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Motivated by an analysis of Return On Equity (ROE)
data, we propose a class of semiparametric mixture models.
The proposed models have a symmetric nonparametric com-
ponent and a parametric component of Pareto distribution
with unknown parameters. However, situations with general
parametric components other than Pareto distribution are
also investigated. We prove that these mixture models are
identifiable, and establish a novel estimation procedure via
smoothed likelihood and profile-likelihood techniques. For
ease of computation, we develop a new EM algorithm to fa-
cilitate the maximization problem. We show that this EM
algorithm possesses the ascent property. A rule-of-thumb
based procedure is proposed to select the bandwidth of the
nonparametric component. Simulation studies demonstrate
good performance of the proposed methodology. Further-
more, we analyze the ROE dataset which may consist of
real and manipulated earnings. Our analysis reveals signifi-
cant earning manipulation in the Chinese listed companies
from a quantitative perspective using the proposed model.
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1. INTRODUCTION

Return on Equity (ROE) is a widely used measurement
of a company’s efficiency at generating profits per equity
unit, which equals to a fiscal year’s net income divided by
the total equity. Earning manipulation has been noted in
several previous researches. In the U.S., firms tend to ma-
nipulate earnings to turn a small loss into a small profit
[5]. For the Chinese listed companies, Ding et al. [8] noted
that there is strong evidence of manipulations to dramati-
cally boost earnings. When part of the companies manipu-
late their earnings, the population distribution of ROE ex-
hibits certain abnormality. Figure 1 shows the histogram of
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the ROEs of Chinese listed firms in the year 2010, which are
obviously asymmetric, having a big jump on the right side
of the zero point. The unusual jump is mainly attributed to
the “Special Treatment”(ST) policy on Chinese stock mar-
kets [15]. As mandated by Chinese securities laws, a stock
will be put into “Special Treatment” status if the company
reports accounting losses in two consecutive years, and ST
stocks are under strict regulations by the China securities
regulatory commission. Therefore, in order to meet regula-
tory requirements and avoid ST, Chinese companies may
manipulate to dramatically boost earnings.

As part of the companies may manipulate earnings, the
reported ROE is actually comprised of two different compo-
nents, the real earnings and the manipulated earnings. This
provides a natural connection to a two-component mixture
model framework. Mixture models have been widely used
in economics, finance, biology, medicine, etc. As parametric
mixture models may not be capable in describing compli-
cated datasets, there have been increasing studies that fo-
cus on nonparametric and semiparametric mixture models;
see among others, Hall and Zhou [13], Hunter et al. [14],
Bordes et al. [2], Bordes et al. [3], Maiboroda and Sugakova
[21], and Levine et al. [18]. Bordes et al. [2] considers a two-
component mixture model

f(x) = λg(x) + (1− λ)p(x− μ),(1)

where g(·) is a known density function, p(·) is an unknown
nonparametric density function that is symmetric about 0,
λ ∈ (0, 1) and μ ∈ R. It is shown in Bordes et al. [2] that
model (1) is identifiable under some moment conditions.
Bordes et al. [2], Bordes and Vandekerkhove [4], Maiboroda
and Sugakova [21] and Maiboroda and Sugakova [22] pro-
posed

√
n-consistent estimators for the parameters λ and μ,

and
√
nh-consistent estimators for the nonparametric den-

sity p(·), and proved asymptotic normality of these estima-
tors. When g(x) is unknown, Ma and Yao [20] investigated
a general model where g(x) ≡ g(x; ξ), a parametric density
with unknown parameter ξ, and proposed a semiparamet-
ric efficient estimation procedure via estimating equations.
However, the model identifiability depends on the form of
g(x; ξ), and results are only obtained when ξ does not ap-
pear in g(x; ξ).

In this paper, we propose analyzing the Chinese ROE
data using model (1) with Pareto distribution g(x) ≡
g(x; ξ), that is, a semiparametric mixture of a symmetric
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Figure 1. Histogram of Return On Equity (ROE) of Chinese
Firms, Year 2010.

nonparametric distribution and a Pareto distribution with
unknown parameters; the nonparametric component p(·)
characterizes the real earnings, while the Pareto component
g(x; ξ) describes the manipulated earnings. Note that Pareto
distribution has a jump at the left ending point of its sup-
port, so does the resulting mixture distribution, which fits
the ROE data nicely.

