over all combinations
in the experimental dose region. The interaction of synergy
or antagonism may vary with the different dose combina-
tions in the two-dimensional space, which may also lead to
non- monotonicity of the dose-toxicity curve. As a specific
motivating example, consider a phase 1 combination study
of Neratinib and Temsirolimus for treating metastatic solid
tumors [16, 26]. For example, if we fix Temsirolimus at the
dose level 15 (mg), the observed DLT rates at dose levels of
(15, 120), (15, 160), (15, 200) and (15, 240) are calculated
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as 0%, 12%, 0% and 50%, respectively. Although the com-
bination of Neratinib with Temsirolimus shows substantial
synergistic tumor growth inhibition in preclinical studies,
we do not know how the two drugs will interact in terms of
toxicity. If emerging toxicity and dose data can be utilized
sequentially to update the two-drug interaction pattern and
the dose response surface, the dose escalating scheme can
be expected to be more efficient.

To address these issues, we develop a new joint model for
toxicity and interaction in clinical setting utilizing insight
from preclinical drug interaction modeling [15, 36] to define
the interaction. We propose to use the Bliss model to eval-
uate the binary toxicity outcome of combination therapy
of two agents and also incorporate an interaction function
to detect different patterns of synergy, independence or an-
tagonism across the combinations. We assume a parametric
model for the toxicity probability g(x,8), as a function of
the dose x and a parameter vector 8, and define a mawi-
mum tolerated region (MTR), which consists of the doses
that have the toxicity probabilities below the target toxicity
probability ¢,

(1)

Our primary goal is to determine the MTR. We propose
a Bayesian scheme in which we will estimate MTR as
MTR = {x : E{g(x,0)|data} < ¢} where the expecta-
tion is taken with respect to the posterior of 6. The fac-
tors, such as the efficiency of dose escalation process and
ethical requirements of the toxicity level staying within pre-
specified level, are also incorporated into our considerations.
Our solution is to search a dose-allocation path in the two-
dimensional space with a trade-off between toxicity and in-
teraction that provides efficient estimation of MTR while
locating the assignment to the least synergistic dose combi-
nations. As the trial proceeds, we sequentially update the
posterior estimates of the interaction effects and the toxi-
city surface. At each stage, the patient cohort allocated to
the next dose is determined by taking into consideration
the available toxicity and interaction effect estimates. At
the end of the trial, based on the preclinical data in vivo
and in vitro [13], one or more doses in the MTR may be
selected for subsequent trials. Selection of a bag of potential
candidates, i.e., the combinations belonging to the MTR,
separates the procedure from those which select a single
MTD in the multi-agent trial. The selection of a set of drug
combinations offers a useful alternative and provides more
flexibility for the choice of drug combinations to be used in
Phase II. Recognizing the complexity of the problem, the
final recommendations may be derived based on synthesiz-
ing information from the phase I data, external preclinical,
and clinical data, and even from adding expansion cohorts
of patients for the MTDs selected in the Phase I protocol.
The remainder of the article is organized as follows. In
Section 2, we introduce a novel Bliss model to evaluate the
toxicity probability and the interaction effect. In Section 3,
we describe a dose allocation algorithm that applies to this

MTR = {x:9g(x,0) < ¢}.



model. In section 4, we conduct extensive simulation stud-
ies to examine the operating characteristics of the proposed
method under various scenarios. Finally, we conclude with
a discussion on the characteristics of the proposed approach
and potential extensions.

2. TOXICITY PROBABILITY MODEL AND
PARAMETRIC ESTIMATION

In order to predict the toxicity response to a drug combi-
nation, it is important to characterize the nature of the drug
interaction. Loewe additivity and Bliss independence, rec-
ommended by the Saariselka agreement [1, 3], are two com-
monly used reference models for no interaction. The Loewe
additivity defines zero interaction by equation

(2)

where (da, dp) is the combination dose-level of agents A
and B, which produces an effect E, and D4 and Dpg are the
doses of agents A and B which produce the same magnitude
of the effect E, when either agent is given alone. The Loewe
additivity model is based on the assumption that a drug
has no interaction by itself and is used to assess the efficacy
of drug combinations. Under the Bliss independence model,
the expected effect of a combination of two agents can be
calculated from the single-agent effects E4(da), Ep(dp) by

3)

Let P(A) and P(B) be the marginal toxicity probabilities of
agents A and B, respectively. If agent A and agent B are in-
dependent, the probability of no toxicity in the combination
of A and B is

(4)

Thus, the joint toxicity probability of the agents is 1 — {1 —
P(A)}{1— P(B)}. Clearly, for the binary toxicity outcome,
the Bliss independence model is more appropriate as a refer-
ence model for identifying the interaction effects than Loewe
additivity. For dose levels d4 for agent A and dp for agent
B, the joint probability of toxicity has the form

(5)  g(da,dp) =1—{1—g(da,0)}{1 —g(0,dp)},

where g(da,0) and ¢g(0,dpg) are the marginal toxicity prob-
abilities of agents A and B, respectively. Then Bliss toxicity
synergy is defined as

(6)  g(da,dp) >1—{1—g(da,0)}{1 —g(0,dB)}.

For Bliss antagonism, the inequality is reversed. The Bliss
antagonism results in more lowering toxicity at a given drug
combination than that expected under Bliss independence.
To specify the toxicity response g(da,dg), several paramet-
ric models have been proposed in the literature. For ex-
ample, Yin and Yuan proposed both Clayton-copula and

dA/DA +dB/DB =1.

Eup)y = Ea+ Ep + E4EB.

1 - P(AUB) = {1 - P(A)}{1 - P(B)}.

Gumbel-copula models [45, 46]. However, the existing mod-
els are not able to describe dose response patterns when
some combination doses are synergistic while other combi-
nations doses are independent or antagonistic. To overcome
this limitation, we propose a factorial type Bliss model that
allows mixed interaction profiles for the combination ther-
apy using agents A and B on the binary toxicity outcome.
The probability of toxicity is modeled as follows:

(7) g(da,dp,0) =1 — [exp(—ads — Bdg)]f O172:da.ds)

where « > 0, § > 0 and 71, 72 are parameters to be es-
timated. The function f(v1,72,da,dp) is used to measure
the degree of synergy or antagonism of the different dose
combinations. We propose using the following form

(8)

The model satisfies the conditions that if dg = 0, then
g(da,0) = 1 — exp(—ady). This is the toxicity model of
single drug A. Similarly, when d4 = 0, then ¢(0,dg) =
1 — exp(—fdp) and the toxicity model reduces to that of
the single drug B. Thus, the implied single drug toxic-
ity models are the conventional exponential toxicity mod-
els that assume a monotonically increasing dose-toxicity
model at each margin. The proposed model captures an-
tagonism when f(vy1,72,da,dp) < 1, independence when
f(v1,72,da,dp) = 1 and synergy when f(v1,72,da,dp) >
1. Hence, we call f(vy1,72,d4,dp) the interaction function.

