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Regression analysis of incomplete data from event
history studies with the proportional rates model
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Event history studies occur in many fields including epi-
demiology, sociology, and medical studies. They focus on
the occurrences of some events of interest on subjects over
time. One special type of data arising from such studies is
incomplete mixed data, which is the mixed recurrent event
data and panel count data. To deal with such type of data,
we propose a proportional rates model and present a multi-
ple imputation-based estimation procedure. One advantage
of the proposed marginal model approach is that it can be
easily implemented. To assess the performance of the proce-
dure, a simulation study is conducted and indicates that it
performs well for practical situations and can be more effi-
cient than the existing method. The methodology is applied
to a set of mixed data from a longitudinal cohort study.
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1. INTRODUCTION

This paper discusses regression analysis of a type of in-
complete data arising from event history studies, commonly
conducted in demography, economics, medical studies and
social sciences. More specifically, we consider mixed recur-
rent event and panel count data or the mixture of recurrent
event data [1] and panel count data [2]. The former is a type
of complete data and usually means that all study subjects
are observed continuously over the whole study period, while
the latter arises if each study subject is observed only at
discrete points. In the latter case, only the number of occur-
rences of events of interest between consecutive observation
time points are known or recorded. By mixed data, we mean
that each study subject may be observed continuously dur-
ing the whole study period, continuously over some study
periods and at some time points otherwise, or only at some
discrete time points. The observed data consist both com-
plete and incomplete sample paths. Note that these time
periods may be different for different subjects. If each sub-
ject gives either complete or incomplete sample paths over
the whole study period, the observed data are commonly re-
ferred to as type I mixed data. Otherwise, they are usually
referred to as type II mixed data [3]. It is apparent that the
latter is much more complicated than the former.
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A great deal of literature has been established for the
analysis of both recurrent event data and panel count data
separately. In particular, [1] and [2] provided relatively com-
plete reviews and references of the two fields, respectively. In
contrast, there exist only a couple of methods that apply to
the analysis of mixed recurrent event and panel count data.
One major problem with respect to the analysis of mixed
data is combining the two different types of data structures
together. The first paper to discuss statistical analysis of
such data was given by [3], which proposed some estimat-
ing equation-based methods under the proportional means
model. In particular, they presented a set of mixed recur-
rent event and panel count data arising from a multi-center
longitudinal cohort study, the Childhood Cancer Survivor
Study (CCSS) (http://ccss.stjude.org; [4]). One of the ma-
jor goals of the study is to assess the long-term effects, if
any, of childhood cancer and cancer treatments on the sub-
sequent reproductive functions of childhood cancer survivors
(more details will be provided below). Following [3], [5] con-
sidered the same problem but only for type I mixed data,
while [6] investigated regression analysis of mixed recurrent
event and panel count data arising from the additive rates
model.

Multiple imputation is a commonly used approach when
there exists missing or incomplete data. The idea behind it
is to fill or replace the missing or unobserved values by some
imputed values [7]. It is well-known that one key advantage
of the method is that it can be easily implemented and al-
lows one to employ the existing methods for the analysis of
the corresponding complete data. Also it has been studied
by many authors theoretically and applied to many areas in-
cluding failure time data analysis [7, 8, 9, 10, 11, 12, 13, 14].
For example, [14] developed two imputation procedures for
regression analysis of right-censored failure time data under
the accelerated failure time model, and [11] discussed the use
of the multiple imputation approach for regression analysis
of interval-censored failure time data arising from the pro-
portional hazards model. In the following, we will treat the
panel count data as missing data and develop a multiple im-
putation procedure that imputes the unobserved occurrence
times of the recurrent events of interest. The procedure is
essentially a marginal model approach.

The remainder of this paper is organized as follows. In
Section 2, we first introduce the notation and the propor-
tional rates model and then briefly review the inference pro-
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cedures proposed by [15] and [16] for the analysis of recur-
rent event data. Section 3 presents the developed multiple
imputation procedure for regression analysis of mixed re-
current event and panel count data and in the method, the
idea discussed in [11] is used. The procedure applies to both
missing completely at random (MCAR) and missing at ran-
dom (MAR) mechanisms. In Section 4, we report some re-
sults obtained from a simulation study conducted to assess
the performance of the multiple imputation procedure. They
indicate that the proposed approach performs well for prac-
tical situations and can be more efficient than that given in
[3]. The method is applied to the CCSS mentioned above in
Section 5 and Section 6 contains some discussion and con-
cluding remarks.