As there is an unknown nonparametric component in the
mixture density, it is very difficult to estimate the parame-
ters and the unknown distribution jointly. To overcome this
difficulty, we employ the maximum smoothed likelihood es-
timation (MSLE) for density that was firstly introduced
by Eggermont and LaRiccia [11]. In MSLE, the unknown
density is smoothed by a nonlinear smoothing operator, re-
sulting in a smoothed likelihood. Eggermont and LaRiccia
[10] and Eggermont and LaRiccia [11] investigated the con-
sistency of the MSLE and showed that the estimator con-
verges to the true density in probability under suitable con-
ditions. Eggermont [9] proved that the smoothing operator
is strictly concave, and the maximization of the smoothed
log-likelihood admits a unique smooth solution under some
regularity conditions. Levine et al. [18] studied the MSLE
for multivariate mixtures, where all the components are non-
parametric unknown densities. For model (1), since g(·) is a
parametric density, we only smooth the nonparametric com-
ponent p(·) and obtain the smoothed likelihood. To ensure a
symmetric estimator for the nonparametric component, we
employ a symmetric smoothing kernel [16] in the nonlinear
smoothing operator.

The maximization of the smoothed likelihood of the pro-
posed model can be carried out via an EM algorithm. EM
algorithm consists of iterative steps to maximize a likeli-
hood with missing data, and the resulting likelihood is non-
decreasing on each iteration. Comprehensive references in-

clude Dempster et al. [7], Wu [30], and McLachlan and Kr-
ishnan [23].

In this paper, we propose an EM algorithm to facilitate
the maximization of the smoothed likelihood. We further
prove that the proposed EM algorithm enjoys the ascent
property. We conduct simulation studies to examine the per-
formance of the proposed methodology, and propose a two-
step procedure for bandwidth selection. To summarize, we
attempt to make the following three major contributions to
the existing literature. Firstly, we propose a semiparametric
Pareto mixture density, and prove the identifiability under
mild conditions; Secondly, we derive an smoothed likelihood
as the objective function by applying a nonlinear smoothing
operator on the nonparametric component of the mixture
which ensures nonnegative and symmetric estimation of the
component; and lastly, we propose an efficient estimation
procedure with the aid of an EM algorithm, and prove the
ascent property of the EM algorithm.

The rest of the article is organized as follows. Section 2
is devoted to the identifiability problem and the smoothed
likelihood method. In Section 3, we propose an estimation
procedure for the model, and show that the corresponding
EM algorithm possesses the ascent property with respect
to the smoothed likelihood. Simulations and an application
to the ROE dataset are given in Section 4. A discussion
is given in Section 5 and technical proofs are given in the
Appendix.

2. IDENTIFIABILITY AND SMOOTHED
LIKELIHOOD

2.1 Model and identifiability

Consider a two-component semiparametric mixture
model

f(x) = λg(x; ξ) + (1− λ)p(x− μ),(2)

where λ ∈ (0, 1) is the mixing proportion parameter, g(x; ξ)
is a parametric density with parameter ξ, p(·) is an unknown
nonparametric density that is symmetric about 0, and μ is
a location parameter. Model (2) with a general parametric
density g will be discussed. However, as our model is mo-
tivated by the ROE data of Chinese stocks, we will mainly
focus on a special case of model (2) with Pareto density
g(x; ξ), i.e.,

g(x; ξ) ≡ g(x;α, β) = βαβ/xβ+1I(x ≥ α), α, β > 0.(3)

For ease of presentation, we refer to model (2) with a general
parametric density g as the general case, and refer to model
(2) with the Pareto density g as the semiparametric Pareto
mixture density (SPMD) model.