To estimate parameters a, 3,71, Y2, we adopt a Bayesian
approach. Without loss of generality, we rescale the
dose space to [0,1]? and specify the model based on the
rescaled doses. One of the reasons for rescaling is for
numerical stability of the Bayesian computation scheme.
Let 0 < a1 < --- < ay < 1 be the specific dose levels
of drug A and 0 < b < -+ < by < 1 be the specific
dose levels of drug B. Suppose n;; patient received the
dose combinations (a;,b;). Denote y;j;, = 1 if the m-th
patient at dose level (a;, b;) experienced toxicity, otherwise,

Yijm = 0. Assume that dose allocation and the associated
L

Z n;; patients, Qp =
ij=1

{(alv blv yl,l,l)v Tty (alv bla yl,l,nu)a Ty (aLa bL» yL,L,nLL)}
are available. The likelihood of the unknown parameter
vector is given by

f(r,72,da,dp) = exp(—dadp(v1da + 72dB)).

toxicity data from the first n;, =

MNij

L
©) £(0) o T] [T lo(aib;. 001 [1 — glas. by, 0)] ¥

i,j=1m=1

In this nonlinear model, estimates of nonlinear parame-
ters may be highly correlated with each other, especially
when covariates themselves are correlated [25]. This “ill-
conditioning” may cause difficulty in estimating parameters
simultaneously. Thus, we use informative priors for param-
eters a and 3, which may be estimated based on either the
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historical data from previous single agent trials or elicita-
tion of expert opinion. We will assume that the parame-
ters a and S follow a gamma distribution m () = m(8) =
Gamma(vy, vs) since o and § are positive. The results with
different prior parameters vy and vy are similar for over-
all performance as shown in Table 5b below. Parameters
(71,72) are assigned vague priors with ma(vy1) = ma(y2) =
N(n1,72). We center the prior mean n; at 0 with a relatively
large variance. For our specific case, we choose the variance
72 to be 100. The prior distributions of the model parame-
ters are taken to be independent. The posterior density of

0= (a75771ary2) is given by
(10) H(6I01)  L(21]8)7(6),

where 7(0) = m1(a)m (8)m2(v1)m2(72). The posterior dis-
tributions of the unknown parameters are computed using
Markov chain Monte Carlo (MCMC) algorithm. The first
crucial step is to use the posterior mode estimate as an initial
starting point. Let the logarithm of the posterior density be,

(11)

We denote the posterior mode 6 by 6. Using the Laplace
approximation, # can be approximated as:

h(0182r) = log(H (0|QL)).

(12) 6 ~ MVN(O,(—h"(0)7").
The posterior mode 6 is found by maximizing posterior k()
using the Nelder-Mead algorithm [29]. In addition, in order
to construct a proposal distribution, we also compute the
variance-covariance matrix (—h”(8))~! evaluated at 6. The
posterior density is simulated by alternate use of a random
walk proposal and an independence chain [18]. We start the
simulation with initial state @ = 6. The independence chain
uses a proposal based on an MV N (8,3) approximation to
the joint posterior distribution. Specifically, given 0(‘9), to
generate the sample e+ joint posterior distribution, the
Metropolis algorithm is summarized as follows:

1. Sample 8* ~ MV N(0°,(—h"(6%))71).
h(6"|QL)
h(O@® QL)
3. Sample u ~ uniform(0,1); set 8°t! = 6* if u < 7 and

01 = 6° otherwise.

2. Compute the acceptance ratio r =

We run 5,000 iterations of the Metropolis independence
chain but discard the first 1000 draws. The toxicity prob-
ability is evaluated at the each iteration. The estimated
posterior toxicity probability p(@) is calculated by averag-
ing all these toxicity probabilities. We evaluate the model
performances by using this sampling scheme and present
the percentage of interaction functions, identifying the true

synergy or antagonism in Web Appendix A.

3. DOSE FINDING ALGORITHM

In this section, we propose a method to find the maximum
MTR for a given target probability. The method integrates
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the toxicity interaction of the two drugs and the Bayesian
adaptive dose-finding algorithm. The primary goal of the al-
gorithm is to determine the shape of the MTR. At the same
time, because therapeutic benefit always exists at higher
doses, it is desirable to bring more patients to higher doses,
while restricting the escalation to the MTR. To incorporate
this feature, our next step is choosing the next dose com-
bination x,1 from the potential escalation set E; to find
the dose combination which has the smallest posterior mean
toxicity, such as x,41 = argminE{7(x, 8)|data}. This ap-

xekby
proach has the benefit of allowing the design to explore more

area in the MTR dose space. For example, within a two-
dimensional dose-finding trial, a number of dose combina-
tions among the escalation dose set have an estimated proba-
bility of toxicity within the MTR as marked in Figure 1. Let,
at stage ¢, the current dose combination be (a;, b;) = (a,b).
Our allocation scheme defines the potential escalation set
as By = {(at_7b:—)7(atvb?_%(a’j_vbzr%(a:_vbt)v(ag_vbt_)} and
the potential de-escalation set as D; = {(a; ,b;"), (a; , ),
(a; ,b;), (as,b; ), (a),b;)}. Then the dose with posterior
mean probability of DLT closest to the target toxicity
probability ¢ is chosen for cohort m + 1, that is x,41 =
argmin|E{7(z, 0)|data} — ¢|, as commonly used in many
zeFEy

single agent dose-finding designs [35]. Then the next cohort
(referring to Figure 1) are treated at combination (ay,b;);
trial would stop as it almost reaches the boundary of MTR.
However, this allocation of doses means that little data has
been acquired about the toxicity when high doses of drug A
are given. Choosing the dose combination with the smallest
toxicity probability is likely to prolong the escalation to the
higher doses in the hope of learning more about the MTR.
This feature differentiates the proposed design from other
escalation methods where the goal is to reach the MTD in
the quickest way possible. Since we are interested in the en-
tire MTR, and not just a dose combination on the boundary
of the region, we devise a method that is better suited for
exploration of the dose region. Another goal is to bring the
trial to dose combinations that have the least synergistic
toxicity so that the patients can be safely assigned to a rela-
tively high dose of individual drugs, which otherwise would
not have been possible for a single drug scenario. Thus, pa-
tients can be exposed to doses with potentially greater effi-
cacy without experiencing significant toxicity. Our strategy
is to incorporate both toxicity probability and interaction
function into a single objective function. To stabilize the
computation, we rescale the range of the interaction func-
tion to [0, 1] to match the range of the probability function.
Let da € {a1, -+ ,a;} and dg € {by,---,bs}. For given
dose levels of agent A at d4 and agent B at dpg, the rescaled
interaction function can be defined as:

f(v1,72,da,dB)
f(’}/l?’YdeAvdB) + 1

The goal is to locate a dose combination by minimizing a
combination of the interaction function v(da,dp) and the

(13) ’U(dA,dB) =
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Figure 1. Dose escalation and de-escalation diagram with 5 x b combinations. It also illustrates a next dose combination
chosen in a typical case. Suppose the current dose is treated at (a,b;), represented by a circle enclosing a star. The potential
escalation dose set is represented by a shaded circle. The target toxicity probability contour at 0.3 is considered to be the
boundary of MTR region.

toxicity probability g(da,dg), subject to the constraint that
the toxicity probability is no more than a pre-specified value.
We define the objective as a convex combination of the
probability of toxicity at dose (da,dp) and the interaction
v(da,dp) at that dose. The choice of X reflects how much
emphasis one would like to put on having more allocation
at antagonistic combinations.