2. ESTIMATION PROCEDURE FOR
RECURRENT EVENT DATA

Consider an event history study that consists of n inde-
pendent subjects. For subject i, let N∗

i (t) denote the to-
tal number of events of interest that have occurred up to
time t, 0 � t � τ , where τ denotes the study length, and
suppose that there exists a vector of covariates denoted by
Xi. Also suppose that for each subject there exists an in-
dependent follow-up time C∗

i , and define Ci = (C∗
i ∧ τ),

Ni(t) = N∗
i (t ∧ Ci), and Yi(t) = I(t � Ci). To describe

the covariate effect on N∗
i (t), we will assume that given Xi,

N∗
i (t) follows the proportional rates model

E{dN∗
i (t)|Xi} = λ0(t) exp(β

TXi)dt , (1)

where λ0(t) denotes an unspecified baseline rate function
and β a vector of regression parameters. Define the base-
line mean function Λ0(t) =

∫ t

0
λ0(u)du. In the following, we

assume that the main goal is to estimate β.
For estimation of regression parameters β, we will assume

that one observes recurrent event data on the Ni(t)’s. That
is, all occurrence times of the recurrent events of interest
within the follow-up periods are known. In this case, [15]

suggested to use the estimator β̂r defined as the solution to
the estimating equation

Un(β) =

n∑
i=1

∫ τ

0

{
Xi − X̄(t;β)

}
dNi(t) = 0 ,

where X̄(t;β) = S(1)(t;β)/S(0)(t;β) with

S(j)(t;β) =
n∑

i=1

Yi(t) exp(β
TXi)X

⊗j
i ,

j = 0, 1, 2, and a⊗0 = 1,a⊗1 = a,a⊗2 = aaT for a vec-
tor a. Furthermore, [16] showed that the distribution of√
n (β̂r − β0) can be asymptotically approximated by the

multivariate normal distribution with mean zero and the
covariance matrix estimated by Σ̂r = Â−1

r Γ̂rÂ
−1
r . Here β0

denotes the true value of β,

Âr =
1

n

n∑
i=1

∫ τ

0

{Xi − X̄(t; β̂r)}⊗2Yi(t)

× exp{β̂T
r Xi(t)}dΛ̂0r(t) ,

and

Γ̂r =
1

n

n∑
i=1

[

∫ τ

0

{Xi − X̄(t; β̂r)}dM̂i(t)]
⊗2 ,

where Λ̂0r(t) and M̂i(t) are given as:

Λ̂0r(t) =

∫ t

0

∑n
i=1 dNi(s)

S(0)(s; β̂r)
,

and

M̂i(t) = Ni(t)−
∫ t

0

Yi(s) exp{β̂T
r Xi}dΛ̂0r(s) .

Note that as an alternative from [3], one can replace Âr

above by the following estimator

Âr =
1

n

n∑
i=1

∫ τ

0

{Xi − X̄(t; β̂r)}⊗2dNi(t) .

In the next section, we will generalize the estimation pro-
cedure above to cases of mixed recurrent event and panel
count data by using the multiple imputation approach.

3. ESTIMATION PROCEDURE FOR MIXED
RECURRENT EVENT AND PANEL

COUNT DATA

Now we suppose that only mixed recurrent event and
panel count data are available and for estimation of regres-
sion parameters β in model (1), we will present a multiple
imputation-based estimation procedure. For this, suppose
that for each subject there exists a sequence of time points
0 = Ti0 < Ti1 < · · · < TiKi such that within (Ti,j−1, Tij ], ei-
ther subject i is continuously observed, and thus gives com-
plete data, or only the number of occurrences of the events
from subject i is known, j = 1, ...,Ki, i = 1, ..., n. Also
suppose that one observes an indicator function ri(t) with
ri(t) = 1 for t ∈ (Ti,j−1, Tij ], if complete data are available
from subject i over the interval, and ri(t) = 0 otherwise. One
can see that the indicator functions ri(t)’s serve as missing
indicators and in the following, we assume that the missing
is either MCAR or MAR. Furthermore, it is easy to see that
if the ri(t)’s are independent of time t, then we have type I
mixed data and otherwise, one observes type II data. Define
O∗

