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Optimal responses-adaptive designs based on
efficiency, ethic, and cost

Chen Feng and Feifang Hu
∗

The trade-off between power and ethical concerns has
been well discussed by researchers. The total costs, how-
ever, has hardly ever been considered in the adaptive de-
sign of clinical trials. In this article, we derive the compro-
mised optimal allocations based on costs, ethical concerns,
and efficiency for clinical trials with binary and normal re-
sponses. The compromised optimal allocations are imple-
mented with a doubly biased coin design (DBCD) based on
Hu and Zhang’s allocation function. The properties of the
proposed designs are studied both theoretically and numeri-
cally. In many cases, the proposed designs are more efficient,
economical and ethical than complete randomization (equal
allocation) under both binary and normal responses.

Keywords and phrases: Asymptotical normality, Binary
response, Clinical trial, Doubly adaptive biased coin design
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1. INTRODUCTION

Clinical trials are complex experiments on humans with
multiple, often competing, objectives. The optimal alloca-
tion, which minimizes the exposure to effectiveness inferior
treatments and maximizes power at the same time, has
been extensively discussed theoretically and numerically in
literature. However, when designing a clinical trial, people
also have to take the monetary concerns into account. In
fact, there are so many sources of costs in clinical trails, for
example, patient recruitment costs, physician costs, clinical
procedure costs, central Lab costs, and medicine costs.
Medicine costs is one of the most important costs in clinical
trails, because for a single disease, the costs of different
treatments varies. Take the HIV disease for instance, the
medicine named Enfuvirtide (Fuzeon) could cost $4097.78
per month on average, while the medicine named Abacavir
(Ziagen) would cost only $670.37 per month on average. In
addition, the medicine may be priced differently based on
location. For some impoverished area in Africa, a common
HIV medicine may become unaffordable because of the
scarce resource. Therefore, treatment and medicine costs
could have significant effect on clinical trials and cannot be
overlooked. From both the patients’ and decision maker’s as-
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pects, it is important to find optimal allocations to balance
the monetary costs and ethical concerns for a fixed power.

Starting from the early of the 20th century, many new
allocation methods have been proposed to enhance the de-
sign of multiobjective and multiarm clinical trials, including
truncated binomial design, permuted block design, Efron’s
biased coin design (Efron, 1971) [4], Wei’s urn design (Wei,
1977, 1978) [24], [25]), and generalized biased coin design
(Smith, 1984, JRSSB). Instead of using a fixed allocation
rule that assigning each patient to different treatments with
equal probabilities, these designs incorporate the adaptive
randomization for providing improvements over traditional
balanced allocation designs both in terms of statistical effi-
ciency and ethical criteria.

The preliminary idea of response-adaptive randomization
(RAR) was derived by Thompson (1933) [21] and Robbins
(1952) [14]. After them, Zelen put forth the play-the-winner
(PW) rule (Zelen, 1969) [27], i.e., assigning the next patient
to the same treatment if a success; assigning the next patient
to the opposite treatment if a failure. Considering that the
PW rule is not a randomized design, Wei and Durham pro-
posed the randomized play-the-winner (RPW) rule in 1978
(Wei and Durham, 1978) [26].

Tracing back the history in response-adaptive random-
ization designs, we find two major families. One is the urn
models family, its representatives include PW rule, RPW
rule, generalized Friedman’s urn models (Wei, 1978) [25];
(Smythe, 1996) [18]; (Bai, Hu and Shen, 2002) [2], ran-
domized Polya urn (Durham, Flournoy, and Li, 1998) [3]),
ternary urn (Ivanova and Flournoy, 2001 [11]), drop-the-
loser rule (Ivanova, 2003) [12], generalized drop-the-loser
rule (Zhang, Chan, Cheung and Hu, 2007) [28], etc. The
other is the doubly adaptive biased coin designs family, rep-
resented by Eisele and Woodroofe (1995) [5], Hu and Zhang
(2004) [9], Hu and Rosenberger (2003) [6], ERADE (Hu,
Zhang and He, 2009) [10], etc.

One can find rich literatures on response-adaptive ran-
domization procedures based on power and ethical concerns
in clinical trials. Rosenberger et al. (2001) [17] proposed the
optimal allocation aiming at minimizing the treatment fail-
ures and maximizing the power for two-arm binary response
trials. Zhang et al. (2005) [29] studied the similar problem
refers to power and ethics for continuous outcomes. Tymo-
fyeyev et al. (2007) [22] mathematically set up the optimiza-
tion problem concerning with both the number of treatment
failures and power for a multi-arm clinical trial with dichoto-
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mous response, while Jeon et al. (2010) [13] gave the close
form solution of the proposed optimization problem for a
special case of three-treatment trials. However, none of them
took the monetary cost into consideration.

In this article, we input the monetary costs into the op-
timization criteria for clinical trials, together with ethical
concerns and efficiency. One significance of our work is that
we balance the trade-off between costs and ethical concerns
with a compromised parameter. The basic idea is to combine
the objective of costs and ethical concerns using a tunning
parameter as a weighted coefficient, which can be adjusted
according to different preferences. The optimal allocation
is then derived based on this combined objective. We will
implement the derived optimal allocation by using response
adaptive designs for two-treatment clinical trials with both
binary and normal responses. The advantages of the pro-
posed procedure are often: (1) improving the power; (2)
reducing the total monetary costs; and (3) putting more
patients to an overall “better” treatment arm.