(14)  Ux(da,dp) = Ag(da,dp) + (1 = Av(da, dp).
where 0 < A < 1. Toxicity probability and interaction func-
tion are considered jointly through the objective function
with the relative contribution of each component controlled
by the weight A. Smaller values of U would indicate smaller
values of the standardized interaction leading to less synergy
and smaller toxicity probability. Therefore, the Bayesian
adaptive dose-finding design developed also minimizes the
objective function. The next dose combination may be cho-
sen to minimize the posterior expectation of the objective
function given the current data z,,

(15) Xpt+1 = argminE{U,(x, 0)|z, }.

In most adaptive design schemes, involving tuning parame-
ters, reasonable values of the tuning parameters are deter-
mined through external validation. We conduct extensive
empirical studies to evaluate possible A values over several
plausible scenarios in Web Appendix B. We define a perfor-
mance measure for the adaptive algorithm as a function of A
and optimize the measure over possible values of A to glean
insight into an acceptable range of values for the parameter.
Based on our investigation, as reported in the Appendix, a
“base case” when A= 0.5 is recommended.

Before we describe our main algorithm, we define some
notation. For any dose a for drug A, define ¢~ and at as
the doses immediately preceding and immediately following
a, respectively, in the sequence of chosen doses. Similarly
define b~ and b™ for dose b of drug B. We denote m; as the
posterior estimate of the toxicity probability surface at stage
t. Let ¢ be the target toxicity probability in the trial, and
Cs, €, Ce and cg be some prespecified threshold probabilities.
We initiate the algorithm at the lowest dose levels of the
two agents.

1. The first cohort of patients is treated at the starting
dose combination (aj,b1).

2. Subsequently, two other cohorts of patients are esca-
lated to the dose levels (a1,b2) and (ag,b;), respec-
tively.

Based on the collected data from (a1, b1), (a1,b2), (az,b1),
we estimate the objective function for (aq,bs3), (az,bs),
(as,b1). Moreover, to constrain the doses to be escalated
only within the MTR, we also examine whether the pre-
dictive toxicity probabilities of (a1, b3), (az,b2), (as,b1), de-
noted by mg, satisfy,

(16) Pr(rg < ¢) > c¢s.

The dose pair that meets this condition and also has the
smallest posterior expectation of the objective function is
chosen as the next combination (as,by) where s,s° > 1.
Because the posterior estimates are often quite unstable at
the initial stage, if we cannot find the next dose pair that
satisfies condition (16), we would repeat the initiation pro-
cedure. If there is still no suitable dose pair, the trial would
be terminated for safety.
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Our scheme allows the escalation or de-escalation in five
directions to increase its adaptability to the shape of the
surface, as illustrated in Figure 1. Although monotonic tox-
icity is not assumed, from a conservative point of view, our
design still deescalates the trial if the toxicity is high. In our
method, each escalation or de-escalation step is restricted
by one level of change.

After these initial steps, the rest of the trial proceeds ac-
cording to the allocation scheme described in the following:

At stage t, the following algorithm is used to select
(at+1,bi41) or to decide termination of the trial.

1. If the toxicity probability at the current dose combina-
tion (ay, by), denoted by ¢, satisfies

(17) Pr(me < ¢) > ce,

we will consider escalating the dose to the potential
escalation set E;. To constrain the doses to be escalated
only within the MTR, we further examine whether the
predictive toxicity probabilities of at least one of the
potential combinations F;, denoted by 7g,, satisfy

(18) Pr(rg, < ¢) >c,

and select (a¢41,b41) to have the smallest value of the
objective U(a¢+1,bi41) in the subset of E;, satisfying
(18). If there is no suitable next point, the trial would
be terminated.

2. If the toxicity probability at the current dose combina-
tion,

(19) Pr(m > ¢) > cq,

we will examine whether at least one of the predic-
tive toxicity probabilities of the potential adjacent de-
escalated set D;, denoted by 7p,, satisfies

(20) Pr(mp, < ¢) > ¢,

and select (a¢41,b+1) to have the smallest value of the
objective in the subset of D; satisfying (20). If there is
no suitable next point, the trial would be terminated.

3. If the toxicity probability at the current dose combina-
tion,

(21) Pr(me > ¢) > ¢,

The trial will be terminated.

4. Otherwise, the next cohort of patients will be allocated
at the current dose.

5. The trial continues until the maximum sample size is
reached. Once the trial is terminated, the dose com-
binations that have toxicity probabilities less than the
target ¢ are selected as the MTR combinations.

There are several thresholds involved in the algorithm. The
values of ¢, cg, ¢, cq, c; are typically prespecified. The over-
all performance of the algorithm is expected to be a func-
tion of the values of the thresholds. We use the same values
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and similar rationale for setting threshold as previously dis-
cussed in Yin and Yuan’s algorithm [46]. The ¢, and ¢4 are
used to control the rate of escalation or de-escalation; the c,
cs and ¢; are chosen to avoid the intensive toxicity. As with
other algorithms with pre-specified parameters, the optimal
range of values for each threshold can only be determined
through full scale external validation. Some thresholds may
have natural bounds beyond which values will be deemed
unreasonable. Others may need extensive simulation studies
for understanding the operating characteristics of the algo-
rithm as a function of the values of those thresholds. We
have performed limited simulation studies and have recom-
mended some values for the thresholds that were not found
in Yin and Yuan’s algorithm. What we have relied on is a
qualitative understanding (e.g. high/low) of desirable range
of values for each threshold. However, a full scale sensitivity
study is still warranted for fully understanding the limits of
the performance of the proposed algorithm as a function of
the thresholds.

4. SIMULATION STUDY

We examine the performance of the proposed dose-finding
algorithm for two-agent combinations under 10 toxicity sce-
narios as listed in Table 1. The scenarios are constructed
to imitate real trial data where toxicity probability surfaces
have various shapes in the dose combination space. In the
simulations, we first consider the selection probability for
the MTR combinations, since the goal of Phase I combi-
nation study is to find the MTR. In other side, the mis-
classification rate of MTR selection is also considered (The
false positive rate is the proportion of combination doses
outside MTR that are incorrectly classified as MTR, dose
combinations. The false negative rate is the proportion of
MTR dose combinations that are incorrectly classified as
combination doses outside MTR.). Furthermore, a sensitiv-
ity analysis of different prior selections for parameters is
conducted.