Identifiability is an important issue for most mixture
models. Some theoretical results exist for mixture models
with nonparametric components. Identifiability in multivari-
ate mixture models was discussed by Hall and Zhou [13]
and Allman et al. [1]. For univariate mixture models with
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symmetric nonparametric components, Bordes et al. [3] and
Hunter et al. [14] gave conditions that guarantee identifia-
bility. For our model (2), the following theorem ensures that
the SPMD model is identifiable under mild conditions.

Theorem 2.1. Suppose that density function p(x) is con-
tinuous and symmetric about 0, and g(x;α, β) is the Pareto
density function (3). If lim

x→∞
p(x)xβ+1 = 0, then model (2)

is identifiable.

Theorem 2.1 implies that for Pareto density g(x;α, β),
mixture model (2) is identifiable if the the symmetric com-
ponent has a lighter tail than that of the Pareto component.
Such symmetric densities include a wide class of symmetric
densities p(x), including normal, Laplace, Student’s t den-
sities with a degree of freedom greater than β, etc. This
result broadens our knowledge on identifiability of mixture
models.

2.2 Smoothed likelihood

The idea of smoothing likelihoods goes back to Silverman
[27]. Before introducing the concept of smoothed likelihood,
we first define some notation. Let Ω be a compact subset of
R, and define

F = {f : 0 < f ∈ L1(Ω), log f ∈ L1(Ω)},

where L1(Ω) denotes the set of all integrable functions on Ω.
Let K(·) be some kernel density function on R, and Kh(t) =
h−1K(t/h) be the rescaled version. Eggermont and LaRiccia
[11] define a nonlinear smoothing operator N ∗ for f ∈ F as

N ∗f(x) = exp

{∫
Ω

Kh(x− t) log f(t)dt

}
.

For independent and identically distributed observations
X1, . . . , Xn from a nonparametric density function f(x), the
smoothed log-likelihood is defined as

Ln(f) =
1

n

n∑
i=1

log{N ∗f(Xi)}, f ∈ F .(4)

By using entropy inequality, one can show that the maxi-
mizer of (4) subject to

∫
f(t)dt = 1 is indeed a kernel density

estimator.
In order to obtain a symmetric estimator of p(·) about

μ in model (2), we define a symmetric smoothing kernel
Kh,μ(x, t) as

Kh,μ(x, t) =
1

2h

{
K

(
x− t

h

)
+K

(
2μ− x− t

h

)}
.

The corresponding nonlinear smoothing operatorNμ for p(·)
is then defined as

Nμp(x) = exp

{∫
Ω

Kh,μ(x, t) log p(t)dt

}
.

After smoothing f(·) through p(·) in model (2), we can now
construct the smoothed log-likelihood as

�(θ, p(·)) =
n∑

i=1

log{λg(Xi; ξ) + (1− λ)Nμp(Xi)},(5)

where θ = (μ, ξ, λ)T is the vector of unknown parame-
ters. Our goal in the next section is to find a maximizer of
�(θ, p(·)) subject to the constraint that p(·) is a symmetric
density function.

3. ESTIMATION PROCEDURE

In this section a maximization procedure for the
smoothed log-likelihood (5) is developed for the estimation
of model (2). We first describe the procedure for general
parametric distribution g(x; ξ), and then discuss the situa-
tion of Pareto distribution g.

3.1 Estimation with general density g(x; ξ)

We first consider estimation of model (2) with general
density g(x; ξ). We use the following procedure: First, as-
suming that μ is known, an EM algorithm is established to
maximize (5); second, a profile-likelihood for parameter μ is
constructed and then maximized by a searching algorithm.
We will briefly explain why μ has to be estimated separately
in the end of the section.

Assuming that μ is known, we can rewrite the objective
function (5) as �(ξ, λ, p(·),X). In the EM framework, the
observed data Xis are treated as incomplete, and the un-
observed latent variables δis are introduced to indicate the
group membership of Xis, i.e., let

δi =

{
1, if Xi is from the parametric component;
0, otherwise.

The complete data are (X, δ) = {(Xi, δi), i = 1, . . . , n}, and
the complete smoothed log-likelihood is

�c(ξ, λ, p(·);X) =

n∑
i=1

[δi log{λg(Xi; ξ)}(6)

+ (1− δi) log{(1− λ)Nμp(Xi)}].