The paper is organized as follows. In section 2, we state
the general framework and deduce the compromised optimal
allocation proportions for binary and normal responses tri-
als. Doubly adaptive biased coin design (DBCD) is then used
to implement the proposed optimal allocations. Theoretical
properties of the proposed procedures are obtained. Section
3 compares our proposed procedure with the complete ran-
domization for both binary and normal cases. We see by
simulation that our proposed method increases average ther-
apeutic effects and decreases the total cost over equal alloca-
tion without significant loss in power. We draw conclusions
in Section 4. The main proofs are presented in the appendix.

2. OPTIMAL ALLOCATION AND
IMPLEMENTATION

Assume n1 and n2 patients will be assigned to treatment
1 and 2, respectively, and n1 + n2 = n. Tymofyeyev et al.
(2007) [22] formulated a general framework of the optimal
allocation proportion:

min
n1,n2

2∑
j=1

wjnj ,

such that nk ≥ 0, k = 1, 2

φ(n1, n2) = K,

(1)

where φ(n1, n2) is a constraint function, K is a positive con-
stant, and w = (w1, w2)

′ is a vector with positive compo-
nents. Note that problem (1) is usually a convex optimiza-
tion problem. Now we fit our consideration under this frame-
work for binary and normal responses.

2.1 Binary responses

For binary responses, the success (failure) probabilities
of these two treatments are p1(q1), and p2(q2) respectively.
The monetary cost of each patient in treatment 1 (and 2)
is c1 (and c2). For testing p1 = p2, the constraint function

φ(n1, n2) in the general framework above is the asymptotic
variance of the test statistics, which can be written as:

(2) φ(n1, n2) =
p1q1
n1

+
p2q2
n2

.

To choose the coefficients w1, w2, we have to consider
both ethic and cost here. We use w = (w1, w2)

′ = (λq1 +
(1 − λ)c1, λq2 + (1 − λ)c2)

′, where λ ∈ [0, 1] is a weighted
coefficient called the compromised parameter. The objective
function minn1,n2

∑2
j=1 wjnj in (1) turns into a weighted

sum of costs and treatment failures with weights λ and 1−
λ. When λ = 0, we have wi = ci (i = 1, 2), and costs
become the only concern in this optimal problem. If λ =
1, we only consider the ethical concern, and wi = qi (i =
1, 2). λ can be adjusted according to different preferences.
If a disease is a matter of life and death, but the prices of
different medicines are similar, then λ > 0.5 can be chosen to
concentrate more on the ethical concerns. For example, the
breast cancer. While, if a disease is not life-threatening, or
the prices of two treatments have a huge difference, then λ <
0.5 could be selected to emphasize more on reducing total
costs, for instance, the HIV example we mentioned in the
introduction. When the ethical and costs concerns equally
matter, it is reasonable to choose λ around 0.5. The optimal
allocation proportion is stated in the following theorem.

Theorem 2.1. When φ is defined in (2), and wi = λqi +
(1 − λ)ci, i = 1, 2, then the optimal allocation proportions
ρ∗ = (ρ∗1, ρ

∗
2)

′ is given as follows:

(3)

ρ∗1 =

√
w2p1q1√

w1p2q2 +
√
w2p1q1

, and

ρ∗2 = 1− ρ∗1 =

√
w1p2q2√

w1p2q2 +
√
w2p1q1

.

In this paper, we call R∗ = n1/n2 the compromised op-
timal allocation, with the following expression:

(4) R∗ =

(
w2p1q1
w1p2q2

) 1
2

,

where the compromised parameter λ reflects the trade-off
between cost and ethical concern. Note that if λ = 1, then
R∗ = n1/n2 = (p1/p2)

1/2, which is the same as the result
given by Rosenberger et al. (2001) [17]. If λ = 0, then R∗ =
[c2p1q1/(c1p2q2)]

1/2, which minimizes the total cost only.

2.2 Normal responses

Assume the responses of treatment 1 and 2 are from the
normal distributions N(μ1, σ

2
1) and N(μ2, σ

2
2), respectively.

μ1 and μ2 are the means and σ2
1 , σ

2
2 are the corresponding

variances. Here we suppose a smaller response is better in
ethical concern. c1 and c2 are the costs of each patient under
two treatments respectively.

For testing μ1 = μ2, the constraint function φ(n1, n2) is

(5) φ(n1, n2) =
σ2
1

n1
+

σ2
2

n2
,
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which is the asymptotic variance of the test statistics. Let
w = (w1, w2)

′ = (λμ1 + (1 − λ)c1, λμ2 + (1 − λ)c2)
′, where

λ ∈ [0, 1] is again the weighted coefficient. Then the objec-
tive function in (1) becomes a weighted sum of costs and
treatment responses with weights λ and 1− λ. We have the
following theorem.

Theorem 2.2. Under the objective function φ(n1, n2) de-
fined in (5), when w = (w1, w2)

′ = (λμ1 + (1− λ)c1, λμ2 +
(1 − λ)c2)

′, k = 1, 2, the optimal allocation proportions are
given by ρ∗ = (ρ∗1, ρ

∗
2)

′, with components

(6) ρ∗1 =

√
w2σ2

1√
w1σ2

2 +
√
w2σ2

1

, and ρ∗2 =

√
w1σ2

2√
w1σ2

2 +
√
w2σ2

1

.