We illustrate the first four scenarios in terms of the con-
tours of constant toxicity probability in Figure 2. They
represent the agent combination trials with different pat-
terns of the MTR, in which each agent has five dose levels.
We specify the dose levels of agent A (aq,as2,as,aq,a5) as
(0.125, 0.25, 0.375, 0.5, 0.625), and the dose levels of agent
B (b1, ba, b3, bg, bs) as (0.1, 0.3, 0.5, 0.7, 0.9). Scenarios 510
consider the toxicity surfaces to be monotonically increased.
Specifically, Scenarios 5-8 were originally examined by Yin
and Yuan using their contingency table design [46], whereas
Scenarios 9-10 were examined in their copula regression de-
sign [45]. In similar settings, we assume the maximum sam-
ple size is 60 patients with a cohort size of 3 and the tar-
get toxicity probabilities of ¢ = 30% for scenarios 1-8 and
¢ = 40% for Scenarios 9-10, respectively. The threshold
values used in dose escalation and trial termination are also
specified accordingly. We use the same threshold values as in



Table 1. Toxicity scenarios for the two-drug combinations. The target MTR combinations are in boldface

Drug A
Dose Level 1 2 3 4 5 1 2 3 4 5
Scenario 1 Scenario 2
5 0.45 0.48 044 0.33 0.20 0.21 0.14 0.12 0.13 0.17
4 0.36 0.38 0.34 0.28 0.21 0.23 0.21 0.22 0.27 0.39
3 0.27 0.30 0.28 0.25 0.22 0.22 0.25 0.30 0.39 0.55
2 0.19 0.22 0.23 0.23 0.19 0.18 0.23 0.30 041 0.55
1 0.11 0.16 0.19 0.22 0.26 0.11 0.17 0.23 0.30 0.39
Scenario 3 Scenario 4
5 0.35 038 041 0.56 0.78 0.36 0.33 0.29 0.26 0.25
4 0.30 0.36 0.43 058 0.79 0.32 032 033 0.29 0.28
3 0.26 0.33 0.40 054 0.72 0.26 0.28 0.29 0.30 0.35
2 0.19 0.25 0.33 044 0.58 0.19 0.23 0.26 0.28 0.29
1 0.11 0.17 0.23 0.30 0.37 0.11 0.16 0.21 0.25 0.27
Drug B Scenario 5 Scenario 6
4 0.50 0.55 0.60 0.70 0.30 050 0.55 0.60
3 0.15 0.30 0.50 0.60 0.12 0.30 0.50 0.55
2 0.10 0.12 0.30 045 0.10 0.15 0.30 045
1 0.06 0.08 0.10 0.15 0.08 0.12 0.16 0.18
Scenario 7 Scenario 8
3 0.15 0.30 0.50 0.55 0.60 0.50 0.60 0.70 0.80 0.90
2 0.12 0.16 0.30 050 0.55 0.10 0.30 0.50 0.70 0.80
1 0.06 0.08 0.10 0.30 0.50 0.06 0.10 0.15 0.30 0.50
Scenario 9 Scenario 10
4 0.54 0.67 075 0.81 0.86 049 0.58 068 0.75 0.81
3 0.48 059 068 0.75 0.81 0.40 049 0.59 0.68 0.75
2 0.40 0.45 059 0.67 0.74 0.27 0.40 0.45 059 0.67
1 0.24 0.40 0.47 056 0.64 0.18 0.29 0.40 047 0.56

Yin and Yuan’s algorithm; ¢, = 0.7, ¢q = 0.45 for Scenarios
1-8 and ¢, = 0.8, ¢4 = 0.45 for Scenarios 9-10. We set ¢5 =
0.55,¢ = 0.7,¢; = 0.9, and simulate 2000 trials under each
scenario. Moreover, instead of generating toxicity probabili-
ties from our model, we choose the toxicity probabilities ar-
bitrarily to demonstrate robustness of the proposed design.

Table 2 presents the selection probabilities for the MTR
combinations under Scenarios 1-4, and also reports the num-
bers of patients treated at each dose combination averaged
over 2000 simulations in those 4 scenarios. The boundary
of MTR under Scenario 1 is a U-shaped contour for target
toxicity probability at 0.3, whereas the boundary contour
under Scenario 2 is in C-shape. Both scenarios are designed
to examine whether the proposed method would allocate pa-
tients into the MTR, as the toxicity probability may not in-
crease in either the vertical or the horizontal directions. Our
proposed procedure is able to select the MTR dose combi-
nations with higher frequency compared to the ones outside
the MTR. At least 86% of patients have been allocated into
the MTR under both scenarios. The MTR in Scenario 3 is
located at the lower left-hand corner of the two-dimensional
space. Our design identifies the MTR in the correct position
and stops the trial earlier before a large number of patients
are treated at toxic doses. Scenario 4 is the most complex
case with an x-shaped boundary. Typically escalation al-

gorithms will have difficulty in identifying such MTR. Our
method still allocates the patients into the MTR with high
percentages. Although our method selects some dose combi-
nations outside the MTR with relatively high percentages,
it is expected, given that their toxicity contours are very
close to the boundary.

Table 3 reports the selection probabilities for the MTR
combinations and the numbers of patients treated across
each dose combination under Scenarios 5-10, in which the
toxicity surfaces are monotonically increasing as MTDs are
considered to be on the boundary of the MTRs. It implies
that our proposed procedure is able to select the MTR. dose
combinations with higher frequency compared to the ones
outside the MTR in all the scenarios, even in cases when
the proposed method performs less well. For instance, un-
der scenario 8, our method allocates a relatively large por-
tion of patients to the doses outside MTR, such as the doses
(a1,b3) and (ag,bs). However, in terms of correctly select-
ing the MTR, the proposed design yields a higher percent-
age for the doses inside the MTR when compared with the
ones outside. We compare the percentage of observed tox-
icities and the percentage of patients treated at or below
the MTDs between the proposed method and the two de-
signs of Yin [45, 46]. In terms of the percentage of observed
toxicities, the designs of Yin and Yuan only gain slightly
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Figure 2. Scenarios for the probability of toxicity as a function of Drug A and B doses in combination trial. The target toxicity
probability contour at 0.3 is considered to be the boundary of MTR region.

in performance with a smaller percentage of observed tox-
icities in Scenario 9. However, in Scenarios 5, 6, 7, 8 and
10, our method improves upon the performance of Yin and
Yuan considerably in each case. The proposed design also
performs well in locating patients at the doses under the
target toxicity probability. In Scenarios 5, 6, 7, 9 and 10,
our method improves the percentage of patients under or
below the MTDs, at least 4% higher than those with the
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Yin and Yuan’s method. Our method performs worse un-
der scenario 8 since the movements of our design might be
constrained when the dose levels of two drugs are quite im-
balanced. However, the performance of our method could be
improved by using more stringent thresholds. The simula-
tion results indicate that the overall performance of the new
method is satisfactory and it offers an attractive alternative
to the existing two-dimensional dose-finding methods. Fur-



Table 2. Percentage of MTR selection and number of patients treated at each dose combination under scenarios 1-4; the
target MTR combinations are in boldface

