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Testing the mean in multivariate regression using
set-indexed Gaussian white noise
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We propose an asymptotic test method for checking the
validity of a multivariate spatial regression that utilizes the
distribution model of set-indexed Gaussian white noise. The
random set function is obtained as the limit of the partial
sums of the vector of observations sampled according to a
continuous probability measure (design). It is shown under
relatively mild condition that the test which is defined as
the integral with respect to the partial sums of the observa-
tion converges to an optimal test constructed based on the
Cameron-Martin density of the multivariate shifted Gaus-
sian white noise. The optimality of the design under which
the experiment was performed is also investigated. We also
study the application of the established test procedure to a
multivariate real data obtained from a mining industry.
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1. INTRODUCTION

Modelling spatial data using multivariate regression anal-
ysis is extensively applied in earth and environmental sci-
ences. Checking the appropriateness of an assumed regres-
sion model is important in the practice before using the
model for prediction and uncertainty quantification. It can
be conducted by investigating either the vector of the resid-
uals directly, see e.g. Arnold [2], Seber and Lee [24], Chris-
tensen [13] and Johnson and Wichern [16], or the empirical
processes of the residuals as proposed in Stute [30], Stute
and et al. [30] and Stute [32].

The purpose of the present paper is to study the appli-
cation of p-dimensional set-indexed Gaussian white noise in
model check or lack of fit (LOF) test for the mean vec-
tor in multivariate spatial regression defined on high di-
mensional experimental region. In contrast to the classical
methods of model diagnostic addressed in the textbooks
on regression listed above, in the present paper we define
a test statistics which is expressed as an integral with re-
spect to p-dimensional set-indexed partial sums (Cumula-
tive Sums=CUSUM) processes of the observations instead
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of the residuals, see Section 2. Our new approach will be
shown to be more applicable in the practice.

The application of the set-indexed Gaussian white noise
in statistical modelling of spatial data has been pioneered
by MacNeill [20, 21] who firstly investigated the limit pro-
cess of the sequence of least squares residuals partial sums
processes of univariate polynomial regression. These famous
approaches are generalized to the context of univariate spa-
tial regression by MacNeill and Jandhyala [22], and Xie and
MacNeill [37] who obtained the limit process as a functional
of the set-indexed Brownian sheet. Bischoff and Somayasa
[12] and Somayasa and et al. [26] derived the limit process
in the spatial case by applying the geometric method pro-
posed in Bischoff [7, 8]. These results can be used to estab-
lish asymptotic test of Kolmogorov-Smirnov and Cramér-
von Mises type for model check and boundary detection
problems. Recently, Wellner [35] established a likelihood ra-
tio test based on the Cameron-Martin density formula of
set-indexed Gaussian white noise derived in Lifshits [19].

The study has been extended to model-check for multi-
variate spatial regression with correlated responses by So-
mayasa and et al. [27, 28, 29] by considering the multidimen-
sional partial sums process of the vector of least squares
residuals. This technique is however restricted in the ap-
plication since the limits of the Kolmogorov-Smirnov and
Cramér-von Mises functionals of the processes are mathe-
matically not tractable. Simulation must be developed for
approximating the quantiles of the test statistics. In the
present paper we show our test procedure not only distribu-
tion free but also asymptotically optimal in some sense.

Furthermore, to our knowledge the limit of the sequence
of the partial sums processes of the residuals studied in the
literatures mentioned above were obtained under an equidis-
tance experimental design or a so-called regular lattice only.
It is well known that regular lattice coincides asymptoti-
cally with Lebesgue measure, cf. [20, 21, 22, 37, 12]. Con-
versely, given a probability measure on a line, Bischoff [7]
and Bischoff and Miller [10, 11] proposed a design technique
based on that measure such that the sequence of the corre-
sponding designs with finite sample converges in some sense
to such a probability measure. This sampling strategy can be
adopted in the practice in case the practitioners can not or
will not sample equidistantly. Practical example of this prob-
lem is frequently encountered in mining industry in that the
Engineers for economic, technical, ecological or geographi-
cal reasons avoid to sample equidistantly. In this work we
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propose sampling strategy by determining the design points
in the spatial perspective based on a continuous probability
measure defined on the experimental region by incorporat-
ing the technique proposed in [7, 10, 11]. However, we won-
der whether such a design results in optimal decision in the
comparison with regular lattice.

The organization of the rest paper is as follows. Section
2 formulates the model and the hypothesis under study. In
Section 3 we investigate the limiting distribution of the test
statistic when the hypotheses are true. In Section 4 we derive
the Neyman-Pearson test and try to investigate the optimal
property of the test. In Section 5 we investigate the optimal-
ity of a design of experiment by studying the limit power
function of the associated test. The finite sample behavior
of the test is studied by simulation in Section 6. Application
of the proposed method to a real data is discussed in Section
7. At the end of this work we present conclusion and remark
for future work. Proofs are postponed to the Appendices.

2. THE MODEL, DESIGN STRATEGY AND
THE HYPOTHESES

To explain the problem in more detail let us consider a
p-variate nonparametric spatial regression

Y(x) = g(x) + E(x), x ∈ D := ×d
j=1[aj , bj ] ⊂ R

d,(2.1)

where Y := (Yi)
p
i=1 is the vector of random observations,

g := (gi)
p
i=1 : D → R

p is the true-unknown regression func-
tion defined on D and E := (εi)

p
i=1 is unobserved vector

of random errors defined on a common probability space
(Ω,F ,P), say, with E(E(x)) = 0 ∈ R

p and Cov(E(x)) = Σ,
for every x ∈ D, where Σ is assumed in this paper to be un-
known and positive definite. For fixed n1 ≥ 1, . . . , nd ≥ 1,
let Y be observed over an experimental design

Ξμ;n1···nd
:= {tn1j1···ndjd := (tn1j1 , . . . , tndjd)

�: 1≤ jk ≤nk,

1 ≤ k ≤ d} ⊂ D,

for a given probability measure μ on (D,B(D)), where the
points tn1j1···ndjd ∈ Ξμ;n1···nd

are determined by generaliz-
ing the method due to [7, 10, 11] as follows. First we con-
struct a partition {tn11, tn12, . . . , tn1n1} on [a1, b1] based on
the equation

Fμ(tn1j1 , b2, . . . , bd) = j1/n1, 1 ≤ j1 ≤ n1,

where Fμ is the distribution function of μ defined on D
which is assumed in this paper to be continuous, increasing
on D and factorized as

Fμ(t1, t2, · · · , td) = Πd
k=1Fkμ(tk),

where Fkμ is continuous and increasing on [ak, bk], for k =
1, . . . , d. Next for a fixed j1 we partition the interval [a2, b2]
by solving the equation

Fμ(tn1j1 , tn2j2 , b3, . . . , bd) = j1j2/(n1n2), 1 ≤ j2 ≤ n2.

The obtained points {tn21, tn22, . . . , tn2n2} which constitutes
a partition on [a2, b2] that correspond with a fixed tn1j1 ∈
[a1, b1] are uniquely determined. Similarly, for fixed j1 and
j2, with 1 ≤ j1 ≤ n1 and 1 ≤ j2 ≤ n2 we move forward
to develop the corresponding partition {tn31, tn32 . . . , tn3n3}
on [a3, b3] by solving

Fμ(tn1j1 , tn2j2 , tn3j3 , b4, . . . , bd)

= j1j2j3/(n1n2n3), 1 ≤ j3 ≤ n3.

The similar manner is applied for the remaining intervals
[ak, bk], for k = 4, 5, . . . , d. In general we construct the parti-
tion {tnk1, tnk2, . . . , tnknk

} on [ak, bk] that corresponds with
the point (tn1j1 , . . . , tnk−1jk−1

), for k = 4, 5, . . . , d, by solving
the equation

Fμ(tn1j1 , . . . , tnkjk , bk+1, . . . , bd) =
Πk

u=1ju
Πk

u=1nu
.

By this sampling method Ξμ;n1···nd
is not necessarily an

equidistance experimental design or a regular lattice. If μ
is the uniform probability measures on D with the distribu-
tion function

Fμ(t1, . . . , td) :=
1

|D|Π
d
j=1(tj − aj), (t1, . . . , td) ∈ D,

where |D| is the volume of D, then we get the equidis-
tance experimental design with the experimental condi-
tion (tn1j1 , . . . , tndjd), where tnkjk = ak + (bk − ak)

jk
nk

, for
k = 1, . . . , d.

Let Pn1···nd
be a discrete probability measure on B(D)

associated with Ξμ;n1···nd
, defined by

Pn1···nd
(B)

:=
1

Πd
k=1nk

n1∑
j1=1

· · ·
nd∑

jd=1

δtn1j1 ...ndjd(B), B ∈ B(D),

where δtn1j1 ...ndjd is the one point measure in the point
(tn1j1 , . . . , tndjd) which is frequently called Dirac measure
in the literatures, defined on B(D) as

δtn1j1 ...ndjd(B) =

{
1 ; (tn1j1 , . . . , tndjd) ∈ B
0 ; (tn1j1 , . . . , tndjd) �∈ B

.