The optimal allocation proportion for normal responses
is R∗ = [w2σ

2
1/(w1σ

2
2)]

1/2. Note that if λ = 0, we have
R∗ = σ1

√
c2/(σ2

√
c1), which minimizes the cost only. While

if λ = 1, we get the allocation ratio minimizes the mean
responses, and R∗ = σ1

√
μ2/(σ2

√
μ1), which is the optimal

allocation discussed by Zhang and Rosenberger (2005) [29].
Note that Theorem 2.1 and 2.2 are both derived from

the convex optimization problem (1), and the details are
provided in the Appendix.

2.3 Implementation with DBCD

Doubly adaptive biased coin design (DBCD) is an impor-
tant family of response-adaptive randomization procedures
for clinical trials. It uses sequentially updated estimation to
skew the allocation probability to favor the treatment that
has performed better thus far. In 2004, Hu and Zhang pro-
posed a new family of doubly adaptive biased coin designs
for two treatments to realize the target allocation propor-
tions, which is simple to implement and easy to understand
for the practitioner. We use the allocation probability func-
tion of Hu and Zhang (2004) [9] to realize our proposed com-
promised optimal allocation, so we call this Hu and Zhang’s
procedure in this paper. The details of how to implement
our proposed allocation proportions using Hu and Zhang’s
procedure is implemented as following:

(i) First assign m0 patients to each treatment by re-
stricted randomization procedure; (ii) Denote Nk(m) the
random patients number on treatment k after m ≥ 2m0 pa-
tients have received the treatments, here k = 1, 2. Then we
assign the (m+1)st patient to treatment k with probability,

(7) g
(
Nk(m)/m, ρ̂∗k(m)

)
=

ρ̂∗k(m)(
ρ̂∗
k(m)

Nk(m)/(m) )
γ∑K

i=1 ρ̂
∗
i (m)(

ρ̂∗
i (m)

Ni(m)/(m) )
γ
,

where ρ̂∗k(m) is the estimated target allocation proportion
for treatment k, (k = 1, 2), based on previous m patients’
responses. The degree of variability and randomization can
be controlled by tuning a particular parameter γ ∈ [0,∞).
In this article, we use γ = 2 as recommended by Hu and
Rosenberger (2006) [8].

Based on the results in Hu and Zhang (2004) [9], we com-
pute the asymptotic variances for both normal and binary

responses. The details are in Appendix, and the results are
stated in the following lemmas:

Lemma 1. For the binary case, we have

N1(n)

n
− ρ∗1 = O

(√
log logn

n

)
a.s.

and n1/2

(
N1(n)

n
− ρ∗1

)
D−→ N(0, σ2

b ),

where

σ2
b =

(1 + γ)λ2p1q1p2q2

(
p2q2ψϕ

−1/2 + p1q1ϕψ
−1/2

)
2(1 + 2γ)

(√
ψ +

√
ϕ
)3√

ψϕ
+

2(1 + γ)λϕψ

(
p2q2(q1 − p1)ϕ

−1/2 + p1q1(q2 − p2)ψ
−1/2

)
2(1 + 2γ)

(√
ψ +

√
ϕ
)3√

ψϕ
+

(
2 + (1 + γ)p1q1

)
ψϕ3/2 +

(
2 + (1 + γ)p2q2

)
ϕψ3/2

2(1 + 2γ)
(√

ψ +
√
ϕ
)3√

ψϕ
,

ϕ = w1p2q2, and ψ = w2p1q1.

Lemma 2. For the normal responses, we have

N1(n)

n
− ρ∗1 = O

(√
log logn

n

)
a.s.

and n1/2

(
N1(n)

n
− ρ∗1

)
D−→ N(0, σ2

n),

where

σ2
n =

√
ηζ

(
2 + (1 + γ)(ν + 2)

)
+
√
ζη

(
2 + (1 + γ)(δ + 2)

)
2(1 + 2γ)

(√
ζ +

√
η
)3 ,

ζ = w1σ
2
2 , η = w2σ

2
1 , ν = λ2w−2

1 σ2
1 , and δ = λ2w−2

2 σ2
2 .

3. NUMERICAL STUDY

Now we consider numerical studies based on two-side
tests. For binary trials, a two-sided hypothesis test is:

H0 : Δ = p1 − p2 = 0 versus H1 : p1 �= p2.

Similarly, for normal trials, a two-sided hypothesis test is
given by:

H0 : Δ = μ1 − μ2 = 0 versus H1 : μ1 �= μ2.

In both cases, we use the Wald test (with a given sig-
nificance level α = 0.05). Considering the binary trials, the
Wald test statistics is:

(8) Z =
p̂1 − p̂2√

p̂1q̂1/n1 + p̂2q̂2/n2

,

where p̂i (i = 1, 2) are the simple means of the samples and
q̂i = 1 − p̂i (i = 1, 2). This test tends to have inflated size.
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Table 1. The Estimated sample size n and the Corresponding Simulated Power (parentheses) for the Compromised Optimal
Allocations and Equal Allocation for Binary Responses