Drug A
Percentage of MTR Selection Number of Patients Allocation
Dose Level 1 2 3 4 5 1 2 3 4 5
Scenario 1 Scenario 1
5 7.1 5.1 4.4 4.5 10.5 0.15 0.21 0.07 0.04 0.29
4 9.1 4.5 4.4 10.5 12.3 0.38 0.33 0.05 0.36 0.19
3 19.7 7.2 11.5 14.1 14.3 1.42 0.01 0.89 0.04 0.39
2 82.2 33.1 24.1 20.2 20.3 4.82 1.79 0.07 0.33 0.64
1 99.9 98.5 62.6 41.8 33.3 3.85 4.94 256 1.04 0.32
Scenario 2 Scenario 2
5 21.1 20.0 164 12.4 15.2 0.27 0.55 0.47 0.31 0.39
4 23.3 18.7 12.6 13.4 129 0.50 0.46 0.02 0.31 0.04
3 32.0 179 13.9 127 8.8 1.49 0.03 0.77 0.03 0.06
2 84.0 32.0 17.3 10.5 9.2 4.56 1.65 0.07 0.28 0.25
1 99.9 98.6 55.3 30.1 20.2 3.82 4.80 2.52 0.89 0.24
Drug B Scenario 3 Scenario 3
5 9.8 6.8 3.8 1.7 2.5 0.25 0.32 0.16 0.04 0.06
4 12.2 5.2 1.9 2.8 3.7 0.42 041 0.06 0.18 0.01
3 22.0 5.2 3.9 4.7 3.9 1.55 0.01 078 0.03 0.05
2 81.2 26.3 10.7 7.1 6.2 5.03 1.91 0.09 0.26 0.29
1 99.9 98.3 55.9 29.8 194 3.87 5.24 2.71 0.96 0.27
Scenario 4 Scenario 4
5 114 8.8 6.4 5.2 10.1 0.25 0.36 0.18 0.10 0.27
4 14.0 7.9 5.4 10.2 10.7 0.42 0.41 0.04 0.37 0.12
3 24.2 104 11.5 11.4 10.1 1.44 0.01 0.85 0.05 0.26
2 82.9 314 20.0 15.3 15.0 4.84 1.62 0.05 0.32 0.54
1 99.9 98.3 59.7 37.3 284 3.83 5.03 2.56 0.96 0.32

ther details regarding results of the alternative methods are
provided in Web Appendix C.

Table 4 exhibits the misclassification rate of MTR selec-
tion across these 10 scenarios. Our method might be conser-
vative, as false negative rates are relatively high compared
to false positive rates. However, our scheme performs rea-
sonably well to control false positive rates in most of the
scenarios.

We also conduct a sensitivity analysis to examine our
design under the different sets of parameter values for the
prior distributions under scenario 1. We choose two diffused
prior distributions for parameters o and § and we also in-
vestigate the situation when the prior distributions for in-
teraction parameters y; and 7, are more informative. From
Table 5a, the selection probabilities and number of patients
allocated at each dose combination are quite similar under
different sets of hyperparameters. We also investigate the
operating characteristics across different prior distributions.
Table 5b summarizes the percentage of observed toxicities,
the percentage of patients treated at or below the MTDs,
the sample size and the misspecification rate under each set
of prior distribution. Again, our scheme is robust with re-
spect to the prior specifications and there are only slight
variations in terms of operating characteristics. Simulation
study is also conducted to study the operating characteris-

tics for dosing individuals at synergy or antagonism regions
of the dose space. The simulation results (Web Appendix
C) demonstrate that our method can correctly identify the
true synergy or antagonism with a high percentage in gen-
eral. Although the percentages at some dose combinations
under scenarios 1 and 2 are only around 50%, it is reason-
able given that they are on the boundary between synergy
and antagonism.

5. DISCUSSION

We have proposed a model-based Bayesian adaptive
method for drug combination trials without assuming that
toxicity monotonically increases with the dose, an issue
which has been neglected by most studies that only concern
traditional cytotoxic drugs. With the recent development
of oncology drugs, the combination therapy has started to
focus on molecularly-targeted therapies, vaccines, and im-
munotherapy. If either agent is not cytotoxic, Thall et al.
[40] suggested that the method must account for the possi-
bility that the joint toxicity probability may not increase in
doses of each drug. Our method is developed by acknowledg-
ing that the interaction of two drugs may exhibit additive,
antagonistic or synergistic behavior when they are admin-
istered together. Many existing toxicity response model in
two-dimensional dose finding methods require the constant
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Table 3. Percentage of MTR selection and number of patients treated at each dose combination under scenarios 5-10; the
target MTR combinations are in boldface

Drug A
Percentage of MTR Selection Number of patients Allocation
Dose Level 1 2 3 4 5 1 2 3 4 5
Scenario 5
4 38.8 8.1 5.5 4.3 1.26 0.46 047 0.25
3 96.3 43.1 178 12.3 5.24 0.81 166 0.17
2 99.9 83.0 35.6 18.0 3.84 9.01 0.23 0.69
1 99.9 98.1 70.9 37.2 3.24 0.60 1.12 041
Scenario 6
4 45.8 11.2 7.1 4.8 1.57 0.69 042 0.24
3 96.5 45.0 15.2 9.6 5.17 1.22 142 0.10
2 99.9 80.5 28.6 13.1 3.94 8.73 0.14 048
1 99.9 98.1 634 27.1 3.32 0.63 0.94 0.24
Scenario 7
3 47.5 34.5 9.8 2.2 1.0 2.26 4.62 1.29 023 0.03
2 85.8 26.6 4.8 1.8 1.4 3.84 1.30 0.46 0.16 0.04
Drug B 1 99.9 99.9 894 45.0 19.9 3.09 0.83 1.86 1.20 0.60
Scenario 8
3 11.1 5.3 0.2 0.2 0.2 3.32 3.51 0.11 0.01  0.00
2 75.5 9.1 0.9 0.3 0.4 4.92 0.34 0.06 0.06 0.01
1 99.9 99.9 91.8 42.7 126 3.13 1.82 2.38 1.21 0.38
Scenario 9
4 2.7 0.5 0.2 0.1 0.0 0.17 0.05 0.00 0.00 0.00
3 9.6 0.9 0.1 0.0 0.1 1.12 0.02 0.02 0.00 0.00
2 71.0 6.5 0.5 0.3 0.2 9.85 534 0.02 0.01 0.01
1 99.9 79.2 10.1 2.2 0.7 5.24 4.54 166 0.19 0.02
Scenario 10
4 10.1 2.8 0.6 0.3 0.1 0.57 0.17 0.02 0.01 0.00
3 33.1 4.1 0.9 0.2 0.1 2.73 0.11 0.06 0.03 0.00
2 92.8 23.8 3.3 1.2 0.6 11.25 5.71 0.12 0.04 0.02
1 99.9 93.6 33.6 8.6 2.8 4.41 7.06 2.46 0.67 0.08
Table 4. False positive and false negative misclassification rate of MTR selection
Scenario
Misclassification Rate 1 2 3 4 5 6 7 8 9 10
False Positive 1.6 3.0 4.0 2.3 6.5 3.8 2.4 2.1 1.7 1.8
False Negative 474 506 15.0 525 148 197 244 121 25 11.2

Note: The false positive rate is the proportion of combination doses outside MTR that are
incorrectly classified as MTR dose combinations. The false negative rate is the proportion of
MTR dose combinations that are incorrectly classified as combination doses outside MTR.

drug-drug interaction function while some assume only syn-
ergistic effects between the combination agents. We demon-
strate that the assumption of synergistic interaction is too
restrictive and the joint toxicity probability may not be in-
creasing in doses of both agents as compared to either one
used alone. The monotonicity assumption may fail when
synergy and antagonism are interspersed in different regions
of combination space. Moreover, some of the existing models
such as Thall et al. [40] are inadequate to describe the joint
toxicity probabilities because their models do not satisfy
the Bliss independence. For instance, when independence
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happens, Thall et al.’s joint toxicity probability model can-
not be expressed as 1 — {1 — P(4)}{1 — P(B)} in terms
of the Bliss independence model. One important contribu-
tion of this article is that our approach naturally models the
drug-drug interaction effects through a Bliss factorization,
in which the proposed model can fully describe the varying
interaction effect of the combined drugs, as well as evaluate
its corresponding joint toxicity profiles.