We notice that Pn1···nd
can also be written as

Pn1···nd
(B)

:=
1

Πd
k=1nk

n1∑
j1=1

· · ·
nd∑

jd=1

1B(F
−1
μ (Πd

k=1jk/Π
d
k=1nk)),

B ∈ B(D),

where 1B is the indicator function of B. Let Fn1···nd
be the

associated distribution function of Pn1···nd
. Then by this

sampling strategy we get the property that Fn1···nd
con-

verges uniformly to Fμ as n1, . . . , nd simultaneously large.
That is
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‖Fn1···nd
− Fμ‖∞

:= sup
(t1,...,td)∈D

|Fn1···nd
(t1, . . . , td)− Fμ(t1, . . . , td)| → 0,

which by the Portmanteau theorem (cf. Billingsley [6],
pp. 18–19) immediately implies Pn1···nd

converges in Dis-
tribution to μ. We note that all limits obtained in this work
are for n1, . . . , nd simultaneously go to infinity, otherwise it
will be stated in some way. Such a sampling scheme will be
of our consideration throughout the work. The probability
measure μ according to which Ξμ;n1···nd

is constructed will
be called a design, cf. [7, 10, 11]. A design μ is called optimal
for testing LOF if it maximizes the power of the test. In this
paper we shall investigate the optimality property of a given
design μ with the associated continuous and nondecreasing
probability distribution Fμ in term of the limit power func-
tion of the proposed test. Under our assumption μ is abso-
lutely continuous with respect to the Lebesque measure λd

on D.
Let V be a finite dimensional spaces defined by V :=

[w1, . . . , wq, wq+1, . . . , wm], and let W := [w1, . . . , wq] be a
subset of V, where w1, . . . , wq, wq+1, . . . , wm are known re-
gression functions which are assumed to be linearly indepen-
dent as functions in L2(D,μ), with q ≤ m, thereby L2(D,μ)
is the space of squared integrable functions on D with re-
spect to μ. The product of p copies of L2(D,μ) is denoted by
Lp
2(D,μ), that is Lp

2(D,μ) := ×p
i=1L2(D,μ). The common

framework of LOF test for the mean of Y falls into the prob-
lem of testing the hypothesis that g ∈ Wp while observing
g ∈ Vp (cf. [2, 13]), where Wp and Vp are the product of
p copies of W and V, respectively. Suppose that g can be
decomposed as g = g1 + g2 with g1 := (g1i)

p
i=1 ∈ Wp and

g2 := (g2i)
p
i=1 ∈ Vp ∩ (Wp)C . Then the problem of testing

H0 : g ∈ Wp while observing g ∈ Vp can be handled by
testing that of
(2.2)
H0 : g2 ≡ 0 againstH1 : g2 ≡ f1, for some f1 ∈ Vp∩(Wp)C .

Upon observing Model 2.1 over Ξμ;n1···nd
we get an ar-

ray of independent p-dimensional vector of observations
Y(Ξμ;n1···nd

) = (Y(tn1j1···ndjd))
n1,··· ,nd

j1=1,··· ,jd=1 that satisfies
the regression model

(2.3) Y(Ξμ;n1···nd
) = g(Ξμ;n1···nd

) + E(Ξμ;n1···nd
),

where E(Ξμ;n1···nd
) := (E(tn1j1···ndjd))

n1,··· ,nd

j1=1,··· ,jd=1 is an ar-
ray of independent and identically distributed p-dimensional
random errors such that (s.t.)

E(E(tn1j1···ndjd)) = 0 and Cov(E(tn1j1···ndjd)) = Σ,

for 1 ≤ j1 ≤ n1, . . . , 1 ≤ jd ≤ nd. For convenience we write
Y(tn1j1···ndjd), g(tn1j1···ndjd) and E(tn1j1···ndjd) throughout
this paper simply asYj1···jd , gj1···jd and Ej1···jd , respectively.
In contrast to the classical method studied in [2, 24, 13, 16]
where the inference procedure was derived under normal
distribution of Ej1···jd , in this work we aim to establish an

asymptotic procedure for which the normality assumption
can be ignored.

A reasonable statistic for testing (2.2) is defined by

J (Y(Ξμ;n1···nd
))(2.4)

:=

∫
D

(Σ−1/2f1)
�dΣ−1/2Sn1···nd

(Y(Ξμ;n1···nd
)),

where for every B ∈ B(D),

Sn1···nd
(Y(Ξμ;n1···nd

))(B)

:=
1√

n1 · · ·nd

n1∑
j1=1

· · ·
nd∑

jd=1

1B(tj1···jd)Yj1···jd ,

is the p-dimensional partial sums process of the vector of
observations indexed by B(D). This is actually the vectorial
version of the univariate partial sums process defined e.g.
in [1, 23, 17, 37]. It is well understood that the integral in
(2.4) is defined as

∫
D
u�dv :=

∑p
i=1

∫
D
ui dvi, for every u :=

(ui)
p
i=1 and v := (vi)

p
i=1 provided the integrals are in some

sense well defined. By the definition it can be immediately
seen that the value of J (Y(Ξμ;n1···nd

)) will be large when
the observations appear as realization of the model with
g2 �≡ 0. This is because of the appearance of a positive term
which is asymptotically rational to ‖Σ−1f1‖2Lp

2(D,μ)
when the

sample support H1. In other word the larger the distance of
the model fromH0 the greater the value of J (Y(Ξμ;n1···nd

)).
Therefore it is reasonable to reject H0 for large value of
J (Y(Ξμ;n1···nd

)).
We notice that for each ω ∈ Ω, the set func-

tion Sn1···nd
(Y(Ξμ;n1···nd

))(ω) constitutes a signed mea-
sure on B(D). Hence the integrals involved in the statis-
tic J (Y(Ξμ;n1···nd

)) can be interpreted path-wise as the in-
tegral of a function in L2(D,μ) with respect to a signed
measure. The reader is referred to [14], pp. 121–153 for the
notion of the integral with respect to signed measure.

Remark 2.1. The problem of testing H0 : g ∈ Wp is
equivalent with that of testing H0 : 1

n1···nd
g ∈ Wp for all

nk ≥ 1. On the other hand, the convergence component-
wise of Σ−1/2Sn1···nd

( 1√
n1···nd

g(Ξμ;n1···nd
)) to Σ−1/2ϕg(·) ∈

Cp(A0), where ϕg(A) :=
∫
A
gdμ, is useful for analyzing the

limiting power function of the test. Hence without altering
the test problem we observe the localized version of (2.3)
defined by
(2.5)

Yloc(Ξμ;n1···nd
) :=

1√
n1 · · ·nd

g(Ξμ;n1···nd
) + E(Ξμ;n1···nd

).

Therefore rather than using the test statistics
J (Y(Ξμ;n1···nd

)), we consider its localized version
J (Yloc(Ξμ;n1···nd

)) given by

J (Yloc(Ξμ;n1···nd
))

:=

∫
D

f�1 Σ−1/2dΣ−1/2Sn1···nd
(Yloc(Ξμ;n1···nd

))
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in defining a non randomized test for the hypothesis (2.2)
as

ημ;n1···nd
(Yloc(Ξμ;n1···nd

))

:=

{
1 ; J (Yloc(Ξμ;n1···nd

)) ≥ k
0 ; otherwise

,

where k satisfies EH0(ημ;n1···nd
) = α, for a pre-determined

α ∈ (0, 1). Power function plays important role for evaluat-
ing the performance of a test.

3. LIMITING DISTRIBUTIONS

In this section we derive the limit of the statistic
J (Yloc(Ξμ;n1···nd

)) by applying the multivariate invariance
principle presented in Theorem A.2 in the Appendix. With-
out loss of generality we assume {w1, . . . , wq, wq+1, . . . , wm}
are orthogonal as functions in L2(D,μ), so that W ⊥
(V ∩WC) and Wp ⊥ (Vp ∩ (Wp)C) as well.

The following theorem gives the asymptotic test of size α
for testing the more general hypotheses

H0 : g2 ≡ f0 vs. H1 : g2 ≡ f1,(3.1)

for some f0, f1 ∈Vp ∩ (Wp)C , with f0 �= f1.

Theorem 3.1. Let g = g1 + g2, with g1 ∈ Wp and g2 ∈
Vp ∩ (Wp)C . Suppose that for i = 1, . . . , p, g1i and g2i are
continuous with respect to (w.r.t.) the usual Euclidean dis-
tance and have bounded variation on D in the sense of Hardy
(see Definition F.4 in the Appendix). Then an asymptotic
test of size α for testing (3.1) will reject H0, if and only if

J (Yloc(Ξμ;n1···nd
)) ≥ Φ−1(1− α)‖Σ−1/2(f1 − f0)‖(p)μ

+ 〈Σ−1/2(f1 − f0),Σ
−1/2f0〉(p)μ ,

where Φ is the cumulative distribution function of the
standard normal distribution.

Remark 3.2. In the case of the hypothesis H0 : g2 ≡ 0
against H1 : g2 ≡ f1, both statistics J (Yloc(Ξμ;n1···nd

))
and J (Y(Ξμ;n1···nd

)) converge under H0 to the same distri-

bution model, that is N(0, (‖Σ−1/2f1‖(p)μ )2). Suppose that
t∗Ξμ;n1···nd

is the value of the statistic J (Y(Ξμ;n1···nd
)) com-

puted on a given sample, then the p-value of the test for
such simple hypothesis is calculated by using the equation

p− value = 1− Φ

(
t∗Ξμ;n1···nd

‖Σ−1/2f1‖(p)μ

)
.

The asymptotic power function of the test is presented in
the following corollary.

Corollary 3.3. Let Ψμ;n1···nd
: Vp∩ (Wp)C → (0, 1) be the

power function of ημ;n1···nd
at level α defined by

Ψμ;n1···nd
(f)

:= P{ω ∈ Ω : J (Yloc(Ξμ;n1···nd
)(ω)) ≥ k|g2 ≡ f},

for f ∈ Vp ∩ (Wp)C , where k := Φ−1(1 − α)‖Σ−1/2(f1 −
f0)‖(p)μ + 〈f1 − f0,Σ

−1f0〉(p)μ . Then under the assumption of
Theorem 3.1, Ψμ;n1···nd

(f) converges point wise to

Ψμ(f) := 1− Φ

(
Φ−1(1− α)

− 〈Σ−1/2(f1 − f0),Σ
−1/2(f − f0)〉(p)μ

‖Σ−1/2(f1 − f0)‖(p)μ

)
.

Remark 3.4. Let Y(n1···nd), and X(n1···nd) be the
(n1 · · ·nd) × p-dimensional matrix of observations and the
(n1 · · ·nd)×m-dimensional design matrix defined by

Y(n1···nd) := (vec(Y1(Ξμ;n1···nd
)), . . . , vec(Yp(Ξμ;n1···nd

)))

X(n1···nd) := (vec(w1(Ξμ;n1···nd
)), . . . , vec(wm(Ξμ;n1···nd

))),

where vec denotes the well-known vec operator defined as
follows. Let M : (m1, · · · ,mj , · · · ,mp) be a q × p di-
mensional matrix whose j-th column is mj ∈ R

q. Then
vec(M) := (m�

1 , · · · ,m�
j , · · · ,m�

p )
� ∈ R

pq. A consistent
estimator of Σ is given by the p × p-dimensional matrix
Σ̂n1···nd

, where

Σ̂n1···nd
:=

1

n1 · · ·nd
Y�

(n1···nd)
prC(X(n1···nd))⊥Y(n1···nd),

cf. Arnold [3]. Thereby prC(X(n1···nd))⊥ is the orthogonal pro-

jector onto the orthogonal complement of the column space
of X(n1···nd).