Compromised Optimal Allocation

p1 p2 c1 c2 λ = 0 λ = 0.3 λ = 0.5 λ = 0.7 λ = 1 Equal Allocation
0.1 0.2 0.1 0.2 531(0.90) 516(0.91) 516(0.90) 516(0.89) 516(0.89) 526(0.88)
0.1 0.2 0.2 0.1 531(0.89) 518(0.89) 517(0.90) 516(0.90) 516(0.89) 526(0.89)
0.1 0.2 0.1 0.4 578(0.89) 521(0.91) 516(0.89) 515(0.88) 515(0.90) 526(0.92)
0.1 0.2 0.4 0.1 578(0.89) 526(0.89) 520(0.91) 517(0.90) 516(0.90) 526(0.89)

0.4 0.6 0.1 0.2 260(0.90) 253(0.90) 253(0.90) 254(0.89) 255(0.90) 254(0.90)
0.4 0.6 0.2 0.1 260(0.89) 257(0.90) 256(0.91) 256(0.89) 255(0.89) 254(0.90)
0.4 0.6 0.1 0.4 284(0.89) 256(0.90) 253(0.89) 253(0.90) 255(0.89) 254(0.90)
0.4 0.6 0.4 0.1 284(0.89) 265(0.90) 260(0.89) 257(0.90) 255(0.89) 254(0.90)

0.7 0.9 0.1 0.2 156(0.90) 152(0.89) 152(0.91) 155(0.90) 162(0.90) 162(0.89)
0.7 0.9 0.2 0.1 156(0.91) 158(0.90) 159(0.91) 160(0.92) 162(0.92) 162(0.89)
0.7 0.9 0.1 0.4 169(0.87) 155(0.86) 152(0.88) 152(0.90) 162(0.91) 162(0.90)
0.7 0.9 0.4 0.1 169(0.92) 167(0.91) 166(0.91) 165(0.91) 162(0.89) 162(0.90)

Table 2. Simulation Results for the Compromised Optimal Allocation with Different λ Values and Equal Allocation for Binary
Responses(1000 Replications)

Compromised Optimal Allocation

p1 p2 c1 c2 n λ = 0 λ = 0.3 λ = 0.5 λ = 0.7 λ = 1 Equal Allocation

Simulated Means of the Allocation Proportion n1/n

0.1 0.2 0.4 0.6 526 0.48 0.45 0.44 0.42 0.41 0.50
0.1 0.2 0.6 0.4 526 0.38 0.39 0.40 0.41 0.41 0.50

The Powers

0.1 0.2 0.4 0.6 526 0.92 0.90 0.90 0.89 0.89 0.90
0.1 0.2 0.6 0.4 526 0.91 0.89 0.89 0.90 0.90 0.90

Simulated Expected Failures

0.1 0.2 0.4 0.6 526 445.66 444.42 443.71 443.46 442.59 447.22
0.1 0.2 0.6 0.4 526 441.06 441.24 442.01 442.20 442.63 447.21

Simulated Expected Total Costs

0.1 0.2 0.4 0.6 526 265.20 268.44 269.80 270.91 272.15 263.09
0.1 0.2 0.6 0.4 526 250.01 251.75 252.55 253.11 253.87 262.98

In order to avoid this error, we have utilized an adjustment
by Agresti and Caffo (2000) [1]. Replace p̂1 and p̂2 by:

(9) p̂1∗ =
s1 + 0.5

n1 + 1
and p̂2∗ =

s2 + 0.5

n2 + 1

respectively, where s1 and s2 are observed success on treat-
ment 1 and 2.

For normal responses trials, however, the Wald test statis-
tics is given by:

(10) Z =
μ̂1 − μ̂2√

σ̂2
1/n1 + σ̂2

2/n2

,

where μ̂i and σ̂i are the usual unbiased estimators (i = 1, 2).
The requisite sample size n that yields power of β for a

binary responses trial with the allocation proportion n1/n2

equaling to R can be calculated as follows:

(11) n =
(z(α/2) − z(β))

2
(
(1 +R)p1q1/R+ (1 +R)p2q2

)
(p1 − p2)2

,

where z(β) is the upper quantile of standard normal distribu-
tion. The sample size of our compromised optimal allocation
(4) is then:

n=
(z(α/2) − z(β))

2
(
(w1 +w2)p1q1p2q2 +(p1q1 + p2q2)

√
κω

)
√
κω(p1 − p2)2

,

(12)

where κ = w1p1q1, and ω = w2p2q2.
For a normal two-arm trial, with the allocation propor-

tion n1/n2 equaling to R, the requisite sample size n to
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achieve power β is:

(13) n =
(z(α/2) − z(β))

2
(
(1 +R)σ2

1/R+ (1 +R)σ2
2

)
(μ1 − μ2)2

.

The sample size for compromised optimal allocation is:
(14)

n=
(z(α/2) − z(β))

2
(
(w1 +w2)σ

2
1σ

2
2+(σ2

1+σ2
2)

√
w1σ2

1w2σ2
2

)√
w1σ2

1w2σ2
2(μ1 − μ2)2

.

3.1 Binary responses

In all numerical studies, we randomly assign 5 patients
to both treatments by restricted randomization (Hu and
Rosenberger (2006) [8]), then we switch to our proposed
procedures. Each simulation is based on 1000 replications.