Our approach identifies a region which is bounded by a
tolerable toxicity probability ¢. Fang et al. [13] described
a method for interaction analysis of the preclinical combi-



Table 5a. Sensitivity analysis: selection probabilities and number of patients treated at each dose combination under
alternative prior specifications in scenario 1; the target MTR combinations are in boldface

Percentage of MTR Selection

Number of patients Allocation

Dose Level 1 2 3 5 1 2 3 4 5
Set 1: a, B ~ Gamma(2.5,5);v1,v2 ~ N(0,100)
5 8.9 4.3 3.1 3.6 7.0 0.30 0.15 0.03 0.02 0.18
4 13.8 4.9 3.8 8.4 8.3 0.60 0.12 0.04 0.32 0.11
3 34.7 12.1 11.3 9.4 8.5 1.56 0.07 0.78 0.04 0.23
2 84.4 37.2 20.7 13.9 13.0 4.67 1.50 0.07 0.07 0.39
1 99.9 97.4 70.0 42.0 284 3.78 4.77 2.19 1.11 0.50

Set 2: a, 8 ~ Gamma(5,5);v1,v2 ~ N(0,100)

5 7.0 9.1 9.1 8.6 21.7 0.04 033 0.12 0.05 0.61
4 6.9 7.7 7.1 21.0 25.1 0.03 0.54 0.04 0.87 0.34
Drug B 3 7.6 6.7 17.7 23.5 27.1 1.18 0.01 1.34 0.03 0.59
2 52.0 27.9 25.8 28.8 29.2 3.68 1.30 0.01 0.89 0.61
1 99.9 86.7 48.9 32.7 274 3.78 3.76 1.24 0.09 0.09
Set 3: a, B ~ Gamma(5,5);v1,v2 ~ N(0,50)
5 9.4 12.8 12.0 13.8 20.6 0.00 0.10 0.25 0.06 0.58
4 9.3 10.8 13.1 18.2 21.1 0.00 0.55 0.01 0.87 0.19
3 11.5 9.3 13.9 18.4 20.2 1.05 0.02 1.17 0.00 0.32
2 59.6 26.6 22.6 19.3 17.6 4.07 1.91 0.00 0.55 0.19
1 100.0 92.2 43.3 22.2 15.9 4.23 4.15 0.86 0.05 0.00

Table 5b. Sensitive analysis: operating characteristics

Set 1 2 3
% of observed toxicities 19.9 20.2 19.4
% of patients given
doses at or below the MTD 94.7 94.7 95.5
Sample size 23.6 21.6 21.2
Misclassification Rate
False Positive 1.7 2.2 3.2
False Negative 47.8 47.6 49.9

nation studies. Based on the preclinical interaction data in
vivo and in vitro, several dose combinations in the MTR
may be recommended for consideration for further study.
Our dose finding scheme is based on posterior distributions
of both toxicity and interaction function outcomes. We con-
struct an objective function to provide the acceptable bal-
ance between toxicity and interaction, thus the patients are
assigned to the dose combinations that minimize the objec-
tive function. Our extensive simulation studies under various
scenarios demonstrate that the proposed design performs
satisfactorily with expected operating characteristics. The
proposed method is also compared with existing methods
where the toxicity surfaces are considered to be monotoni-
cally increasing. The proposed method demonstrates satis-
factory performance in general.

The proposed method does not assume any toxicity-dose
relationship; the toxicity surface is captured and reshaped
only in the search for MTR, making it feasible in actual clin-
ical trial design. We have used a parametric function to de-
tect drug interactions given the small sample nature of phase
I design. When the patterns of drug interactions are com-
plex, it would be worthwhile to consider semi-parametric
extension to the current model to detect different patterns
of drug interaction. Such extensions will be investigated in
a separate report.
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APPENDIX A. SIMULATION ON MODEL
PERFORMANCE

We consider a simulation design that resembles the data
for each scenario. Each simulated sample contains n=75 ob-
servations. We choose the dose level of agent A at (0.125,
0.25, 0.375, 0.5, 0.625) and agent B at (0.1, 0.3, 0.5, 0.7,
0.9). The cohort size is 3. The response is simulated by a
binomial trial, given by y ~ Bin(3,g(a;,b;,0)). The sim-
ulation is repeated 1000 times for each scenario. For prior
distributions, we take 71 () = m1(8) = Gamma(25,50), and
non-informative priors m3(y1) = m2(v2) = N(0, 100), respec-
tively. We examine whether our model can correctly identify
the interaction effect, synergy or antagonism, at each sce-
nario in Figure A4.
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Figure A3. Toxicity probability contour and interaction function contour under Scenarios 1-4.

15t Scenario: the interaction effects between two com-
bined agents change from synergy to antagonism. The con-
tour plot of interaction function f(v1,72,da,dp) is used to
measure the degree of synergy or antagonism with the dif-
ferent dose combinations on the right panel that describes
the interaction profile in the two-dimensional dose space.
The straight line (marked as 1) represents the independence
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of two agents. In the left-hand upper space, synergy is the
dominant effect between two agents. Antagonism becomes
dominant when the dose space moves to the right bottom.

2nd Scenario: the interaction effects between two com-
bined agents change from antagonism to synergy. After the
dose of agent A increases beyond a certain dose, the in-
teraction effects between two combined agents change from
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Figure A4. The last 4 figures of a continued Figure A3.

antagonism to synergy. We also illustrate this situation in
contour plots. Compared to the interaction index in the 15
scenario, antagonism and synergy turn around in the dose
space.

3*d Scenario: the interaction between two combined
agents has increasing synergy effect. The model here shows
that the combination therapies only have the synergy effect

on toxicity probabilities across all the dose combinations.
With the dose level increases, the synergy effect also in-
creases.

4*h Scenario: the interaction between two combined
agents has increasing antagonism effect. In contrast to the
scenario above, the combination therapies only have the an-
tagonism effect on toxicity probabilities across all the dose
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combinations. The joint toxicity probability decreases as the
dose increases, which means the antagonism effect is increas-
ing.

We use “47 or “—” to denote the antagonism or syn-
ergy effect for each dose combination under each scenario as
shown in Table A7. Table A8 demonstrates that our model
can correctly identify the true synergy or antagonism with
a high percentage in general. Although the percentages at
some dose combinations under scenarios 1 and 2 are only
around 50%, it is reasonable given that they are on the
boundary between synergy and antagonism.