Remark 3.5. It is important to note that computational
difficulties appear in the practice for testing using our es-
tablished test procedure, because the test statistic was ex-
pressed as the integral with respect to signed measure in-
duced by Sn1···nd

(Y(Ξμ;n1···nd
)) indexed by large family of

subsets A which includes all open, closed as well as convex
subsets of D. Fortunately as noted in [1, 23] the one dimen-
sional invariance principle holds true for the much smaller
family of subsets of D, that is Id := {Πd

j=1[aj , tj ] : aj <
tj ≤ bj , j = 1, . . . , d}. By the similar argument, Theo-
rem D.1 can also be shown to hold true under the family
Id. By this reason, the implementation of the test in the
application is conducted by using a computer program that
considers the family Id. This family belongs to the so-called
Vapnik-C̆ervonenkis Classes (VCC), which in general satis-
fies the prerequisites needed in the multivariate invariance
principle. Further, by taking into account the family Id as
the index in the calculation of the test statistic, the ran-
dom function Sn1···nd

(Y(Ξμ;n1···nd
))(Πd

j=1[aj , tj ]) is written
by Sn1···nd

(Y(Ξμ;n1···nd
))(t1, . . . , td) for brevity. It can be

shown that the last can be regarded as a random continuous
function on D with respect to the usual Euclidean distance
leading us to the conclusion that the integral of any function
of bounded variation with respect to Sn1···nd

(Y(Ξμ;n1···nd
))

coincides path-wise with the Riemann-Stieltjes integral in
the sense of Stroock [25], pp. 7–16.
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The steps how to conduct asymptotic LOF test for the
mean of multivariate spatial regression model in the prac-
tice according to our method is summarized in the following
algorithm:

1. Determine the design μ under which the experimental
design is constructed;

2. Construct the experimental conditions according to Fμ

following the sampling strategy introduced in Section 2;
3. Compute the test statistic J (Y(Ξμ;n1···nd

));
4. Compute the p-value of the test by using the formula

given in Remark 3.2;
5. Draw decision whether or not to reject H0.

4. NEYMAN-PEARSON TEST

Our purpose in this section is to establish an optimal
test and to use the optimality criterion defined in Bischoff
and Miller [10] in order to show that the test ημ;n1···nd

is
asymptotically optimal.

Under the condition of Theorem 3.1 the sequence of the
partial sums processes {Σ−1/2Sn1···nd

(Yloc(Ξμ;n1···nd
))(A) :

A ∈ A0}, n1 ≥ 1, . . . , nd ≥ 1 converges to a signal plus
noise model given by

Y = {Σ−1/2ϕg(A) + Zμ(A) : A ∈ A0},

with ϕg = ϕg1 + ϕg2 as the deterministic signal and
the set-indexed Gaussian white noise Zμ as the random
noise. We called Y asymptotic model that corresponds to
{Σ−1/2Sn1···nd

(Yloc(Ξμ;n1···nd
))(A) : A ∈ A0}. Hypothesis

of the form

H0 : ϕg2 ≡ ϕf0 against H1 : ϕg2 ≡ ϕf1 ,(4.1)

for some ϕf0 , ϕf1 ∈ Vp
ϕ ∩ (Wp

ϕ)
C

is said the asymptotic hypothesis that corresponds to
Hypothesis 3.1, where Vp

ϕ and Wp
ϕ are the product

of p copies of Vϕ and Wϕ, respectively, with Vϕ :=
[ϕw1 , . . . ϕwp , . . . , ϕwm ] and Wϕ := [ϕw1 , . . . ϕwp ]. Further-
more, the problem of testing (4.1) when observing Y is called
the asymptotic version of that of testing (3.1) when observ-
ing {Σ−1/2Sn1···nd

(Yloc(Ξμ;n1···nd
))(A) : A ∈ A0}.

Our concern is to establish Neyman-Pearson test proce-
dure for (4.1) when the model Y is observed. For that we
need the reproducing kernel Hilbert space (RKHS) of the
components Zμ, denoted by H

Z
(i)
μ
, given by

H
Z

(i)
μ

:=

{
h : h(A) =

∫
A

	 dμ, 	 ∈ L2(D,μ), A ∈ A0

}
.

The space H
Z

(i)
μ

which is furnished with the inner product

and norm defined by

〈h1, h2〉H
Z

(i)
μ

:= 〈	1, 	2〉μ :=

∫
D

	1	2dμ, 	1, 	2 ∈ L2(D,μ)

‖h‖H
Z

(i)
μ

:= ‖	‖μ :=

√∫
D

|	|2dμ, 	 ∈ L2(D,μ),

is decisive for our result, see also [26]. We get the re-
sult immediately by applying either Theorem 4.1 in [19]
or Definition 1 in [5] the RKHS of Zμ which is given by
HZμ = ×p

i=1HZ
(i)
μ
. It becomes clear that Vp

ϕ as well as Wp
ϕ

are subsets of HZμ . Analogously, inner product and norm
on HZμ are defined respectively by

〈ϕu, ϕv〉HZμ
:=

p∑
i=1

〈ϕvi , ϕui〉H
Z

(i)
μ

=

p∑
i=1

〈vi, ui〉μ

‖ϕu‖2HZμ
:=

p∑
i=1

‖ϕui‖2H
Z

(i)
μ

=

p∑
i=1

‖ui‖2μ = (‖u‖(p)μ )2.

Definition 4.1. Let ψ0(Y) and ψ1(Y) be the density func-
tions of Y when the samples are considered under H0 and
H1, respectively. A non randomized Neyman-Pearson test
for 4.1 when the asymptotic model Y = Σ−1/2ϕg1+g2 + Zμ

is observed is a function ημ : Cp(A0) → {0, 1} defined by

ημ(Y) =

{
1 ; ψ0(Y)

ψ1(Y) ≤ k

0 ; otherwise
,

where k is a constant that satisfies EH0(ημ) = α, for a pre-
determined α ∈ (0, 1).

Since the Neyman-Pearson test by Theorem 3.2.1 in [18]
leads us to an optimal test, Definition 4.1 suggest that in
order to obtain an optimal test procedure for (4.1) we need
to derive the density formulas of the process Y under H0 as
well as under H1. Definition 4.2 below defines some impor-
tant notations.

Definition 4.2. For any h := (hi)
p
i=1 ∈ Cp(A0) the dis-

tribution of h + Zμ on (Cp(A0),B(Cp(A0))) is denoted by
Ph
Zμ

, defined as Ph
Zμ

(B) := PZμ(B − h), for every Borel set

B := ×p
i=1Bi ∈ B(Cp(A0)). The function h is called a shift.

If h ∈ HZμ , then h is called an admissible shift, cf. [19],
pp. 34.

The following theorem presents a most powerful test of
size α for testing (4.1). The rejection region is derived based
on the Cameron-Martin density of the shifted measure Ph

Zμ

with respect to PZμ , see Theorem D.1 in the appendix. As a
comparison study, Wellner [35] applied the Cameron-Martin
formula for signal plus Gaussian white noise on the space
C([−c, c]) with control measure the Lebesque measure and
the signal a monotone function on [−c, c] in establishing
likelihood ratio test for testing the signal. The cameron-
Martin formula for the Slepian processes on C([0, 1]) has
been investigated in [9].

Theorem 4.3. A most powerful test of size α for the hy-
potheses H0 : ϕg2 ≡ ϕf0 against H1 : ϕg2 ≡ ϕf1 for some
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ϕf0 , ϕf1 ∈ Vp
ϕ ∩ (Wp

ϕ)
C with ϕf1 �≡ ϕf0 , will reject H0 if and

only if∫
D

(f1 − f0)
�Σ−1/2 dY ≥ Φ−1(1− α)‖Σ−1/2(f1 − f0)‖pμ

+〈Σ−1/2(f1 − f0),Σ
−1/2f0〉(p)μ .

Furthermore, the corresponding power function of this test
is given by

Υμ(ϕf ) = 1− Φ

(
Φ−1(1− α)

− 〈Σ−1/2(f1 − f0),Σ
−1/2(f − f0)〉(p)μ

‖Σ−1/2(f1 − f0)‖(p)μ

)
,

for every ϕf ∈ Vp
ϕ ∩ (Wp

ϕ)
C , where Φ is the cumulative

distribution function of the standard normal distribution.

Corollary 4.4. The asymptotic test based on the statistics
J (Yloc(Ξμ;n1···nd

)) defined in Theorem 3.1 is an asymptot-
ically optimal test of size α.

Proof. Since the sequence ημ;n1···nd
converges in distribution

to ημ for the situation under H0 as well as H1, where the
ημ is an optimal test based on the statistic

∫
D
Σ−1/2(f1 −

f0)
�dY , then by the optimality criterion defined in [10],

ημ;n1···nd
is an asymptotically optimal test based on the

statistic J (Yloc(Ξμ;n1···nd
)).

5. THE EXISTENCE OF AN
ASYMPTOTICALLY OPTIMAL DESIGN

There are many criteria in defining optimal design of ex-
periment for model check or testing LOF in regression, see
e.g. [10, 11]. In this paper we define optimality criterion
based on the power function of the test.

Definition 5.1. Let μ1 and μ2 be two designs that corre-
spond to Ξμ1;n1···nd

and Ξμ2;n1···nd
. The design μ1 is said to

be asymptotically more optimal than μ2 for testing (2.2) or
equivalently (4.1), if and only if Ψμ2(f) ≤ Ψμ1(f) for every
f ∈ Vp ∩ (Wp)C . Further, let G be the set of designs μ s.t.
Fμ is continuous and nondecreasing on D. A design μ0 ∈ G
is called an asymptotically optimal design for testing (2.2),
if and only if it holds

sup
μ∈G

Ψμ(f) = Ψμ0(f), ∀f ∈ Vp ∩ (Wp)C .