i (t) =
∑Ki

j=1 I(Tij ≤ t), i = 1, ..., n. In the following, we
will assume that N∗

i (t), O
∗
i (t), C

∗
i and ri(t) are mutually

independent, conditional on Xi.
To develop the multiple imputation estimation proce-

dures, the key is to impute the unobserved occurrence
times of the recurrent events of interest over all inter-
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vals (Ti,j−1, Tij ], j = 1, ...,Ki, i = 1, ..., n, within which
only incomplete data are available. For such intervals,
let Nij denote the number of occurrences of the events
over (Ti,j−1, Tij ] from subject i. For the generation of
the imputed occurrence times, note that if N∗

i (t) is a
Poisson process, following [17], we can show that given
{ (Ti,j−1, Tij ], Nij ,Xi }, the occurrence times of the Nij re-
current events are the order statistics of i.i.d random vari-
ables from the density function

fij(t) =
exp(βTXi)λ0(t)I(Ti,j−1 < t � Tij)

exp(βTXi)(Λ0(Tij)− Λ0(Ti,j−1))

=
λ0(t)I(Ti,j−1 < t � Tij)

(Λ0(Tij)− Λ0(Ti,j−1))
.

By following [11] and [14], this motivates the following im-
putation procedure.

Let B be a chosen integer for the number of imputed

data sets and β̂(l) and Λ̂
(l)
0 (t) denote the estimators of β

and Λ0(t), respectively, obtained in the lth iteration of the
iterative procedure below.

• Step 1: Choose initial estimators β̂(0) and Λ̂
(0)
0 (t) of β

and Λ0(t), respectively.
• Step 2: At the lth iteration and for each b = 1, ..., B,

define the bth set of imputed recurrent event data as fol-
lows. For any i = 1, ..., n and j = 1, ...,Ki, if ri(t) = 0
for t ∈ (Ti,j−1, Tij ], define the Nij occurrence times
of the event as the order statistics of a random sam-
ple of size Nij drawn from the candidate time points
{ sij,1, ..., sij,mij } within the interval (Ti,j−1, Tij ] with
the probability mass { pij,1, ..., pij,mij }, where the can-
didate time points are the combined distinct time points
of both the observed recurrent event times of the sub-
jects other than subject i, and the imputed event time
points falling within this interval among B data sets
from the (l − 1)th iteration, and

pij,q =
dΛ̂

(l−1)
0 (sij,q)∑mij

r=1 dΛ̂
(l−1)
0 (sij,r)

, q = 1, ...,mij .

• Step 3: For each b = 1, ..., B, define the estimators

β̂
(l)
b , Λ̂

(l)
0b (t) and Σ̂

(l)
b as the estimators β̂r, Λ̂0r(t) and

1
nΣ̂r defined in the previous section based on the bth
imputed recurrent event data defined in the previous
step.

• Step 4: Obtain the updated estimators of β and Λ0(t)
by:

β̂(l) =
1

B

B∑
b=1

β̂
(l)
b , Λ̂

(l)
0 (t) =

1

B

B∑
b=1

Λ̂
(l)
0b (t) ,

and the estimator of the covariance matrix of β̂(l) by:

Σ̂(l) =
1

B

B∑
b=1

Σ̂
(l)
b

+

(
1 +

1

B

) B∑
b=1

(β̂
(l)
b − β̂(l))(β̂

(l)
b − β̂(l))′

B − 1
.

• Step 5: Return to Step 2 until the convergence.

Let β̂ and Λ̂0(t) denote the estimators of β and Λ0(t)

obtained above and Σ̂ the resulting covariance estimator
for β̂. Then under some mild regularity conditions, it is ex-
pected that β̂ is consistent and the distribution of β̂ can
be asymptotically approximated by the normal distribution
with mean β0 and a variance-covariance matrix that can be
estimated by Σ̂. To implement the iterative algorithm above,
two issues need to be discussed. They are the selection of
initial estimators and the convergence. For the former, in
any interval (Ti,j−1, Tij ] with ri(t) = 0, we first generated
the unobserved event times from the uniform distribution
over (Ti,j−1, Tij ] and then set β̂(0) and Λ̂

(0)
0 (t) as average of

β̂r and Λ̂0r(t) defined in the previous section based on the
multiple generated recurrent event data sets. With respect
to the convergence, it is apparent that one can compare the
estimators of both β and Λ0(t) from two consecutive itera-
tive steps and stop the iteration if the overall difference is
small enough. Alternatively, if one is only interested in esti-
mation of β, we may only compare the estimators β̂(l−1)

and β̂(l) and stop the iteration if ||β̂(l) − β̂(l−1)|| � ε,
where ε is a prespecified positive constant. In the numer-
ical study below, the convergence did not seem to be an
issue.