APPENDIX B. EVALUATION OF X ON
OBJECTIVE FUNCTION

To tune the value of the parameter A in the objective
function (14), we perform a simulation experiment. We first
define a performance measure for the algorithm in terms of
A and glean knowledge about reasonable range of values for
A by studying the optimal values of the performance mea-
sure as a function of A\. There are three considerations that

Table A7. Antagonism (+) or synergy effect (-) for each dose

combination
Drug A
Dose Level 1 2 3 4 5 1 2 3 4 5
Scenario 1 Scenario 2
5 + 4+ + + + - - - -
4 + + + + + - - - - -
3 + + + + + - - - - -
2 + 4+ + - - - - -+t
Drug B 1 + - - - - + + + + +
Scenario 3 Scenario 4
5 + 4+ + + + - - - -
4 + + + + + - - - - -
3 + + + + + - - - - -
2 + 4+ + + + - - - -
1 + + + + + - - - - -

Table A8. Percentage of interaction function

are used in defining the performance measure and hence
there are three ‘penalty’ terms that we want to minimize
simultaneously for good performance. For a “good” value of
A, the toxicity probability surface should be well estimated
and hence the performance measure includes the estimation
error of the toxicity probability at the allocated doses. The
second consideration is that the algorithm is expected to be
heavily biased toward the antagonistic region. Hence we in-
clude the total amount of positive interaction (rescaled to
the [0, 1]) at the allocated doses. The final consideration is
the sample size. While it is intended that the algorithm ex-
plores the entire boundary of the MTR, it is also desirable
that the determination of the boundary is done with the
smallest possible sample. Thus we include the fraction of
maximum alloted sample, ny.x spent before the algorithm
terminates. To this end we define the following performance
measure where a smaller value of the measure indicates bet-
ter performance. Let a = (0, ---,A) and b = (0, --- , B).
Suppose a trial stops at n;'" patient with o' dose of drug
A and b dose of drug B, we define the measure as:

A B
M(Kv)‘) = K“(AB)_l [gn (da7db) _g(daadb)]2+
a=1b=1
(1- K‘)nt_l U(d27j7 dg:j) + 1 /Nma
j=1

where §; is the posterior estimate of the toxicity probability
based on the n; allocation and using vy and (df{,j, dg‘,j) is the
dose at which j* allocation occurred, i.e, the observed dose
sequence. The values of 0 < k < 1 and 0 < A < 1 are also

assumed. Now for each k, define A(k) = argminM (k, \).
A

We conduct an empirical study to investigate the behavior
of A(k) so that if one specifies a measure with xk = kg indi-
cating the preference for having low positive interaction in
the allocated dose combination. We construct four scenar-
ios with different shapes of the toxicity probability surfaces
as listed in Figure B5. Each simulated sample contains the

identifying the true synergy or antagonism at each dose combination

Drug A
Dose Level 1 2 3 4 5 1 2 3 4 5

Scenario 1 Scenario 2

5 949 964 97.8 98.3 955 94.0 96.6 98.5 99.0 99.0

4 95.8 976 98.6 95.6 73.8 94.2 974 98.9 98.0 91.0

3 97.3 99.0 94.8 63.8 42.8 94.7 984 96.4 796 66.5

2 98.6 884 48.1 67.1 75.0 97.7 90.8 60.1 49.8 52.7

Drug B 1 49.5 721 76.2 783 80.1 59.0 63.0 66.0 66.6 66.4
Scenario 3 Scenario 4

5 96.9 99.5 99.0 99.0 99.0 94.4 98.8 99.8 99.0 99.0

4 984 99.0 99.0 99.0 99.0 95.4 99.5 99.0 99.0 99.0

3 99.5 99.0 99.0 99.0 99.7 97.2 99.0 99.0 99.0 99.5

2 99.0 99.0 99.9 972 93.1 99.8 99.0 99.0 959 93.5

1 99.9 919 86.9 839 811 98.7 86.8 81.0 80.0 79.6
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Figure B5. Scenarios for the probability of toxicity as a function of Drug A and B doses in combination trial. The target
toxicity probability contour at 0.3 is considered to be the boundary of MTR region.

Table B9. M(k,\) under a grid for both A and « in Scenario 1. A(k) values are in boldface

K

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1
0.8793
0.8784
0.8780
0.8738
0.8720

0.8702
0.8787
0.8798
0.8776
0.8790

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8387  0.7980  0.7573  0.7166  0.6759  0.6353  0.5946  0.5539  0.5132
0.8380  0.7976  0.7571  0.7167  0.6762  0.6358  0.5954  0.5549  0.5145
0.8370  0.7960  0.7550  0.7140  0.6730  0.6320  0.5910  0.5500  0.5090
0.8328  0.7919  0.7510  0.7101 0.6692  0.6282  0.5873  0.5464  0.5055
0.8314  0.7908  0.7502  0.7096  0.6689  0.6283  0.5877  0.5471  0.5065
0.8293 0.7884 0.7475 0.7066 0.6656 0.6247 0.5838 0.5429 0.5020
0.8381  0.7975  0.7570  0.7164  0.6759  0.6353  0.5947  0.5542  0.5136
0.8392  0.7985  0.7579  0.7173  0.6766  0.6360  0.5954  0.5548  0.5141
0.8366  0.7956  0.7546  0.7136  0.6726  0.6316  0.5907  0.5497  0.5087
0.8383  0.7975  0.7567  0.7160  0.6752  0.6344  0.5936  0.5529  0.5121

maximum sample size N4, = 60. We choose the dose level
of agent A at (0.125, 0.25, 0.375, 0.5, 0.625) and agent B at
(0.1, 0.3, 0.5, 0.7, 0.9). The value of M (x, \) is evaluated un-
der a grid for both A and . The simulation is repeated 2000
times by using the proposed algorithm for each scenario un-

der both A values and « values. For prior distributions, we
take 71 () = m1(8) = Gamma(25, 50), and non-informative
priors ma(y1) = m2(v2) = N(0, 100), respectively. Table B9—
Table B12 report M (k, A) across each grid combination of
A and k. Through examination of these tables, it is clear
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Table B10. M(k,\) under a grid for both A and  in Scenario 2. \(k) values are in boldface

K

A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1  0.8912 0.8528 0.8144 0.7759 0.7375 0.6991 0.6606 0.6222 0.5838 0.5454
0.2 0.8910 0.8526  0.8143  0.7760  0.7377  0.6994  0.6610  0.6227  0.5844  0.5461
0.3 0.8836  0.8455  0.8073  0.7692  0.7311 0.6929  0.6548  0.6166  0.5785 0.5404
0.4 0.8732 0.8348 0.7964 0.7580 0.7196 0.6811 0.6427 0.6043 0.5659 0.5275
0.5 0.8806  0.8425  0.8044 0.7663  0.7282  0.6901 0.6520  0.6140  0.5759  0.5378
0.6 0.8769  0.8383  0.7997  0.7611 0.7226  0.6840  0.6454  0.6068  0.5682 0.5296
0.7 0.8779 0.8395 0.8011 0.7627 0.7243 0.6859 0.6475 0.6091 0.5707 0.5323
0.8 0.8840  0.8456  0.8071 0.7686  0.7302  0.6917  0.6532  0.6147  0.5763  0.5378
0.9 0.8825 0.8438  0.8052  0.7665  0.7279  0.6892 0.6505  0.6119  0.5732 0.5346