We notice that in this paper the space G is furnished with
the uniform topology induced by the metric dG , defined by
dG(μ1, μ2) := ‖Fμ1 − Fμ2‖∞.

Remark 5.2. Since Φ is nondecreasing on R, a design μ1 is
asymptotically more optimal than μ2 for testing H0 : g2 ≡ 0
against H1 : g2 ≡ f1, for f1 ∈ Vp ∩ (Wp)C , if and only if〈

Σ−1/2f1,Σ
−1/2f

〉(p)
μ2

‖Σ−1/2f1‖(p)μ2

≤
〈
Σ−1/2f1,Σ

−1/2f
〉(p)
μ1

‖Σ−1/2f1‖(p)μ1

, ∀f ∈ Vp ∩ (Wp)C .

Let {w̃1μ, . . . , w̃qμ, w̃(q+1)μ, w̃mμ} be the Gram-Schmidt or-
thogonal versions of the original basis of V when the sam-
pling is conducted under the designs μ, for arbitrary fixed
μ ∈ G. Since f1 and f are arbitrary in Vp ∩ (Wp)C ,
there exist vectors of constants a := (a1, . . . , ap)

�,b :=
(b1, . . . , bp)

� ∈ R
p, such that f1 := a(w(q+1)μ + · · · + wmμ)

and f := b(w(q+1)μ + · · ·+ wmμ). Then, it holds〈
Σ−1/2f1,Σ

−1/2f
〉(p)
μ

‖Σ−1/2f1‖(p)μ

=
Aab√
Aaa

√
‖w(q+1)μ‖2μ + · · ·+ ‖wmμ‖2μ

where Aab := a�Σ−1b and Aaa := a�Σ−1a. Thus by the
orthogonality of the basis of Vp ∩ (Wp)C , the design μ1 is
asymptotically more optimal than μ2, if and only if√

‖w(q+1)μ1
‖2μ1

+ · · ·+ ‖wmμ1‖2μ1

≤
√
‖w(q+1)μ2

‖2μ2
+ · · ·+ ‖wmμ2‖2μ2

.

Hence by the preceding result, a design μ0 is an asymp-
totically optimal design for testing LOF if and only if
Wf (μ0) = supμ∈G Wf (μ) for arbitrary fixed f ∈ Vp∩(Wp)C ,
where

Wf (μ) :=
Aab√
Aaa

√
‖w(q+1)μ‖2μ + · · ·+ ‖wmμ‖2μ.

This means that the problem of finding an optimal design
of testing LOF is now shifted to that of finding a design
μ ∈ G that maximizes the sum of the square norm of the
basis of Vp ∩ (Wp)C in L2(μ,D). The set G is compact un-
der the uniform topology, because G can be easily shown to
be closed and bounded under such a topology. Furthermore,
since integration with respect to μ involved in the compu-
tation of norm ‖ · ‖2μ is continuous function on G, then as a
composition of two continuous functions, Wf (·) is therefore
continuous on G, for every f ∈ Vp ∩ (Wp)C . By a standard
result in analysis there exists an asymptotically optimal de-
sign for testing (2.2).

Theorem 5.3. Among the elements of G with the same
sample size n1×· · ·×nd, regular lattice is the asymptotically
optimal design for testing LOF in multivariate regression.

5.1 Example 1

Suppose we observe the following multivariate regression
model

Yi(t, s)= β0i+β1it+β2is+εi(t, s), (t, s)∈ [1, 2]2, i=1, 2, 3, 4,

with E(E) = 0 and the invertible covariance matrix Σ de-
fined as

66 W. Somayasa and H. Budiman



Σ :=

⎛⎜⎜⎝
9 3 −6 12
3 26 −7 −11

−6 −7 9 7
12 −11 7 65

⎞⎟⎟⎠ .

Suppose we are given two probability measures μ0 and the
Lebesgue measure λ2 for constructing the experimental de-
sign according to the design scheme introduced in Section
2, where Fμ0(t, s) := 2(1− 1/t)2(1− 1/s), for (t, s) ∈ D :=
[1, 2]2. We determined the design points of Ξμ0;n1×n2 for
fixed n1 ≥ 1 and n2 ≥ 1 by the formula

tn1j1 =
2n1

2n1 − j1
and tn2j2 =

4n1n2(tn1j1 − 1)

tn1j1(4n1n2 − j1j2)− 4n1n2
,

for 1 ≤ j1 ≤ n1 and 1 ≤ j2 ≤ n2. The design points
of Ξλ2;n1×n2

is clearly given by the regular lattice with

tn1j1 = 1 + j1
n1

and tn2j2 = 1 + j2
n2

. We are interested in
computing and comparing the asymptotic power functions
when we are testing H0 : g = (g(i))4i=1 ∈ W4 := [w1]

4, while
we are observing g ∈ V4 := [w1, w2, w3]

4, with w1(t, s) = 1,
w2(t, s) = t and w3(t, s) = s, for (t, s) ∈ D. The Gram-
Schmidt orthogonal version of these basis functions when
considered as functions in L2(D,μ0) and L2(D,λ2) are given
by V4

μ0
:= [w̃1μ0 , w̃2μ0 , w̃3μ0 ] and V4

λ2 := [w̃1λ2 , w̃2λ2 , w̃3λ2 ],
respectively, where for (t, s) ∈ D,

w̃1μ0(t, s) = 1, w̃2μ0(t, s) = t− ln 4, w̃3μ0(t, s) = s− ln 4

w̃1λ2(t, s) = 1, w̃2λ2(t, s) = t− 3/2, w̃3λ2(t, s) = s− 3/2.

First we consider the design μ0 in testing the hypothesis
H0 : g2 ≡ 0 against an alternative H1 : g2 ≡ f1μ0 , for a
vector f1μ0 ∈ V4

μ0
∩ (W4

μ0
)C defined by

f1μ0(t, s)

:= (18, 11, 13, 73)�(w̃2μ0(t, s) + w̃3μ0(t, s)) (t, s) ∈ D,

where g2 satisfies the decomposition g = g1⊕g2, with g1 ∈
W4

μ0
and g2 ∈ V4

μ0
∩ (W4

μ0
)C . The intention is to compute

the limit of Ψμ0;n1n2(f) when it is evaluated at f ≡ ρf1μ0 ,
for ρ ∈ R. After conducting a little computation we get

Wf (μ0)

= ρ
√

(18, 11, 13, 73)Σ−1(18, 11, 13, 73)�

×
√

‖w̃2μ0‖2μ0
+ ‖w̃3μ0‖2μ0

= 19.36492
√
0.078188 + 0.078188 ρ = 7.657738ρ.

Hence, by Corollary 3.3 we obtain the limiting power
function of the test of size α based on the statistic
J (Yloc(Ξμ0;n1×n2)) as

Ψμ0(ρ) := Ψμ0(ρf1μ0)

= 1− Φ(Φ−1(1− α)− 7.657738ρ), for ρ ∈ R.

Next we test the similar hypothesis H0 : g2 ≡ 0 against an
alternative H1 : g2 ≡ f1λ2 , for a vector f1λ2 ∈ V4

λ2 ∩(W4
λ2)C

defined by

f1λ2(t, s)

:= (18, 11, 13, 73)�(w̃2λ2(t, s) + w̃3λ2(t, s)) (t, s) ∈ D,

where g2 is obtained from the orthogonal decomposition
g = g1 ⊕ g2, with g1 ∈ W4

λ2 and g2 ∈ V4
λ2 ∩ (W4

λ2)C .
By applying the analogous computation steps as before, the
power function Ψλ2;n1n2

(f) when it is evaluated at f ≡ ρf1λ2

converges point wise to

Ψλ2(λ) := Ψλ2(ρf1λ2)

= 1− Φ(Φ−1(1− α)− 7.905694ρ), for ρ ∈ R.

It is seen that Ψλ2(ρ) is slightly larger than Ψμ0(ρ) for all
ρ. This means that the design λ2 is asymptotically more op-
timal than that of μ0 suggesting us to choose the regular
lattice as the design instead of that obtained using the dis-
tribution function of μ0 in order to get asymptotically more
optimal test.

5.2 Example 2

In the second example we investigate the behavior of the
designs μ0 and λ2 defined above for testing the hypothesis
H0 : g ∈ W4 against H1 : g ∈ V4 when we observe the
multivariate model

Yi(t, s) =

5∑
k=1

βkiwk(t, s) + εi(t, s), i = 1, 2, 3, 4,

with E(E) = 0 and the covariance matrix given as in
the preceding example, where W := [w1, w2, w3] and
V := [w1, w2, w3, w4, w5] built by the regression functions
w1(t, s) = 1, w2(t, s) = t, w3(t, s) = s, w4(t, s) = t2,
and w5(t, s) = s2, for (t, s) ∈ [1, 2]2 which are clearly lin-
early independent as functions in L2(D,μ0) as well as in
L2(D,λ2). In other word we want to test whether or not a
first-order polynomial is adequate for representing the model
under the test procedure based on J (Yloc(Ξμ0;n1×n2)) and
J (Yloc(Ξλ2;n1×n2

)). The orthogonal representation of gi
in L2(D,μ0) and L2(D,λ2) is respectively given by gi =∑5

k=1 βkiw̃kμ0(t, s) and gi =
∑5

k=1 βkiw̃kλ2(t, s), for i =
1, 2, 3, 4, where

w̃1μ0(t, s) = 1, w̃2μ0(t, s) = t− ln(4), w̃3μ0(t, s) = s− ln(4),

w̃4μ0(t, s) = t2 −K1t+K2, w̃5μ0(t, s) = s2 −K1s+K2

w̃1λ2(t, s) = 1, w̃2λ2(t, s) = t− 3/2, w̃3λ2(t, s) = s− 3/2,

w̃4λ2(t, s) = t2 − t/4− 47/24, w̃5λ2(t, s) = s2 − s/4− 47/24,

where K1 := 3 − 2 ln(4) and K2 := [3 − 2 ln(4)] ln(4) − 2.
If we consider μ0 as the design, the limiting power function
of J (Yloc(Ξμ0;n1×n2)) for testing H0 : g2 ≡ 0 against H1 :
g2 ≡ f1μ0 , where f1μ0 := (w̃4μ0 + w̃5μ0)1 ∈ V4 ∩ (W4)C ,
when it is evaluated at f ≡ θf1μ0 is given by
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Ψμ0(f) = Ψμ0(θf1μ0)

= 1− Φ
(
Φ−1(1− α)− 3.022116 θ

)
, θ ∈ R,

where 1 := (1, 1, 1, 1)� ∈ R
4. Analogously, under the design

λ2 we get the limiting power function of the test based on
J (Yloc(Ξλ2

0;n1×n2
)) for testing H0 : g2 ≡ 0 against H1 :

g2 ≡ f1λ2 , where f1λ2 := (w̃4λ2 + w̃5λ2)1 ∈ V4 ∩ (W4)C ,
when it is evaluated at f ≡ θf1λ2 is given by

Ψλ2(f) := Ψλ2(θf1λ2)

= 1− Φ
(
Φ−1(1− α)− 6.41156 θ

)
, θ ∈ R.