4. A SIMULATION STUDY

A simulation study was conducted to assess the perfor-
mance of the estimation procedure proposed in the previ-
ous section, and in the study we considered both types I
and II of mixed recurrent event and panel count data. To
generate the simulated data, following [3], we assumed be-
low that there was one covariate Xi following the Bernoulli
distribution with the success probability 0.5 and generated
the follow-up time C∗

i from the uniform distribution over
(τ/2, τ) with τ = 1. For the underlying recurrent event pro-
cess N∗

i (t), we considered two situations. One is the Poisson
process with the mean function Λ0(t) exp(β

TXi) and the
other is the mixed Poisson process with the mean function
νi Λ0(t) exp(β

TXi), where Λ0(t) = 3t and νi is a latent vari-
able following the Gamma distribution with mean 1 and
variance 0.25. To generate mixed recurrent event and panel
count data, we first generated a sequence of time points
as the Tij ’s from the Poisson process with mean function
μ0(t) = 3t. For type I mixed data, note that each subject is
observed either continuously or only at discrete times dur-
ing the whole follow-up study. Therefore, the type indicator
functions ri(t)’s over all intervals within each subject are
the same and were generated from the Bernoulli distribu-
tion with the success probability pr.

For the generation of type II mixed recurrent event and
panel count data, we first generated a sequence of time
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points the same way as for type I mixed data, and then
within each interval the type indicator ri(t) was generated
from the Bernoulli distribution with success probability pr
so that ri(t) can be different over different time periods for
each subject. With respect to pr, for both types of mixed
data, we also considered two situations corresponding to two
different missing mechanisms. One is to take pr = 0.2, 0.5 or
0.8, the same constants for all subjects, and the other is to
let pr = 0.1, 0.4 or 0.7 for the subjects with Xi = 0 and 0.3,
0.6 or 0.9 otherwise. That is, pr depends on the covariate.
The results below are based on n = 100 and B = 10 in the
imputation procedure with 1000 replications.

Tables 1 and 2 present the results on estimation of β with
β0 = −0.5, 0 or 0.5 and pr being the same for all subjects.
Table 1 is the type I mixed recurrent event and panel count
data and Table 2 is the type II mixed data. They include the
estimated bias (BIAS) given by the average of the estimates
minus the true value, the average of the estimated standard
errors (ESE), the sample standard error of the estimators
(SSE), and the 95% empirical coverage probabilities (CP).
For comparison, we also applied the estimation procedure
given in [3] to the simulated data and included the estima-
tion results in the tables. One can see from the tables that
the results suggest that the proposed estimator seems to be
unbiased and the variance estimation appears to be reason-
able. Also the normal approximation to the distribution of
β̂ seems to be appropriate. Furthermore, they indicate that
the proposed estimator is more efficient and performs better
than that given in [3].

The results for estimation of β in the situation that pr
depends on the covariates are presented in Tables 3 and 4
with the other set-ups being the same as in Tables 1 and 2.
As above, Table 3 is for type I mixed recurrent event and
panel count data, whereas Table 4 is for type II mixed data.
It is easy to see that they gave similar conclusions as above
and again suggest that the proposed multiple imputation
estimation procedure seems to be more efficient than that
given in [3]. In addition, as in Tables 1 and 2, the results
indicate that the proposed estimation procedure seems to
be much less dependent on pr than the method proposed by
[3]. A possible reason for this may be due to the nature of
the multiple imputation method, which essentially creates
and makes inferences based on complete or recurrent event
data, while [3] bases inferences on the incomplete or mixed
data. To assess the normal approximation to the distribu-
tion of β̂, we also obtained the quantile plots of the stan-
dardized β̂ against the standard normal distribution, and
they (not shown here) again indicate that the approxima-
tion seems to be appropriate for the situations considered
here. We also investigated some other set-ups including the
cases with continuous covariates or different functions for
Λ0(t) and obtained similar simulation results. In particular,
we performed some simulation studies to assess the possible
effect of the number of imputations B on the performance
of the proposed method and the results suggested that they
were not sensitive to the selection of B.