In the l-th cycle of the EM algorithm, we have (ξ(l), λ(l),
p(l)(·)). In the E-step of (l + 1)-th cycle, we calculate the
expectation of �c(ξ, λ, p(·);X) given (ξ(l), λ(l), p(l)(·)),

L =

n∑
i=1

[r
(l+1)
i log{λg(Xi; ξ)}(7)

+ (1− r
(l+1)
i ) log{(1− λ)Nμp(Xi)}],

where

r
(l+1)
i = E(δi|Xi; ξ

(l), λ(l), p(l)(·))(8)

=
λ(l)g(Xi; ξ

(l))

λ(l)g(Xi; ξ(l)) + (1− λ(l))Nμp(l)(Xi)
.

In the M-step of (l+1)-th cycle, we maximize L with respect
to ξ, λ, and p(·). It is easy to see that L can be partitioned
into three parts, i.e., L = L1(λ) + L2(ξ) + L3{p(·)}, where
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L1(λ) =

n∑
i=1

{r(l+1)
i log λ+ (1− r

(l+1)
i ) log(1− λ)},(9)

L2(ξ) =

n∑
i=1

{r(l+1)
i log g(Xi, ξ)},(10)

L3{p(·)} =

n∑
i=1

{(1− r
(l+1)
i ) logNμp(Xi)}.(11)

Maximization of L is equivalent to maximizing L1(λ), L2(ξ),
and L3{p(·)}, separately. The solution to (9) is

λ(l+1) =

n∑
i=1

r
(l+1)
i /n.(12)

The solution to (10) is a weighted MLE:

ξ(l+1) = argmax

n∑
i=1

{r(l+1)
i log g(Xi, ξ)}.(13)

If the solution (13) does not admit an explicit form, we may
consider using a gradient method [17] or conditional maxi-
mization [24]. The solution to the maximization of L3(p(·))
is characterized in the following theorem.

Theorem 3.1. Subject to the condition that p(·) is a sym-
metric density function that belongs to F , L3 has a unique
maximizer p(l+1)(·), up to changes on a set of zero Lebesgue
measure:

p(l+1)(·) =
∑n

i=1(1− r
(l+1)
i )Kh,μ(Xi, ·)∑n

i=1(1− r
(l+1)
i )

.(14)

Repeating (8), (12), (13) and (14) iteratively until conver-

gence, we obtain ξ̂, λ̂ and p̂(·). The employment of EM al-
gorithm separates the estimation of λ, ξ and p(·) and makes
the computation of each part simpler. Moreover, estimation
via the proposed EM algorithm automatically guarantees a
nonnegative and symmetric estimation of p(·) as well as the
constraint on λ.

It is of interest to investigate whether the ascent property
holds for the proposed EM algorithm. To derive the ascent
property, we first show that L minorizes � up to a shifted
constant.

Theorem 3.2. For any ξ, λ ∈ (0, 1) and p ∈ F , the func-
tions � and L defined by (5) and (7) satisfies

L(ξ, λ, p(·)) + C(l) ≤ �(ξ, λ, p(·)),

where C(l) = �(ξ(l), λ(l), p(l)(·))−L(ξ(l), λ(l), p(l)(·)), and the
equality holds when (ξ, λ, p(·)) = (ξ(l), λ(l), p(l)(·)).

By Theorem 3.2, we have

L(ξ, λ, p(·))− L(ξ(l), λ(l), p(l)(·)) ≤
�(ξ, λ, p(·))− �(ξ(l), λ(l), p(l)(·)).