We first calculate the requisite sample sizes that yield
power of 0.90 for compromised optimal allocations and equal
allocation, then we obtain the simulated power based on
1000 simulated trials. The results is reported in Table 1.
In most cases, the requisite sample sizes of our proposed
procedures are smaller than or similar to that for equal allo-
cation. However, there are cases where the sample sizes are
larger than equal allocation, for example, when λ = 0 and
the costs c1 = 0.1, c2 = 0.4 for binary responses. In fact,
we find that when λ = 0 and the costs c1, c2 are large, the
requisite sample sizes of our proposed procedures tend to
be large, because the experimental objective is to minimize
costs only when λ = 0, while equal allocation will neglect
the costs effect on its sample size, especially when the costs
are high. Therefore, our proposed procedure with λ = 0 may
require large sample size to incorporate costs effects when
the costs are high. More details and discussions on sample
size formulas for randomization procedures can be found in
chapter 6 of the book by Hu and Rosenberger [7].

In the following numerical studies, we use sample size n
that yields 0.90 power for the test of homogeneity based
on equal allocation. We report the following four measures:
1) The allocation proportions; 2) The power; 3) The ex-
pected number of treatment failures (The average value of
responses); and 4) The total cost. In our simulations, we use
the same values of p1, p2 from Rosenberger et al. (2001) [17].
Without loss of generality, we choose c1 and c2 between 0
and 1 here. The results are in Table 2.

According to Table 2, we find that our procedures work
well especially when p1 and p2 are small to moderate. We see
that the compromised parameter λ plays an important role
in balancing the trade-off between ethics and total costs. In
most cases, our proposed procedures with different λ values
do not have significant loss in power compared with the
equal allocation. However, when p1 = 0.1, p2 = 0.2, c1 =
0.4, and c2 = 0.6, compromised optimal adaptive allocations
with λ less than one lead to 2-9 more monetary costs than
the equal allocation, but they reduce 2-5 treatment failures
as a compensation. To figure out the reason why it costs
more than equal allocation when λ = 0 for the case p1 = 0.1,
p2 = 0.2, c1 = 0.4, c2 = 0.6, and n = 526, we theoretically

calculate the expected costs based on the optimal allocation
proportions in (3):

ρ∗1 =

√
w2p1q1√

w1p2q2 +
√
w2p1q1

=

√
0.6× 0.1× 0.9√

0.4× 0.2× 0.8 +
√
0.6× 0.1× 0.9

= 0.4788,

therefore the expected cost using the optimal allocation is:

Cost(optimal) = ρ∗1 × n× c1 + (1− ρ∗1)× n× c2 = 265.2328,

while for equal allocation, the expected cost is

Cost(equal) = 0.5× n× c1 + 0.5× n× c2 = 263.

The theoretical results match with the simulation results
(265.20 for optimal allocation and 263.09 for equal alloca-
tion) in Table 2. Although the optimal allocation is aimed at
minimizing the cost when λ = 0 (w1 = c1 and w2 = c2), the
allocation formula derived in (3) not only depends on costs
but also depends on p1 and p2 in that the total costs is mini-
mized on condition that φ(n1, n2) = (p1q1)/n1+(p2q2)/n2 is
fixed at a constant level K, i.e., the efficiency to test p1 = p2
must be first guaranteed to minimize the cost. Besides, if p1
and p2, c1 and c2 are very close to each other, the allocation
proportions will be close to 0.5, and it is also likely that the
allocation proportions are dominated by p1 and p2, like in
our case, when p1 = 0.1, p2 = 0.2, c1 = 0.4, c2 = 0.6, we
have ρ∗1 = 0.4788 < 0.50. More than half of the patients are
assigned to treatment 2, the more expensive treatment. But
to look at a positive side, even though the costs is about
2.11 higher than equal allocation, our method can reduce
2 treatment failures as a compensation. We also implement
several different combinations of parameters, similar results
are obtained.

3.2 Normal responses

In the following simulations, we choose the same values
of μ1, μ2, σ1, and σ2 from Hu and Rosenberger (2006) [8].
c1 and c2 are restricted to be between 5 to 20 to match the
mean values. The requisite sample sizes are listed in Table
3. Our proposed procedure performs better with regard to
requisite sample size and often reduces 2-5 patients from
equal allocation in average in Table 3.

In Table 4, we report the simulated means of n1/n and
the theoretical proportions, the powers, the expected values
of overall responses, and the expected values of total costs,
respectively. First the simulated proportions of our proposed
procedure match their corresponding theoretical ones. The
proposed procedure performs pretty well in terms of power.
It can be seen that for all sets of parameters, our procedure
is more powerful than complete randomization in Table 4.

We also find that when μ1 < μ2, σ1 > σ2, and c1 <
c2, the proposed procedure works well in reducing both the
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Table 3. The Estimated sample size n and the Corresponding Simulated Power(parentheses) for the Compromised Optimal
Allocations and Equal Allocation(Equal) for Normal Responses

Compromised Optimal Allocation

μ1 μ2 σ1 σ2 c1 c2 λ = 0 λ = 0.3 λ = 0.5 λ = 0.7 λ = 1 Equal

13 15 4 2.5 10 20 115(0.91) 113(0.90) 113(0.92) 112(0.91) 112(0.89) 117(0.89)
13 15 4 2.5 20 10 115(0.89) 113(0.90) 112(0.90) 112(0.91) 112(0.92) 117(0.91)
13 15 2.5 4 10 20 115(0.91) 113(0.91) 113(0.89) 112(0.92) 112(0.90) 117(0.89)
13 15 2.5 4 20 10 115(0.90) 113(0.90) 112(0.91) 112(0.90) 112(0.93) 117(0.89)
13 15 4 2.5 7 9 112(0.90) 112(0.91) 112(0.90) 112(0.90) 112(0.91) 117(0.90)
13 15 4 2.5 9 7 112(0.91) 112(0.90) 112(0.92) 112(0.92) 112(0.91) 117(0.88)
13 15 2.5 4 7 9 112(0.91) 112(0.92) 112(0.91) 112(0.91) 112(0.91) 117(0.89)
13 15 2.5 4 9 7 112(0.91) 112(0.90) 112(0.91) 112(0.91) 112(0.91) 117(0.89)