By these results it can be stated that λ2 is asymptotically
more optimal than μ0.

6. SIMULATION STUDY

In this section we simulate the finite-sample performance
of the test for the hypotheses studied in Example 1 and Ex-
ample 2 of Section 5. In the simulation we build the graphs
of the power functions of the tests for various sample-sizes,
where the observations are sampled using the experimental
designs μ0 and λ2 defined on the experimental region D.
In each case the vector of random errors is generated inde-
pendently from the centered 4-variate normal distribution
with the covariance matrix Σ defined in the example. We
will demonstrate for the case of d = 2 that independent
to the choice of the design strategies and the level α, the
power functions Ψμ;n1×n2(f) converges to Ψμ(f) for every
f ∈ V4 ∩ (W4)C as the sample sizes get large.

For computational reason we consider the class {[1, t] ×
[1, s] : 1 ≤ t, s ≤ 2} of [1, 2]2 as the index sets.
Hence Sn1×n2(Y(Ξμ;n1×n2))([1, t] × [1, s]) is written by
Sn1×n2(Y(Ξμ;n1×n2))(t, s) for brevity where the last can be
regarded as a random continuous function on [1, 2]2 with
respect to the usual Euclidean norm. This leads us to the
conclusion that the integral of any function of bounded vari-
ation with respect to Sn1×n2(Y(Ξμ;n1×n2)) coincides path-
wise with the Riemann-Stieltjes integral, cf. Stroock [25],
pp. 7–16. By considering the partition on [1, 2]2 built up by
the design points of Ξμ;n1×n2 we get by the definition of the
Riemann-Stieltjes integral

J (Y(Ξμ;n1×n2))

=

∫ (R)

[1,2]2
f�1 Σ−1/2dΣ−1/2Sn1×n2(Y(Ξμ;n1×n2))

≈
n1∑

j1=1

n2∑
j2=1

f�1 (tn1j1 , tn2j2)Σ
−1Δj1,j2Sn1×n2(Y(Ξμ;n1×n2))

=
1√
n1n2

n1∑
j1=1

n2∑
j2=1

f�1 (tn1j1 , tn2j2)Σ
−1Y(tn1j1 , tn2j2),

where for any function u : [1, 2]2 → R
4, 1 ≤ j1 ≤ n1 and

1 ≤ j2 ≤ n2,

Δj1,j2u := u(tn1j1 , tn2j2)− u(tn1j1−1, tn2j2)

− u(tn1j1 , tn2j2−1) + u(tn1j1−1, tn2j2−1).

Here the notation
∫ (R)

stands for the integration in the sense
of Riemann-Stieltjes.

6.1 Simulation 1

In the first simulation we consider the situation described
in Example 1 of Section 5. Using the design μ0 we generate
the observations independently from the model⎛⎜⎜⎝

Y1

Y2

Y3

Y4

⎞⎟⎟⎠ =
1√
n1n2

⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠

+ ρ

⎛⎜⎜⎝
18
11
13
73

⎞⎟⎟⎠ (tn1j1 − ln 4 + tn2j2 − ln 4)√
n1n2

+

⎛⎜⎜⎝
ε1
ε2
ε3
ε4

⎞⎟⎟⎠ ,

likewise when the design is λ2, the observations are gener-
ated independently from the model⎛⎜⎜⎝

Y1

Y2

Y3

Y4

⎞⎟⎟⎠ =
1√
n1n2

⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠

+ ρ

⎛⎜⎜⎝
18
11
13
73

⎞⎟⎟⎠ (tn1j1 − 3/2 + tn2j2 − 3/2)√
n1n2

+

⎛⎜⎜⎝
ε1
ε2
ε3
ε4

⎞⎟⎟⎠ ,

where in both cases E are generated independently from
the distribution N4(0,Σ). It is clear that the observations
are from H0 if and only if ρ = 0, otherwise they are from
H1. In the case ρ = 0 the power must attain the pre-
signed level of significance α. The simulation results for
α = 0.05 under the designs μ0 and λ2 are exhibited in in
Figure 1 and Figure 2, respectively. Figure 1 compares be-
tween Ψμ0;n1×n2(ρf1) (dashed line) generated for the sample
size (i) 40× 40, (ii) 50× 50, (iii) 60× 60 and (iv) 70× 70,
respectively and Ψμ0(ρf1) (smooth line). Figure 2 presents
Ψλ2;n1×n2

(ρf1) scattered by dashed lines based on the sam-
ple sizes (i) 60×60 and (ii) 70×70 and those of Ψλ2(ρf1) rep-
resented by smooth lines. The simulation results show that
for testing constant model, the power functions Ψμ0;n1×n2(f)
gives a good approximation to Ψμ0(f), whereas Ψλ2;n1×n2

(f)
approximate very well its limiting power function Ψλ2(f)
achieving the level of significance α = 0.05 when ρ is set
equal to 0.

6.2 Simulation 2

In the second simulation we consider the test exhibited
in Example 2 of Section 5. The observations are generated
from the models
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Figure 1. The graphs of Ψμ0;n1×n2(ρf1) (dashed lines) and Ψμ0(ρf1) (smooth lines) for α = 0.05. The sample sizes are
chosen for (i) 40× 40, (ii) 50× 50, (iii) 60× 60 and (iv) 70× 70. The graphs are generated under 1000 runs using R.

Figure 2. The graphs of Ψλ2;n1×n2
(ρf1) (dashed lines) and Ψλ2(ρf1) (smooth lines) for α = 0.05. The simulations are based

on the sample sizes (i) 60× 60 and (ii) 70× 70 generated under 1000 runs.
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Figure 3. The graphs of Ψμ0;n1×n2(θf1) (dashed lines) and Ψμ0(θf1) (smooth lines) for α = 0.10. The sample sizes are
(i) 50× 50, and (ii) 60× 60. The graphs are generated under 1000 runs using R.

⎛⎜⎜⎝
Y1

Y2

Y3

Y4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠ (1 + tn1j1 + tn2j2 − 2 ln 4)√
n1n2

+ θ

⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠
×

(t2n1j1
+ t2n2j2

−K1(tn1j1 + tn2j2) + 2K2)√
n1n2

+

⎛⎜⎜⎝
ε1
ε2
ε3
ε4

⎞⎟⎟⎠ ,

when μ0 is chosen as the design, whereas under the regular
lattice we generate the observations using the following one⎛⎜⎜⎝

Y1

Y2

Y3

Y4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠ (1 + tn1j1 + tn2j2 − 3)√
n1n2

+ θ

⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠
×

(t2n1j1
+ t2n2j2

− (tn1j1 + tn2j2)/4− 47/12)
√
n1n2

+

⎛⎜⎜⎝
ε1
ε2
ε3
ε4

⎞⎟⎟⎠ ,

In both cases we generate the vector of random errors inde-
pendently from the centered 4-dimensional normal distribu-

tion with the covariance matrix Σ. The simulation results
are exhibited in Figure 3 and Figure 4, respectively. It can be
seen from both figures that the distance between the curves
representing the empirical power functions of the tests and
their limits are still large although the sample sizes are large
enough. This means that for testing polynomial model of
higher degree, the method based on the partial sums of the
vector of observations fails to give a satisfactory approxima-
tion result.

7. APPLICATION

Our intention in this section is to demonstrate the appli-
cation of the proposed method in real data in which we in-
vestigate the mining data as studied in Tahir [33]. The sam-
ple was obtained by drilling bores over the exploration re-
gion of the company positioned according to a 7×14 dimen-
sional lattice with 7 equidistance rows running west to east
and 14 equidistance column running south to north, see also
Somayasa and et al. [27, 28, 29]. Figure 4 exhibits the pairs
plot among the percentages of Ni, CaO, Co, the logarithm
of the percentages of SiO2 (LogSiO2), MgO (LogMgO), and
Fe (LogFe) measured simultaneously. The plot indicates the
existence of positive as well as negative correlations among
the measured variables. For example LogMgO and LogSiO2,
LogFe and Co, CaO and LogMgO, CaO and LogSiO2 seem
positively correlated. Further, the plot also shows negative
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Figure 4. The graphs of Ψλ2;n1×n2
(ρf1) (dashed lines) and Ψλ2(ρf1) (smooth lines) for α = 0.10. The simulations are based

on the sample sizes (i) 50× 50 and (ii) 60× 60 generated under 1000 runs.