5. AN APPLICATION

In this section, we apply the estimation procedure pro-
posed in the previous sections to the CCSS described above.
The study consists of childhood cancer survivors who were
diagnosed between 1970 and 1986 and had survived more
than 5 years since diagnosis, along with a random sample of
their siblings serving as a control group. The study subjects
were distributed a baseline summary questionnaire starting
in 1996 about their pregnancy information such as the age
range of the pregnancies as well as other related information.
If a pregnancy was reported in the summary questionnaire,
that participant received an additional detailed pregnancy
questionnaire for each reported pregnancy for additional in-
formation such as the exact age of pregnancy. If a subject
only returned the summary questionnaire, then we would
have incomplete panel count data on her pregnancy process,
while if the subject returned both questionnaires, complete
recurrent event data would be available. Actually this is the
case between 1996 and 2000 and in other words, we have
type I mixed recurrent event and panel count data up to
2000. Overall up to 2007, there existed some subjects who
returned the detailed pregnancy questionnaire over some pe-
riods, but not over other periods although had pregnancies.
That is, overall we have type II mixed recurrent event and
panel count data on the pregnancy process. As mentioned
before, one of the CCSS objectives is to determine the long-
term effects, if any, of childhood cancer and its treatments
on the pregnancy process or pregnancy outcomes.

In the analysis below, following [3], we will focus on the
subgroup of 3966 female participants who were at least 25
years old in 1996, with 2765 being childhood cancer sur-
vivors and the others being their siblings. Define Xi = 1 if
the ith subject is a survivor and Xi = 0 otherwise. First we
considered the type I mixed data collected up to 2000. For
these individuals, we have the averages of pregnancy counts
being 1.498 and 2.049 for the survivor and sibling groups,
respectively. The application of the proposed estimation pro-
cedure gave β̂ = −0.319 with the estimated standard error
being 0.039, yielding a p-value of less than 0.0001 for test-
ing no pregnancy process difference between the survivor
and sibling groups. This suggests that the cancer survivors
had significantly lower pregnancy rates than their siblings.
In contrast, [3] gave the corresponding estimate of -0.128
with the estimated standard error of 0.034. Note that al-
though the conclusions are similar, the estimated effect by
the proposed method seems to be more significant.

Now we apply the proposed estimation procedure to the
whole type II mixed data collected between 1996 and 2007.
For them, the average pregnancy counts are 1.684 and 2.403
for the cancer survivors and their siblings, respectively,
which are higher than the type I mixed data, as expected.
By applying the proposed method, we obtained β̂ = −0.324
with the estimated standard error of 0.029. In contrast, [3]

gave β̂ = −0.247 with the estimated standard error being
0.032. Again both approaches gave similar conclusions and
indicated that the occurrence of childhood cancer and its

94 G. Yu et al.



Table 1. Estimation of β based on type I mixed data with pr independent on the covariate

Proposed procedure Zhu et al. (2013)
N∗

i (t) pr β0 BIAS ESE SSE CP BIAS ESE SSE CP

Poisson 0.2 0.5 0.009 0.145 0.149 0.943 0.011 0.221 0.235 0.931
0 -0.010 0.161 0.165 0.948 -0.003 0.236 0.251 0.933

-0.5 -0.011 0.187 0.184 0.952 -0.016 0.260 0.273 0.939
0.5 0.5 0.003 0.145 0.150 0.948 0.007 0.209 0.227 0.924

0 -0.002 0.161 0.158 0.950 0.007 0.224 0.236 0.925
-0.5 -0.006 0.186 0.189 0.950 0 0.248 0.255 0.947

0.8 0.5 0.006 0.144 0.150 0.941 0.002 0.176 0.192 0.916
0 -0.011 0.161 0.170 0.931 -0.009 0.192 0.216 0.913

-0.5 -0.002 0.187 0.192 0.939 -0.006 0.216 0.236 0.924

Mixed 0.2 0.5 -0.004 0.179 0.188 0.945 -0.007 0.250 0.265 0.939
Poisson 0 0 0.193 0.198 0.940 0.002 0.265 0.276 0.943

-0.5 -0.003 0.213 0.223 0.936 -0.002 0.283 0.297 0.937
0.5 0.5 0 0.179 0.189 0.935 0 0.239 0.264 0.925