Table 4. Simulation Results for the Compromised Optimal Allocation with Different λ Values and Equal Allocation for Normal
Responses (1000 Replications)

Compromised Optimal Allocation

μ1 μ2 σ1 σ2 c1 c2 n λ = 0 λ = 0.3 λ = 0.5 λ = 0.7 λ = 1 Equal

Simulated Means of the Proportion n1/n and Theoretical Allocation Proportions(parentheses)

13 15 4 2.5 10 20 117 .70(.69) .68(.68) .67(.66) .65(.65) .64(.63) .50
13 15 4 2.5 20 10 117 .53(.53) .56(.56) .59(.58) .61(.60) .64(.63) .50
13 15 2.5 4 10 20 117 .47(.47) .45(.45) .43(.44) .42(.42) .40(.40) .50
13 15 2.5 4 20 10 117 .30(.31) .33(.33) .35(.35) .37(.37) .40(.40) .50

The Powers

13 15 4 2.5 10 20 117 0.92 0.91 0.92 0.91 0.92 0.89
13 15 4 2.5 20 10 117 0.91 0.92 0.93 0.93 0.91 0.91
13 15 2.5 4 10 20 117 0.91 0.92 0.92 0.92 0.91 0.89
13 15 2.5 4 20 10 117 0.91 0.91 0.92 0.92 0.92 0.89

Simulated Expected Value of Overall Responses

13 15 4 2.5 10 20 117 13.60 13.63 13.68 13.69 13.73 13.99
13 15 4 2.5 20 10 117 13.92 13.87 13.84 13.78 13.73 14.01
13 15 2.5 4 10 20 117 14.06 14.11 14.14 14.15 14.20 13.99
13 15 2.5 4 20 10 117 14.40 14.35 14.31 14.26 14.22 14.01

Simulated Expected Total Costs

13 15 4 2.5 10 20 117 1522.29 1542.65 1560.28 1574.18 1594.04 1752.87
13 15 4 2.5 20 10 117 1794.09 1828.19 1855.03 1880.15 1915.43 1752.23
13 15 2.5 4 10 20 117 1790.19 1816.73 1833.72 1847.18 1871.25 1753.17
13 15 2.5 4 20 10 117 1520.46 1552.84 1578.90 1602.66 1632.76 1753.74

expected values of overall responses and the expected values
of total monetary costs from equal allocation rule. If μ1 <
μ2, σ1 > σ2, and c1 > c2, the proposed procedure increases
the total costs but decrease the average responses from equal
allocation as a compensation. When λ = 0, the procedure
tends to assign more patients to the treatment with low
cost. When c2/c1 is smaller than μ2/μ1, for example, when
μ1 = 13, μ2 = 15, c1 = 20, and c2 = 10, the procedure with
λ = 1 would yield the smaller average response, which agrees
with the theoretical results. The compromised parameter λ
does play an important role in the trade-off between ethics
and total costs.

4. CONCLUSION REMARKS

In this paper, we consider cost as an additional objec-
tive together with ethical concerns and efficiency in clini-
cal trials. By combining the cost with ethical concerns to a
weighted objective, we obtain the compromised optimal al-
location. Then the DBCD (Hu and Zhang, 2004) [9] is used
to implement the proposed compromised optimal allocation.
Both theoretical and numerical results support the proposed
procedure.

For the binary responses, the compromised adaptive rule
is particularly useful when success probabilities of the treat-
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ments p1 and p2 are small to moderate, and the distinction
between c1 and c2 is not striking. The compromised opti-
mal allocation (4) is a generalization form of the optimal
allocation given by Rosenberger et al. (2001) [17]. For the
normal responses, under the same setting as the book of
Hu and Rosenberger (2006) [8], the compromised adaptive
design is often more effective and economical by comparing
with equal allocation rule. The compromised parameter λ
plays an important role in balancing the trade-off between
the treatment effects and total costs, and provides our com-
promised optimal allocation with the flexibility to adjust to
different objectives.

In numerical studies, we have little knowledge of the two
treatments at the beginning, and 5 patients are assigned to
each of the two treatments by using restricted randomiza-
tion procedure. Starting from the 11 patient, we switch to
our proposed procedures. The details of restricted random-
ization procedure can be found in chapter 1 of the book by
Hu and Rosenberger [7], which is beyond the scope of this
paper.

We only consider about comparing two treatments in this
paper. It is worth to point out that the framework can be
generalized to three or more treatments as Tymofyeyev et
al. (2007) [22] (for binary responses) and Zhu and Hu (2009)
[30] (for continuous responses). The corresponding analyti-
cal solutions could be difficult to obtain, and the expression
could be too complicated as indicated in Jeon and Hu (2010)
[13] and Zhu and Hu (2009) [30] for the special case (λ = 1).
However, one can always implement the proposed procedure
numerically.