Figure 5. The pairs plot of the percentages of Ni, CaO, Co, SiO2, MgO, and Fe observed over an 7× 14 lattice points
showing the correlations among the variables. Source of data: Tahir [33].

correlation between LogFe and LogSiO2, LogFe and Log-
MgO, CO and LogMgO, and CO and LogSiO2. By this rea-
son a multivariate analysis must be conducted in the statis-
tical modelling taking into account the unknown covariance
matrix of the vector of the variables. Furthermore based on
the individual scatter plot of each variable presented in [27],

we can give a conjecture that polynomials of lower order
is appropriate to approximate the population model. More
precisely let Y := (Y1, Y2, Y3, Y4, Y5, Y6)

� be the vector of
observations representing the observed percentages of CaO,
LogSiO2, LogMgO, Co, Ni, and LogFe, respectively. It seems
that the common model for describing the functional rela-
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tionship between the vector of observations and the position
of the observations on the earth is a multivariate first-order
model. By defining a suitable transformation we can assume
that the experiment was conducted on the experimental re-
gion given by the unit rectangle [0, 1]× [0, 1] and the experi-
mental design Ξλ2;7×14 corresponds to the Lebesgue measure
λ2 defined on B([0, 1] × [0, 1]). The point where the obser-
vation was started is regarded as the origin (0, 0) which is
laid on the south-west corner, whereas the point where the
observation was ended is regarded as the point (1, 1) which
is put on the north-east corner. Consequently, for 1 ≤ 	 ≤ 7
and 1 ≤ k ≤ 14, the observation Y�k that stands for the
measurement on the point (	/7, k/14) in the unit rectangle
is actually the 	th observation on the west to east and the
kth observation on the south to north direction.

We test the hypothesis H0 that the true model is
first-order model while observing second-order model. The
critical region of this test is determined by computing
J (Y(Ξλ2;7×14)) using the following approximation formula:

J (Y(Ξλ2;7×14)) ≈ 1√
98

7∑
�=1

14∑
k=1

f�1 (
	

7
,
k

14
)Σ̂−1

6×6Y�k.

This formula is actually the value of the component-wise
Riemann-Stieltjes sum of f1 with respect S7×14(Ξλ2;7×14)
over the partition given by Ξλ2;7×14. When all outliers are
ignored we get for the mining data the value of the statistic
test as J (Y(Ξλ2;7×14)) = 275.43467, when under H1 we
assume the function

f1(t, s) := [
√
5(6t2 − 6t+ 1) + (4ts− 2t− 2s+ 1)/3

+
√
5(6s2 − 6s+ 1)]1 ∈ V6 ∩ (W6)C ,

where 1 := (1, 1, 1, 1, 1, 1)� ∈ R
6, giving ‖Σ̂−1/2f1‖λ2 =

106.84680 and p-value 0.497%. This means that H0 will
never be rejected for all level of significance α less than
0.497%. However, from the practical view-point this value
is too small for H0 being rejected. Therefore, we conclude
that first-order model is simultaneously appropriate for de-
scribing the model.

8. CONCLUSION

We have developed an asymptotic method for testing lack
of fit of the mean vector in multivariate spatial regression by
considering the multidimensional set-indexed partial sums of
the vector of observations. The experimental design is con-
structed by incorporating a sampling technique according to
a probability measure having a continuous-increasing distri-
bution function. The limit process is given by a type of mul-
tidimensional signal plus noise model with the multivariate
set-indexed Gaussian white noise as the signal. Observing
the limit process we can formulate an optimum test by uti-
lizing the Cameron-Martin density formula of the limit pro-
cess. The optimality of the test depends also on the choice of

the design. In this paper we have shown that regular lattice
is an asymptotically optimal design. In the future we will es-
tablish likelihood ratio test for more general hypothesis then
that studied in this paper. The application of the method to
the mining data shows that multivariate first-order model is
plausible for α less then 0.497%.
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APPENDIX A. MULTIVARIATE
INVARIANCE PRINCIPLE

Definition A.1. Let (D,B(D), μ) be a probability space on
the d-dimensional closed rectangle D := ×d

j=1[aj , bj ] ⊂ R
d,

with aj < bj , where B(D) is Borel σ-algebra over D. Let A0

be the family of subsets in B(D) which has finite measure

under μ. A centered Gaussian process Zμ := {(Z(i)
μ (A))pi=1 :

A ∈ A0} is called a p-dimensional set-indexed Gaussian
white noise with the control measure μ, if and only if

Cov(Zμ(A1),Zμ(A2)) = μ(A1 ∩A2)Ip, ∀A1, A2 ∈ A0

where Ip is the p×p dimensional identity matrix. Let PZμ be
the probability distributions of Zμ on (Cp(A0),B(Cp(A0)))
and let P

Z
(i)
μ

be the marginal distribution of Zμ on

(C(A0),B(C(A0))), for i = 1, . . . , p. Then by the definition
it is clear that Zμ has mutually independent components in
the sense

PZμ(×
p
i=1Ci) = Πp

i=1PZ
(i)
μ
(Ci), ∀ ×p

i=1 Ci ⊂ Cp(A0).

We notice that when the control measure μ is the Lebesgue
measure on B(D), we obtain the well known p-dimensional
set-indexed Brwonian sheet, see e.g. [27, 28]. If the index
is the family

{
×d

j=1[aj , tj ] : aj ≤ tj ≤ bj , j = 1, . . . , d
}

of
subsets in B(D), then we get a Gaussian random field which
is commonly called the multi parameter p-dimensional Br-
wonian motion.

Theorem A.2. Let E(Ξμ;n1···nd
) := {Ej1···jd : 1 ≤ j1 ≤

n1, . . . , 1 ≤ jd ≤ nd} be an arrays of independent and
identically distributed p-dimensional random vectors with
E(E1···1) = 0 and Cov(E1···1) = Σ, where Σ is assumed to

be positive definite. Let Zμ := (Z
(i)
μ )pi=1 be the set-indexed

Gaussian white noise with the control measure μ defined on
the measurable space (D,B(D)). Then

Σ−1/2Sn1···nd
(E(Ξμ;n1···nd

))
D−→ Zμ.
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Proof. (1) By the well-known multivariate Lindeberg-Feller
central limit theorem (cf. [34], p. 20) we show that for
any Borel subset B1, . . . , Bm in B(D) and the constants
a1, . . . , am, the general linear combination

Fn1···nd

:=

m∑
k=1

akΣ
−1/2Sn1···nd

(E(Ξμ;n1···nd
))(Bk)

=

m∑
k=1

ak
1√

n1 · · ·nd
Σ−1/2

n1∑
j1=1

· · ·
nd∑

jd=1

1Bk
(tj1···jd)Ej1···jd

converges in distribution to
∑m

j=k akZμ(Bk) which can be
easily shown to follow a p-variate normal distribution having
zero mean and the covariance matrix

Cov

(
m∑

k=1

akZμ(Bk)

)
=

m∑
k=1

m∑
�=1

aka�μ(Bk ∩B�)Ip.

It suffices to show the covariance of Fn1···nd
converges to

that of
∑m

k=1 akZμ(Bk), and it satisfies Lindeberg condi-
tion. Since E(Fn1···nd

) = 0 and Ej1···jd are independent and
identically distributed, we have

Cov(Fn1···nd
)

=

m∑
k=1

m∑
�=1

aka�
1

n1 · · ·nd

n1∑
j1=1

· · ·
nd∑

jd=1

1Bk∩B�
(tj1···jd)Ip

=

m∑
k=1

m∑
�=1

aka�Pn(Bk ∩B�)Ip →
m∑

k=1

m∑
�=1

aka�μ(Bk ∩B�)Ip

where the last is the covariance of
∑m

k=1 akZμ(Bk). Next we
show Lindeberg condition. For ε > 0, let

L(ε) :=
n1∑
j1

· · ·
nd∑

jd=1

E

⎛⎝∥∥∥∥∥
m∑

k=1

akΣ
−1/21Bk

(tj1···jd)Ej1···jd√
n1 · · ·nd

∥∥∥∥∥
2

× 1{∥∥∥∥∥∑m
k=1

akΣ−1/21Bk
(tj1···jd )Ej1···jd√

n1···nd

∥∥∥∥∥>ε

}
⎞⎟⎠ .

Let M := max1≤k≤m |ak|, then by the property of the Eu-
clidean norm, we get the following inequality∥∥∥∥∥

m∑
k=1

akΣ
−1/21Bk

(tj1···jd)Ej1···jd√
n1 · · ·nd

∥∥∥∥∥
2

≤ M2‖Σ−1/2Ej1···jd‖2
n1 · · ·nd

.

Also

∥∥∥∥∑m
k=1

akΣ
−1/21Bk

(tj1···jd )Ej1···jd√
n1···nd

∥∥∥∥ > ε implies

‖Σ−1/2Ej1···jd‖ ≥ ε
√
n1···nd

M . Therefor we get

L(ε) ≤ M2E

(∥∥∥Σ−1/2E1···1
∥∥∥2 1{‖Σ−1/2E1···1‖> ε

√
n1···nd
M

})

which by the bounded convergence theorem (cf. Corollary
2.3.13 in [4]), the right-hand side converges to zero.

(2) We show that {Sn1···nd
(E(Ξμ;n1···nd

))(B) : B ∈ B(D)}
is tight. The suitable definition of the modulus of continuity
of Sn1···nd

(E(Ξμ;n1···nd
)) is

w(Sn1···nd
(E(Ξμ;n1···nd

)); δ) := sup
{A,B∈A: dμ(A,B)<δ}

Γ(A,B),

where Γ(A,B) := ‖Sn1···nd
(E(Ξμ;n1···nd

))(A) −
Sn1···nd

(E(Ξμ;n1···nd
))(B)‖ for any A,B ∈ B(D) whose

ith component is given by

Sn1···nd
(εi(Ξμ;n1···nd

))(B)

:=

∑n1,...,nd

j1=1,...,jd=1 1B(tj1···jd)εi,j1···jd√
n1 · · ·nd

, i = 1, . . . , p.

By the definition it clearly holds

w(Sn1···nd
(E(Ξμ;n1···nd

)); δ)

≤
p∑

i=1

w(Sn1···nd
(εi(Ξμ;n1···nd

)); δ)

Hence, to establish the tightness of
{Vn(Sn1···nd

(E(Ξμ;n1···nd
))(B) : B ∈ B(D)} it suffices

to show the component {Sn1···nd
(εi(Ξμ;n1···nd

))(B) : B ∈
B(D)} is tight, for i = 1, . . . , p. The uniform central limit
theorem investigated in [1] and [23] established the proof
since convergence in distribution implies tightness.