0 0.011 0.193 0.194 0.946 0.007 0.252 0.276 0.920
-0.5 -0.010 0.213 0.226 0.937 -0.008 0.274 0.297 0.934

0.8 0.5 0.010 0.179 0.184 0.945 0.018 0.209 0.217 0.927
0 0.007 0.193 0.199 0.941 0.009 0.221 0.240 0.936

-0.5 -0.006 0.215 0.228 0.936 -0.011 0.242 0.269 0.917

Table 2. Estimation of β based on type II mixed data with pr independent on the covariate

Proposed procedure Zhu et al. (2013)
N∗

i (t) pr β0 BIAS ESE SSE CP BIAS ESE SSE CP

Poisson 0.2 0.5 0.003 0.145 0.146 0.951 0.002 0.218 0.233 0.932
0 0 0.162 0.158 0.952 -0.002 0.231 0.238 0.940

-0.5 -0.004 0.186 0.198 0.941 -0.001 0.254 0.275 0.920
0.5 0.5 0.008 0.145 0.147 0.954 0.008 0.206 0.216 0.940

0 -0.002 0.161 0.162 0.948 0.008 0.220 0.237 0.923
-0.5 -0.001 0.185 0.189 0.943 0.007 0.242 0.245 0.949

0.8 0.5 0.006 0.145 0.149 0.945 0.007 0.175 0.185 0.928
0 -0.004 0.162 0.170 0.933 -0.006 0.191 0.209 0.928

-0.5 -0.014 0.187 0.196 0.945 -0.008 0.214 0.231 0.927

Mixed 0.2 0.5 0.009 0.181 0.188 0.941 0.010 0.246 0.256 0.937
Poisson 0 -0.008 0.193 0.199 0.942 -0.012 0.259 0.267 0.934

-0.5 -0.008 0.215 0.231 0.940 -0.023 0.281 0.306 0.926
0.5 0.5 0.002 0.181 0.185 0.944 0.001 0.235 0.245 0.939

0 0.009 0.194 0.198 0.942 0.008 0.248 0.264 0.942
-0.5 -0.010 0.214 0.219 0.942 0.001 0.265 0.285 0.934

0.8 0.5 0.003 0.179 0.188 0.931 0.007 0.205 0.224 0.925
0 -0.004 0.194 0.196 0.947 0.004 0.219 0.235 0.933

-0.5 -0.002 0.214 0.232 0.930 -0.001 0.238 0.255 0.930

treatments seemed to have significant effects in decreasing
the pregnancy rate. Also as seen in the simulation study,
the proposed method yielded more significant effects than
that given in [3]. It is worth noting that in contrast to the
proportional rates model discussed here, [3] considered the
proportional means model and with time-invariant covari-
ates, and the two models are equivalent.

6. CONCLUDING REMARKS

In this paper, we discussed regression analysis of mixed
recurrent event and panel count data, a type of incomplete

or missing data arising from event history studies. As de-
scribed above, such data may occur in two forms, types I
and II, and the former is a special case of the latter. For the
analysis, we proposed a multiple imputation estimation pro-
cedure that converts the mixed data structure or incomplete
data to complete recurrent event data by imputing the unob-
served occurrence times. Note that the method is a marginal
approach. It does not need joint modeling, and is valid un-
der both MCAR and MAR missing mechanisms. Also note
that although the idea for the imputation is borrowed from
the Poisson process assumption, a working assumption, the
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Table 3. Estimation of β based on type I mixed data with pr dependent on the covariate

Proposed procedure Zhu et al. (2013)
N∗

i (t) pr β0 BIAS ESE SSE CP BIAS ESE SSE CP

Poisson 0.2 0.5 0.006 0.144 0.151 0.941 -0.002 0.228 0.243 0.929
0 -0.001 0.162 0.164 0.953 -0.007 0.245 0.248 0.948

-0.5 0.015 0.185 0.194 0.938 0.009 0.267 0.287 0.929
0.5 0.5 0.003 0.144 0.149 0.947 0.005 0.215 0.226 0.942

0 0.006 0.162 0.169 0.935 0.014 0.227 0.251 0.913
-0.5 -0.006 0.186 0.190 0.934 -0.009 0.250 0.261 0.941