APPENDIX A. TECHNICAL PROOFS

A.1 Proofs of Theorems 2.1 and 2.2

Proof. For binary responses, the optimal allocation propor-
tion R∗ = n1/n2 can be expressed as:
(15)

R∗ = argmin
R

{w1n1 + w2n2} = argmin
R

{n(Rw1 + w2)

R+ 1
}

and n = n(R, p1, p2) is obtained by solving the equation
var(p̂1 − p̂2) = K, which yields:

(16) n =
(1 +R)(p1q1 +Rp2q2)

KR
.

Now substituting (16) into the criterion function in equation
(15), taking the derivative with respect to R and equating
it to zero, we can get

R∗ =

(
w2p1q1
w1p2q2

) 1
2

.

Note that R∗ does not depend on K, so we obtain:

ρ∗1 =
R∗

R∗ + 1
=

√
w2p1q1√

w1p2q2 +
√
w2p1q1

and

ρ∗2 = 1− ρ∗1 =

√
w1p2q2√

w1p2q2 +
√
w2p1q1

.

The proof of Theorem 2.2 is similar to Theorem 2.1. We
omit the details here.

A.2 Proof of Lemma 1

Proof. For binary responses, we rewrite ρ∗1 given in Theo-
rem 2.1 as

ρ(p1, p2) =

√
w2(p1 − p21)√

w1(p2 − p22) +
√
w2(p1 − p21)

.

Then

∇(ρ)|(p1,p2) =

(w2(q1 − p1)
√
w1p2q2√
w2p1q1

+ λp2q2
√
w2p1q1√
w1p2q2

2
(√

w1p2q2 +
√
w2p1q1

)2 ,

−w1(q2 − p2)
√
w2p1q1√
w1p2q2

− λp1q1
√
w1p2q2√
w2p1q1

2
(√

w2p1q1 +
√
w1p2q2

)2
)
,

and according to Hu and Zhang (2004), τ23 =
(∇(ρ)|p1,p2)

′V(∇(ρ)|p1,p2), τ21 = ρ∗1(1 − ρ∗1), where V =

diag

(
p1q1/ρ

∗
1, p2q2/(1 − ρ∗1)

)
. Therefore, τ23 and τ21 can be

calculated as:

τ23 =
w2(q1 − p1)

2ϕ3/2 + w1(q2 − p2)
2ψ3/2

4
(√

ψ +
√
ϕ
)3√

ψϕ
+

λ2p1q1p2q2

(
p2q2ψϕ

−1/2 + p1q1ϕψ
−1/2

)
4
(√

ψ +
√
ϕ
)3√

ψϕ
+

2λϕψ

(
p2q2(q1 − p1)ϕ

−1/2 + p1q1(q2 − p2)ψ
−1/2

)
4
(√

ψ +
√
ϕ
)3√

ψϕ

and

τ21 =

√
ψϕ(√

ψ +
√
ϕ
)2 ,

where

ϕ = w1p2q2, and ψ = w2p1q1.

Therefore, by Hu and Zhang(2004),

N1(n)
n − ρ∗1 = O

(√
log logn

n

)
a.s. and

n1/2

(
N1(n)

n − ρ∗1

)
D−→ N(0, σ2

b ),

where

σ2
b =

(1 + γ)λ2p1q1p2q2

(
p2q2ψϕ

−1/2 + p1q1ϕψ
−1/2

)
2(1 + 2γ)

(√
ψ +

√
ϕ
)3√

ψϕ
+
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2(1 + γ)λϕψ

(
p2q2(q1 − p1)ϕ

−1/2 + p1q1(q2 − p2)ψ
−1/2

)
2(1 + 2γ)

(√
ψ +

√
ϕ
)3√

ψϕ
+

(
2 + (1 + γ)p1q1

)
ψϕ3/2 +

(
2 + (1 + γ)p2q2

)
ϕψ3/2

2(1 + 2γ)
(√

ψ +
√
ϕ
)3√

ψϕ
,

A.3 Proof of Lemma 2

Proof. Suppose that {{ξm,k,m = 1, 2, . . .}, k = 1, 2} are the
responses vectors in R

d, where ξm,k = (ξm,k1 , . . . , ξm,kd
)

is the response of the mth patient on treatment k, k =
1, 2. Let θ1 and θ2 be the corresponding parameters of
treatment 1 and treatment 2, respectively. For simplic-
ity of notation, we assume that both θ1 and θ2 are d-
dimensional parameters, and θ1 = Eξ1,1 and θ2 = Eξ1,2.
So we have θ1 = (θ11, . . . , θ1d) = (Eξ1,11, . . . , Eξ1,1d) and
θ2 = (θ21, . . . , θ2d) = (Eξ1,21, . . . , Eξ1,2d).

For normal responses, X1, X2, · · · , Xn1 and Y1, Y2, · · · ,
Yn2 are outcome indicators of treatment 1 receivers and
treatment 2 receivers, respectively, which satisfy

X1, X2, . . . ∼ N(μ1, σ
2
1) and Y1, Y2, . . . ∼ N(μ2, σ

2
2).

The desired proportion is given in Theorem 2.2, and

ρ∗1 =

√
w2σ2

1√
w1σ2

2 +
√

w2σ2
1

.