APPENDIX B. PROOF OF THEOREM 3.1

By the definition of Yloc(Ξμ;n1···nd
) and by the linearity

of the integral on the space Cp(A0), if H0 is true we have

J (Yloc(Ξμ;n1···nd
))

=

∫
D

(f1 − f0)
�Σ−1/2dΣ−1/2Sn1···nd

(
1√

n1 · · ·nk
g1(Ξμ;n1···nd

))

+

∫
D

(f1 − f0)
�Σ−1/2dΣ−1/2Sn1···nd

(
1√

n1 · · ·nk
f0(Ξμ;n1···nd

))

+

∫
D

(f1 − f0)
�Σ−1/2dΣ−1/2Sn1···nd

(E(Ξμ;n1···nd
)).

Since g1i and f0i are continuous and of bounded variation on
D, for i = 1, . . . , p, it holds Sn1···nd

( 1√
n1···nk

g1(Ξμ;n1···nd
))

and Sn1···nd
( 1√

n1···nk
f1(Ξμ;n1···nd

)) converge respectively to

the set functions ϕg1 and ϕf1 . The multivariate in-
variance principle (Theorem A.2) gives the result that
Σ−1/2Sn1···nd

(E(Ξμ;n1···nd
)) converges in distribution to Zμ.
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Hence, by applying the well-known continuous mapping the-
orem (cf. Theorem 27 in [6]), J (Yloc(Ξμ;n1···nd

)) converges
in distribution to∫

D

(f1 − f0)
�Σ−1/2dΣ−1/2ϕg1

+

∫
D

(f1 − f0)
�Σ−1/2dΣ−1/2ϕf0

+

∫
D

(f1 − f0)
�Σ−1/2dZμ

= 0 + 〈Σ−1/2(f1 − f0),Σ
−1/2f0〉(p)μ

+

∫
D

(f1 − f0)
�Σ−1/2dZμ.

We notice that all integrals involved should be interpreted
path wise as integral with respect to signed measure. The
first term in the right hand side of the last equality fol-
lows from the fact that Σ−1/2ϕg1 and Σ−1/2ϕf0 are abso-
lutely continuous with the Lp

2(D,μ)-densities Σ−1/2g1 and
Σ−1/2f0, respectively and Σ−1/2(f1 − f0) ⊥ Σ−1/2g1. Fur-
thermore, since∫

D

(f1 − f0)
�Σ−1/2dZμ ∼ N

(
0, (‖Σ−1/2(f1 − f0)‖(p)μ )2

)
then by applying the well known Lindeberg-Levy central
limit theorem we get

J (Yloc(Ξμ;n1···nd
))− 〈Σ−1/2(f1 − f0),Σ

−1/2f0〉(p)μ

‖Σ−1/2(f1 − f0)‖(p)μ

D−→ N(0, 1).

Hence, by setting the constant k for

k := Φ−1(1− α)‖Σ−1/2(f1 − f0)‖(p)μ

+ 〈Σ−1/2(f1 − f0),Σ
−1/2f0〉(p)μ

we obtain an asymptotically size α test asserted in the the-
orem establishing the proof of the theorem.

APPENDIX C. PROOF OF COROLLARY 3.3

If g2 ≡ f for any f ∈ Vp ∩ (Wp)C , then we have

Yloc(Ξμ;n1···nd
) =

1√
n1 · · ·nd

g1(Ξμ;n1···nd
)

+
1√

n1 · · ·nd
f(Ξμ;n1···nd

) + E(Ξμ;n1···nd
).

By applying the similar argument as in the proof of Theorem
3.1, J (Yloc(Ξμ;n1···nd

)) converges in distribution to∫
D

(f1 − f0)
�Σ−1/2dΣ−1/2ϕf0 +

∫
D

(f1 − f0)
�Σ−1/2dZμ

= 〈Σ−1/2(f1 − f0),Σ
−1/2f〉(p)μ +

∫
D

(Σ−1/2(f1 − f0))
�dZμ.

Let k∗ be a constant defined by k∗ :=
k−〈Σ−1/2(f1−f0),Σ

−1/2f〉(p)μ

‖Σ−1/2(f1−f0)‖(p)
μ

, then by the Lindeberg-Levy

central limit theorem, we get

Ψμ(f)

= lim
n1,··· ,nd→∞

P{ω ∈ Ω : J (Yloc(Ξμ;n1···nd)(ω)) ≥ k|g2 ≡ f}

= lim
n1,··· ,nd→∞

P

{
1

‖Σ−1/2(f1 − f0)‖(p)μ

× [J (Yloc(Ξμ;n1···nd))−〈Σ−1/2(f1 − f0),Σ
−1/2f〉(p)μ ]≥ k∗

}
= 1− Φ

(
Φ−1(1− α)− 〈Σ−1/2(f1 − f0),Σ

−1/2(f − f0)〉(p)μ

‖Σ−1/2(f1 − f0)‖(p)μ

)
.

We are done.

APPENDIX D. MULTIVARIATE
CAMERON-MARTIN

DENSITY

Theorem D.1. The shifted probability distribution Ph
Zμ

is

absolutely continuous with respect to PZμ on Cp(A0), if and
only if h ∈ HZμ . If h ∈ HZμ with h(A) :=

∫
A
	 dμ for A ∈ A

and 	 := (	i)
p
i=1 ∈ Lp

2(D,μ), then

dPh
Zμ

dPZμ

(x) = exp

{∫
D

	�dx− 1

2
‖h‖2HZμ

}
,

x := (x1, . . . , xp)
� ∈ Cp(A0)

where
∫
D
	�dx :=

∑p
i=1

∫
D
	idxi is interpreted path wise as

the integral with respect to signed measure. See [19], pp. 13–
15 for the definition of integral involving signed measure.

Proof. The proof of the theorem is mainly based on the
univariate case presented in Theorem 5.1 of [19] and the
stochastically independence between the components of Zμ.
To the first assertion, suppose h ∈ HZμ . Then by the defini-
tion ofHZμ , it holds hi ∈ H

Z
(i)
μ

for all i = 1, . . . , p, which im-

plies Phi

Z
(i)
μ

is absolutely continuous w.r.t. P
Z

(i)
μ

on C(A0) (c.f.

Theorem 5.1 of [19]). There exists a γi ∈ L2(C(A0), PZ
(i)
μ
)

s.t. Phi

Z
(i)
μ

(Bi) =
∫
Bi

γi dP
Z

(i)
μ
, for Bi ⊂ C(A0). Hence, by

Definition 4.1 and the independence of Z
(i)
μ we have

Ph
Zμ

(×p
i=1Bi)

= PZμ(×
p
i=1Bi − h) = PZμ(×

p
i=1(Bi − hi))

= Πp
i=1P

hi

Z
(i)
μ

(Bi) =

∫
B

(Πp
i=1γi) dPZ

(1)
μ

· · · dP
Z

(p)
μ

.

Conversely, let Ph
Zμ

be absolutely continuous w.r.t. PZμ .

Since we can write Phi

Z
(i)
μ

(Bi) for all i = 1, . . . , p, as

Phi

Z
(i)
μ

(Bi) = Ph
Zμ

(C(A0)× · · · × C(A0)×Bi

× C(A0)× · · · × C(A0)),
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for h = (0, . . . , 0, hi, 0, . . . , 0)
�, it can be concluded that

Phi

Z
(i)
μ

is absolutely continuous w.r.t. P
Z

(i)
μ
, for all i = 1, . . . , p.

Hence by Theorem 5.1 of [19] hi ∈ H
Z

(i)
μ
, for all i = 1, . . . , p,

establishing the first statement. To proof the second one we
move further by recalling Definition 4.2 and the indepen-

dence of Z
(i)
μ that

Ph
Zμ

(×p
i=1Bi)

= Πp
i=1P

hi

Z
(i)
μ

(Bi)

= Πp
i=1

∫
Bi

exp

{∫
D

	i dxi −
1

2
‖hi‖2H

Z
(i)
μ

}
dP

Z
(i)
μ

=

∫
B

exp

{∫
D

	� dx− 1

2
‖h‖2HZμ

}
dPZμ

completing the proof of the theorem.

APPENDIX E. PROOF OF THEOREM 4.3

SinceΣ−1/2ϕg = ϕΣ−1/2g, then by directly applying The-
orem D.1, under H0 and H1 we respectively have the follow-
ing density formulas

ψ0(Y) = exp

{∫
D

(g1 + f0)
�Σ−1/2dY

− 1

2
‖Σ−1/2ϕ(g1+f0)‖2HZμ

}
and

ψ1(Y) = exp

{∫
D

(g1 + f1)
�Σ−1/2dY

− 1

2
‖Σ−1/2ϕ(g1+f1)‖2HZμ

}
.

By further recalling the assumption that ϕg1 is or-
thogonal to ϕf0 and ϕf1 in HZμ , we get the equations

‖Σ−1/2ϕ(g1+f0)‖2HZμ
= ‖Σ−1/2ϕg1‖2HZμ

+ ‖Σ−1/2ϕf0‖2HZμ

and ‖Σ−1/2ϕ(g1+f1)‖2HZμ
= ‖Σ−1/2ϕg1‖2HZμ

+

‖Σ−1/2ϕf1‖2HZμ
. Hence the ratio between ψ0(Y) and

ψ1(Y) can be further simplified and we obtain the
expression

ψ0(Y)

ψ1(Y)
= exp

{∫
D

(f0 − f1)
�Σ−1/2dY

+
1

2

(
‖Σ−1/2ϕf1‖2HZμ

− ‖Σ−1/2ϕf0‖2HZμ

)}
.

Neyman-Pearson theorem (cf. Theorem 3.2.1 in [18]) guar-
antees that ημ will become a most powerful test of size
α ∈ (0, 1), if there exists a constant k that satisfies

P

{
ω ∈ Ω :

ψ0(Y(ω))

ψ1(Y(ω))
≤ k|H0

}
= α.