0.8 0.5 0.003 0.145 0.146 0.943 0.010 0.180 0.205 0.908
0 0.006 0.162 0.161 0.947 0.010 0.193 0.204 0.933

-0.5 -0.004 0.186 0.189 0.947 -0.002 0.213 0.227 0.934

Mixed 0.2 0.5 0.003 0.179 0.183 0.945 -0.001 0.257 0.274 0.929
Poisson 0 0.009 0.193 0.196 0.947 0.012 0.270 0.294 0.920

-0.5 0.005 0.213 0.222 0.943 0.022 0.292 0.308 0.930
0.5 0.5 0.004 0.181 0.185 0.936 0 0.247 0.263 0.926

0 -0.004 0.194 0.201 0.943 -0.008 0.256 0.278 0.915
-0.5 0.007 0.215 0.217 0.943 0.008 0.275 0.291 0.933

0.8 0.5 0.003 0.179 0.189 0.940 -0.003 0.209 0.233 0.916
0 0.001 0.194 0.200 0.943 -0.003 0.222 0.244 0.923

-0.5 0.003 0.214 0.226 0.936 0.010 0.241 0.267 0.921

Table 4. Estimation of β based on type II mixed data with pr dependent on the covariate

Proposed procedure Zhu et al. (2013)
N∗

i (t) pr β0 BIAS ESE SSE CP BIAS ESE SSE CP

Poisson 0.2 0.5 0.006 0.144 0.154 0.939 0.010 0.224 0.236 0.934
0 -0.001 0.161 0.170 0.932 -0.012 0.239 0.252 0.927

-0.5 0 0.187 0.189 0.944 0.005 0.260 0.275 0.929
0.5 0.5 0.005 0.144 0.150 0.945 0.007 0.212 0.229 0.927

0 -0.001 0.161 0.162 0.943 0.006 0.223 0.241 0.927
-0.5 -0.009 0.187 0.196 0.941 -0.007 0.243 0.260 0.933

0.8 0.5 0.002 0.145 0.143 0.941 0.004 0.178 0.187 0.932
0 0 0.162 0.169 0.936 0 0.189 0.210 0.917

-0.5 -0.014 0.186 0.181 0.951 -0.009 0.211 0.213 0.942

Mixed 0.2 0.5 -0.001 0.179 0.187 0.937 -0.001 0.253 0.260 0.946
Poisson 0 0.004 0.192 0.196 0.941 0.002 0.263 0.281 0.933

-0.5 -0.011 0.213 0.221 0.949 0 0.283 0.310 0.923
0.5 0.5 -0.004 0.178 0.188 0.935 -0.002 0.238 0.254 0.931

0 0.008 0.194 0.194 0.948 0.002 0.250 0.264 0.931
-0.5 -0.008 0.215 0.220 0.949 -0.015 0.268 0.289 0.937

0.8 0.5 -0.008 0.179 0.188 0.942 -0.006 0.208 0.230 0.915
0 0.005 0.194 0.205 0.937 0.008 0.218 0.240 0.922

-0.5 -0.016 0.215 0.221 0.949 -0.012 0.237 0.255 0.923

numerical study suggested that it still works without the
assumption. As mentioned in previous sections, a main ad-
vantage of the proposed method is its easy implementation,
as one can use the existing inference procedures and software
packages for complete data. The simulation study indicated
that the proposed methodology performs well for practical
situations and is more efficient than the existing approach
given in [3].

There exist several directions for future research. One is
that for simplicity, we only considered the situation where
both the observation process O∗

i (t) and the follow-up time

C∗
i are independent of covariates, and it is apparent that

these may not be true in practice. Hence it will be useful to
generalize the proposed estimation procedure to these sit-
uations. Another assumption behind the proposed method
is the proportional rates model (1) and it is well-known
that it may not fit the observed data well sometimes [1]. To
address this, one may consider some other models such as
the additive rates model or semiparametric transformation
model [18, 19] and develop appropriate and valid estimation
procedures. A more complicated situation could be that the
observation process is informative [18], meaning that O∗

i (t)
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is related to N∗
i (t), even given covariates. In this case, the

method given above is clearly not valid and thus one needs
some other methods. In addition, it is clear that it would
be helpful to derive or provide the theoretical justification
for the normal approximation to the distribution of or the
asymptotic normality of the proposed estimator β̂ as well
as the asymptotic properties of Λ̂0(t).
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