Set ξm,1 = (X2
m, Xm) and ξm,2 = (Y 2

m, Ym). Here, θ11 =
EX2

1 , θ12 = EX1 = μ1, θ21 = EY 2
1 , θ22 = EY1 = μ2. Then

we rewrite ρ∗1 as a function of θ11, θ12, θ21, and θ22, which is
denoted by ρ(θ11, θ12, θ21, θ22), and

ρ(θ11, θ12, θ21, θ22) =

√
w2(θ11 − θ212)√

w1(θ21 − θ222) +
√
w2(θ11 − θ212)

.

Obviously, the function above is continuous in {θ : θ11 >
θ212, θ21 > θ222} and is twice differentiable at Θ = (θ1, θ2).
Therefore, we have:

∇(ρ)|Θ =

(
∂ρ

∂θ11
,
∂ρ

∂θ12
,
∂ρ

∂θ21
,
∂ρ

∂θ22

)
,

and

∇(ρ)|Θ =

(
w1w2σ

2
2

2
(√

w1σ2
2 +

√
w2σ2

1

)2√
w2σ2

1

√
w1σ2

2

,

w1w2σ
2
2(−2μ1 − λσ2

1w
−1
1 )

2
(√

w1σ2
2 +

√
w2σ2

1

)2√
w2σ2

1

√
w1σ2

2

,

−w1w2σ
2
1

2
(√

w1σ2
2 +

√
w2σ2

1

)2√
w2σ2

1

√
w1σ2

2

,

w1w2σ
2
1(2μ2 + λσ2

2w
−1
2 )

2
(√

w1σ2
2 +

√
w2σ2

1

)2√
w2σ2

1

√
w1σ2

2

)
.

Note that

(1,−2μ1 − λσ2
1w

−1
1 )Var{(X2

1 , X1)}(1,−2μ1 − λσ2
1w

−1
1 )′ =

Var{
(
X1 −

(
μ1 + λσ2

1(2w1)
−1

))2

},

and similarly,

(1,−2μ2 − λσ2
2w

−1
2 )Var{(Y 2

1 , Y1)}(1,−2μ2 − λσ2
2w

−1
2 )′ =

Var{
(
Y1 −

(
μ2 + λσ2

2(2w2)
−1

))2

}.

Now we get the expression of Var{
(
X1 −

(
μ1 +

λσ2
1(2w1)

−1
))2

} as follows: Denote Q = X1 − μ1 and

Z = X1 −
(
μ1 + λσ2

1(2w1)
−1

)
= (X1 − μ1)− λσ2

1(2w1)
−1 =

Q − λσ2
1(2w1)

−1. Since Q/σ1 ∼ N(0, 1), we know that
EQ = 0, E(Q2) = σ2, E(Q3) = 0, and E(Q4) = 3σ4. So it
can be deduced that

E(Z2) = E
(
Q2 − λσ2

1(w1)
−1Q+ λ2σ4

1(2w1)
−2

)
= σ2 + λ2σ4

1(2w1)
−2,

and

E(Z4) =E
(
Q4 − 2λσ2

1w
−1
1 Q3 + 3λ2σ4

1(2w
2
1)

−1Q2−
λ3σ6

1(2w
3
1)

−1Q+ λ4σ8
1(16w

4
1)

−1
)

=3σ4
1 + 3λ2σ6

1(2w
2
1)

−1 + λ4σ8
1(16w

4
1)

−1,

so Var{
(
X1−

(
μ1+λσ2

1(2w1)
−1

))2

} = Var(Z2) = E(Z4)−
(
E(Z2)

)2
= λ2σ6

1w
−2
1 +2σ4

1 , and similarly, Var{
(
X2−

(
μ2+

λσ2
2(2w2)

−1
))2

} = λ2σ6
2w

−2
2 + 2σ4

2 .

According to the conditions on the allocation function
and asymptotic results given by Hu and Zhang(2004), let

τ23 = (∇(ρ)|Θ)′V(∇(ρ)|Θ) and τ21 = ρ∗1(1− ρ∗1)

where V = diag

(
Var(ξ1,1)

ρ∗
1

,
Var(ξ1,2)
1−ρ∗

1

)
. We have

τ23 =
w2

1w
2
2σ

2
2

(
λ2σ6

1w
−2
1 + 2σ4

1

)
4
(√

ζ +
√
η
)4
ζη

·
√
ζ +

√
η

√
η

+

w2
1w

2
2σ

2
1

(
λ2σ6

2w
−2
2 + 2σ4

2

)
4
(√

ζ +
√
η
)4
ζη

·
√
ζ +

√
η√

ζ

=

√
ζη

(√
ζ
(
ν + 2

)
+

√
η
(
δ + 2

))
4
(√

ζ +
√
η
)3

and

τ21 =

√
ζη(√

ζ +
√
η
)2 ,
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where

ζ = w1σ
2
2 , η = w2σ

2
1 , ν = λ2w−2

1 σ2
1 , and δ = λ2w−2

2 σ2
2 .

We know from Hu and Zhang(2004) that

N1(n)
n − ρ∗1 = O

(√
log log n

n

)
a.s. and

n1/2

(
N1(n)

n − ρ∗1

)
D−→ N(0, σ2

n),

where

σ2
n =

√
ηζ

(
2 + (1 + γ)(ν + 2)

)
+

√
ζη

(
2 + (1 + γ)(δ + 2)

)
2(1 + 2γ)

(√
ζ +

√
η
)3 .
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