However, since Σ−1/2(f1− f0) ⊥ Σ−1/2g1 in Lp
2(D,μ), when

H0 is true, the integral involved in the formula of the ratio

between ψ0(Y) and ψ1(Y) can be written as∫
D

(f0 − f1)
�Σ−1/2dY =

∫
D

(f0 − f1)
�Σ−1/2dϕΣ−1/2g1

+

∫
D

(f0 − f1)
�Σ−1/2dϕΣ−1/2f0 +

∫
D

(f0 − f1)
�Σ−1/2dZμ

= −
∫
D

(f1 − f0)
�Σ−1/2dZμ − 〈Σ−1/2(f1 − f0),Σ

−1/2f0〉(p)μ .

This leads us to get

P

{
ψ0(Y)

ψ1(Y)
≤ k|H0

}
= α

⇔ P

{∫
D

(Σ−1/2(f1 − f0))
� dY ≥ κ|H0

}
= α

⇔ P

{∫
D

(Σ−1/2(f1 − f0))
�dZμ ≥ κ∗

}
= α,

where κ and κ∗ are constants defined respectively as

κ := − ln(k) +
1

2

∥∥∥Σ−1/2ϕf1

∥∥∥2
HZμ

− 1

2

∥∥∥Σ−1/2ϕf0

∥∥∥2
HZμ

κ∗ := κ− 〈Σ−1/2(f1 − f0),Σ
−1/2f0〉(p)μ .

Moreover, since∫
D

(Σ−1/2(f1 − f0))
�dZμ ∼ N

(
0, (‖Σ−1/2(f1 − f0)‖(p)μ )2

)
,

then we must set the lower bound presented above for the

(1 − α)-th quantile of the standard normal distribution. In

other word we have the equation

κ− 〈Σ−1/2(f1 − f0),Σ
−1/2f0〉(p)μ∥∥Σ−1/2(f1 − f0)
∥∥(p)
μ

= Φ−1(1− α)

⇔ κ = Φ−1(1− α)
∥∥∥Σ−1/2(f1 − f0)

∥∥∥(p)
μ

+ 〈Σ−1/2(f1 − f0),Σ
−1/2f0〉(p)μ .

We notice that the original constant κ could be computed

if desired, but it is not necessary in order to perform the

tests. The power function of the Neyman-Pearson test of

size α evaluated at ϕf is defined as

Υμ(ϕf ) := P

{∫
D

(Σ−1/2(f1 − f0))
�dY ≥ κ| ϕg2 ≡ ϕf

}
.

If the true model is Y = Σ−1/2ϕg1 + Σ−1/2ϕf + Zμ, then

we get

Υμ(ϕf ) = P

{∫
D
(Σ−1/2(f1 − f0))

�dZμ∥∥Σ−1/2(f1 − f0)
∥∥(p)
μ

≥ κ− 〈Σ−1/2(f1 − f0),Σ
−1/2f〉(p)μ∥∥Σ−1/2(f1 − f0)
∥∥(p)
μ

}
.
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By substituting κ we obtain the expression stated in the
theorem.

APPENDIX F. FUNCTION OF BOUNDED
VARIATION ON D

Definition F.1. Let f : D := ×d
k=1[ak, bk] → R be a real

valued function with d variables. For ak, bk, let Δbk
ak
f be a

real-value function defined on D, given by

Δbk
ak
f := f(x1, . . . , xk−1, bk, xk+1, . . . , xd)

− f(x1, . . . , xk−1, ak, xk+1, . . . , xd),

for k = 1, . . . , d. Furthermore, for a := (ak)
d
k=1,b :=

(bk)
d
k=1 ∈ D, Δb

af is defined on D recursively starting from
the last components of a and b. More precisely,

Δb
af := Δb1

a1
(· · · (Δbd−1

ad−1
(Δbd

ad
f)) · · · ).

Let {j1, · · · , jd} be a permutation of {1, 2, . . . , d}, then it
holds

Δb
af = Δ

bj1
aj1

(· · · (Δbjd−1
ajd−1

(Δ
bjd
ajd

f)) · · · )
= Δb1

a1
(· · · (Δbd−1

ad−1
(Δbd

ad
f)) · · · ).

This means that the operation of Δb
af does not de-

pend on the order. By this reason we write Δb
af by

Δb1
a1

· · ·Δbd−1
ad−1Δ

bd
ad
f ignoring the brackets. The reader is re-

ferred to [36] and [15], pp. 44–45.

Definition F.2. (Yeh [36]) Let Γk := {[xk0 , xk1 ], [xk1 ,
xk2 ], . . . , [xkMk−1

, xkMk
]} be a collection of Mk rectangles

on the closed interval [ak, bk] with ak = xk0 ≤ xk1 ≤
. . . ≤ xkMk

= bk, for k = 1, . . . , d. The Cartesian product

K := ×d
k=1Γk which consists of Πd

k=1Mk closed rectangles is
called a non-overlapping finite exact cover of D. The family
of all non-overlapping finite exact cover of D is denoted by
J (K).

Definition F.3. (Yeh [36]) For 1 ≤ wk ≤ Mk, with
k = 1, . . . , d, let Jw1···wd

be the element of K defined by
Jw1···wd

:= ×d
k=1[xkwk−1 , xkwk

]. Let ψ : D → R be a real
valued function on D. Operator ΔJw1···wd

acting on a func-
tion ψ is defined by

ΔJw1···wd
ψ := Δ

x1w1
x1w1−1

Δ
x2w2
x2w2−1

· · ·Δxdwd
xdwd−1

ψ.

The variation of ψ over the finite exact cover K is defined
by

v(ψ;K) :=

M1∑
w1=1

· · ·
Md∑

wd=1

∣∣∣ΔJw1···wd
ψ
∣∣∣ .

Accordingly, the total variation of ψ over D is defined by

V (ψ;D) := sup
K∈J (K)

v(ψ;K).

Furthermore, the function ψ is said to have bounded varia-
tion in the sense of Vitaly on D if there exists a real number
M > 0 s.t. V (ψ;D) ≤ M for some real number M > 0. The
class of such functions is denoted by BV V (Id).

Definition F.4. (Yeh [36]) Let (xk)
d
k=1 be a variable in D.

For a fixed k, letDk be a k-dimensional closed rectangle con-
structed in the following way. We choose d− k components
of the variable (xk)

d
k=1. For each choice from all possible ele-

ments of the set Cd
d−k, we set each xi with ai or bi and let the

remaining k variables to satisfy ai ≤ xi ≤ bi. Then for each
k we get 2d−k|Cd

d−k| k-dimensional closed rectangles Dk.

For convention we denote the collection of all 2d−k|Cd
d−k| of

closed rectangles Dk by Bk and the j-th element of Bk will
be denoted by Dk

j . A function ψ is said to have bounded
variation in the sense of Hardy on D, if and only if for
each k = 1, . . . , d and j = 1, . . . , 2d−k|Cd

d−k|, there exists

a real number Mjk > 0 s.t. V (ψDk
j
(·);Dk

j ) ≤ Mjk, where for

k = 1, . . . , d and j = 1, . . . , 2d−k|Cd
d−k|, ψDk

j
(·) is a function

with k variables obtained from the function ψ(x1, x2 . . . , xd)
by setting the d−k selected variables with aj or bj , whereas
the remaining k variables lies in the interval [ak, bk]. The
class of such functions will be denoted by BVH(D).

APPENDIX G. PROOF OF THEOREM 5.3

Suppose we consider a p-variate model Yi(x) =∑m
j=1 βijwj(x) + Ei(x), for x ∈ D ⊂ R

d, i = 1, . . . , p,
where {w1, . . . , wq, w(q+1), . . . , wm} forms a basis of V

which can be considered as functions in L2(D,λd) as
well as in L2(D,μ) for arbitrary fixed μ ∈ G. Let
{w̃1λd , . . . , w̃qλd , . . . , w̃mλd} and {w̃1μ, . . . , w̃qμ, . . . , w̃mμ}
be the Gram-Schmidt orthogonal versions of the original
bases when the sampling is conducted under the designs
λd and μ, respectively. It can be easily shown there ex-
ist constants c1kμ, . . . , cmkμ which depend on μ, s.t. w̃kμ =∑m

j=1 cjkμw̃jλd , for k = 1, . . . ,m. Let f̂μ be the density of

μ w.r.t. to λd. Note that by the assumption there exists
Fkμ, such that f̂μ(tk) := Πd

k=1F
′
kμ(tk) > 0 and it holds

‖f̂μ‖λd ≤ ‖f̂μ‖∞|D| =: C. Then by the definition of ‖ · ‖μ
and Holder’s inequality, we get

‖w̃(q+1)μ‖2μ + · · ·+ ‖w̃mμ‖2μ

=

∫
D

(w̃2
(q+1)μf̂μ)dλ

d + · · ·+
∫
D

(w̃2
mμf̂μ)dλ

d

≤
(
‖w̃2

(q+1)μ‖λd + · · ·+ ‖w̃2
mμ‖λd

)
‖f̂μ‖λd

≤
m∑

j,�=1

(‖cj(q+1)μc�(q+1)μw̃jλdw̃�λd‖λd + · · ·

+ ‖cjmμc�mμw̃jλdw̃�λd‖λd)C

≤
m∑
j=1

m∑
�=1

(
M2

∥∥w̃jλdw̃�λd

∥∥
λd + · · ·
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+M2
∥∥w̃jλdw̃�λd

∥∥
λd

)
C

≤ M2(m− q)C

⎛⎝ m∑
j=1

m∑
�=1

∥∥w̃jλdw̃�λd

∥∥
λd

⎞⎠ ,

where M := supμ∈G max1≤j≤m; q+1≤k≤m |cjkμ|. The con-
stant M is well-defined, since for j = 1, . . . ,m and k =
q + 1, . . . ,m, cjkμ is a continuous function of μ on G w.r.t.
the uniform topology. The upper bound on the right-hand
side of the last inequality is calculated using the integral
w.r.t. λd only, therefore the Lebsesque measure λd is the de-
sign such that supμ∈G Wf (μ) = Wf (λ

d), finishing the proof.

Received 22 August 2016
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