1 0.8786 0.8401 0.8016 0.7631 0.7247 0.6862 0.6477 0.6092 0.5707 0.5323

Table B11. M(k, \) under a grid for both A\ and « in Scenario 3. A(k) values are in boldface
K

A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1 0.9463  0.8961 0.8460  0.7958  0.7456  0.6955  0.6453  0.5951 0.5449  0.4948
0.2 0.9412 0.8912 0.8412 0.7912 0.7412 0.6912 0.6412 0.5912 0.5412 0.4912
0.3 0.9349 0.8850 0.8350 0.7851 0.7352 0.6853 0.6354 0.5854 0.5355 0.4856
0.4  0.9300 0.8801 0.8302  0.7802 0.7303  0.6803  0.6304  0.5805  0.5305 0.4806
0.5 09314 0.8817  0.8321 0.7824  0.7327  0.6830  0.6333  0.5837  0.5340  0.4843
0.6 0.9180 0.8685 0.8189 0.7694 0.7199 0.6704 0.6209 0.5713 0.5218 0.4723
0.7 0.9285 0.8790  0.8294  0.7798  0.7302  0.6806  0.6311 0.5815  0.5319  0.4823
0.8  0.9321 0.8825  0.8330  0.7835 0.7340  0.6845  0.6349  0.5854  0.5359  0.4864
0.9 0.9205 0.8716 0.8227 0.7737 0.7248 0.6758 0.6269 0.5780 0.5290 0.4801

1 0.9261 0.8773  0.8284  0.7796  0.7308  0.6820 0.6332  0.5843  0.5355 0.4867

Table B12. M(k,\) under a grid for both A and  in Scenario 4. A\(k) values

are in boldface

K
A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1 0.8408 0.8122 0.7836  0.7550  0.7265  0.6979  0.6693  0.6407  0.6121 0.5836
0.2  0.8371 0.8084  0.7796  0.7509  0.7222  0.6934 0.6647  0.6360  0.6073  0.5785
0.3 0.8340 0.8055 0.7770 0.7484  0.7199  0.6913 0.6628  0.6343  0.6057  0.5772
0.4 0.8229 0.7937 0.7646 0.7354 0.7063 0.6771 0.6479 0.6188 0.5896 0.5605
0.5 0.8348 0.8063  0.7777  0.7491 0.7206  0.6920  0.6634  0.6348  0.6063  0.5777
0.6 08305 0.8011 0.7716  0.7422  0.7128 0.6833  0.6539  0.6244  0.5950  0.5656
0.7 0.8396 0.8102 0.7808  0.7515  0.7221  0.6927  0.6633  0.6339  0.6046  0.5752
0.8 0.8385 0.8088  0.7791  0.7494  0.7197  0.6899  0.6602  0.6305  0.6008  0.5711
0.9  0.8401 0.8100  0.7800  0.7499  0.7199  0.6898  0.6597  0.6297  0.5996  0.5696
1 0.8467 08167 0.7867  0.7567  0.7267  0.6967  0.6667  0.6367  0.6067  0.5767

that minM (x, \) does exist for all the scenarios. We can see
that argminM (k, A) does not vary with s values, whereas
A

A(k) changes slightly with different scenarios but centers
around 0.5. We would consider using the objective function
U(da,dp) with A = 0.5 as a “base case” in our dose finding
method. We have chosen a particular weight distribution
across the three components of the performance measure,
e.g. equal weights to the sample size fraction and the com-
bined component of the estimation error and total positive
interaction. Whether other weight distribution can change
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the optimal range of values of A will be investigated via
further simulation. However, given that the choice of A is
insensitive to the choice of k, we have refrained from such
an elaborate investigation.

APPENDIX C. FURTHER DETAILS FOR
SIMULATION STUDY

We examine the situations, in which the toxicity surfaces
are monotonically increasing as MTDs are considered to
be on the boundary of the MTRs. Table C13 reports the
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Figure C6. Toxicity probability surface and interaction function surface with a target toxicity probability 30% for the two-drug
combination.

percentage of observed toxicities, the percentage of patients
treated at or below the MTDs, and the sample size for the
proposed method and for the POCRM (Wages et al., 2011)

Table C13. Comparison with existing methodology

Scenario

Method 5 6 7 3 9 10 and for both designs of Yin and Yuan (2009a,b).
% of observed toxicities In Figure C6, we depict the joint toxicity probability sur-
New method 187 18.7 208 275 39.1 314 face and also the interaction surface in the two-dimensional
Yin and Yuan 279 277 281 291 36.9 35.2 dose region on the basis of a model (7) with parameters
POCRM 31.1 31.1 313 334 46 44 (o, B,71,72) = (0.5,0.5,8,—5.5). The interaction surface
implies that synergy and antagonism may be interspersed
% of patients given doses at or below the MTD in different regions of the drug combinations, which leads to
New method 83.2 835 889 646 0694 944 a non-monotonically increasing toxicity probability surface.

Yin and Yuan 68.7 753 747 7Ll 65 775 The exponent in the interaction function is a saddle like sur-
POCRM 67 69 81 68 34 46 face with negative curvature; however the interaction func-
tion itself under the exponential transformation can have
New method 294 293 9219 214 283 356 both posi.ti\./e.z and negati've curvature, thereby allowing for
Yin and Yuan 569 56.7 569 568 57.7 58.7 great ﬂexﬂ:.)lhty.' The horizontal Sl%rface in Flg}l're C6 repre-
POCRM 57 57 57 57 57 57 sents the situation of a target toxicity probability of 0.3.
We further conduct the simulation study to examine
whether our method can correctly identify the interaction
effect, synergy or antagonism of the dose combinations for
scenario shown in Figure C6. Table C14 lists the interaction

Sample size
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Table C14. Interaction: antagonism (+) or synergy effect (-)
Drug A
Dose Level 1 2 3 4 5
5 156 (-) 1.94 (-) 1.93 (-) 1.53 (-) 0.97 (+)
Drug B 4 1.28 (-) 1.38 (-) 1.25 (-) 0.95 (+) 0.61 (+)
3 1.12 (-) 1.10 (-) 0.95 (+) 0.73 (+) 0.50 (+)
2 1.03 (-) 0.97 (+) 0.86 (+) 0.70 (+) 0.53 (+)
1 0.99 (+) 0.96 (+) 0.91 (+) 0.84 (+) 0.76 (+)

Table C15. Percentage of interaction function identifying the

true synergy or antagonism

Drug A
Dose Level 1 2 3 4 5
5 60.93 66.01 65.88 60.53 49.30
Drug B 4 56.20 58.02 55.56 48.69 37.68
3 52.73 52.34 48.83 42.25 33.11
2 50.61 49.34 46.21 41.28 34.79
1 49.86 49.09 47.70 45.70 43.09
for each dose combination. We use “+” or “-” to denote the

antagonism (+) or synergy effect (-). Table C15 reports the
selection probabilities for the true synergy or antagonism.
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