Therefore, L(ξ(l+1), λ(l+1), p(l+1)(·)) ≥ L(ξ(l), λ(l), p(l)(·))
implies that

�(ξ(l+1), λ(l+1), p(l+1)(·)) ≥ �(ξ(l), λ(l), p(l)(·)),

which gives the ascent property.
Now we explain why μ has to be estimated separately. If

we treat μ as unknown parameter in L3, there appear to be
several methods that might be used to estimate μ and p(·)
simultaneously. If density p(·) have finite expectation, the
weighted sample mean μ̂M =

∑n
i=1(1−ri)Xi/

∑n
i=1(1−ri),

and sample median μ̂Med of the weighted data X1, · · · , Xn

with weights wi = 1− ri are two natural candidate estima-
tors for μ, since μ is the symmetry point. If p(·) is unimodal,
the maximum point μ̂U of the ordinary kernel estimator of
p(·) can serve as an estimator for μ. However, none of these
estimators can be proven to maximize L3(μ, p(·)), and thus
can not guarantee the ascent property if we estimate μ si-
multaneously in the EM algorithm. Hence the estimation
of μ is left to a searching scheme. Letting λ̂μ, ξ̂μ, p̂μ(·) de-
note the estimators of λ, ξ and p(·) given μ, we obtain the
profile-likelihood

�̂p(μ) = �{μ, λ̂μ, ξ̂μ, p̂μ(·)}.(15)

This becomes a one-dimensional maximization problem, and
its maximizer μ̂ can be obtained by searching the maximum
of �̂p with respect to μ. It can be solved using some ad-
vanced numerical methods implemented in computing soft-
wares, e.g., the function “fminsearch” in Maltab. The final
estimates can be obtained by plugging in μ̂, i.e., λ̂ = λ̂μ̂,

ξ̂ = ξ̂μ̂, and p̂(·) = p̂μ̂(·).
Remark. It is very difficult to simultaneously maximize L3

with respect to both nonparametric density p(·) and param-
eter μ. However, in special cases where p(·) is parametric,
μ can be estimated in the EM algorithm without breaking
the ascent property. See the estimation procedure of (19) in
the appendix.

3.2 Estimation for SPMD

When g(x; ξ) is a Pareto distribution and ξ = (α, β), the
solution to (10) is

α(l+1) = min
i
{Xi : r

(l+1)
i > 0, i = 1, · · · , n},(16)

β(l+1) =

∑n
i=1 r

(l+1)
i∑n

i=1 r
(l+1)
i (logXi − logα(l+1))

.(17)

Let i0 be the index corresponding to the minimum of (16),
i.e., α(l+1) = Xi0 . Then for any Xi < Xi0 , the estimated
density g(l+1)(Xi; ξ) = 0, and therefore the corresponding

expectation of latent variable in the following cycle r
(l+2)
i is

also zero by (8). On the other hand, for any Xi > Xi0 , it is

clear that the corresponding r
(l+2)
i > 0. Hence in the next

iteration α(l+2) is still Xi0 . It means that if α is updated
in the EM algorithm, it will remain to be the initial value.
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Hence the estimation of α should not be included in the EM
algorithm.

Since the location parameter α for the Pareto compo-
nent is the only discontinuity point of the mixture density,
a number of methods could be used for its estimation, e.g.,
see Chu et al. [6] and Gayraud [12]. Gayraud [12] proposed
minimax estimators based on differences of histograms, and
showed that their estimators could achieve the optimal con-
vergence rate n−1. For convenience, we use the estimator
with uniform kernels in Chu et al. [6], which is similar to the
first stage estimator of Gayraud [12]. Once α is estimated,
the rest estimation procedure follows as in Section 3.1. The
complete estimation procedure is summarized as follows:

1. Estimate α using the estimator in Chu et al. [6], and
denote the estimator as α̂.

2. Estimate μ by searching the maximum of profile-
likelihood (15) with respect to μ, where the EM al-
gorithm with fixed μ is as follows:

(a) Let μ be fixed and with given initial values
(β(0), λ(0), p(0)(·)), iterate E-step and M-step for
l = 0, 1, · · · , until convergence.

(b) E-step. For each i, compute

r
(l+1)
i =

λ(l)g(Xi; α̂, β
(l))

λ(l)g(Xi; α̂, β(l)) + (1− λ(l))Nμp(l)(Xi)
.

(c) M-step. Compute

λ(l+1) =

∑n
i=1 r

(l+1)
i

n
,

β(l+1) =

∑n
i=1 r

(l+1)
i∑n

i=1 r
(l+1)
i (logXi − log α̂)

,

p(l+1)(·) =
∑n

i=1(1− r
(l+1)
i )Kh,μ(Xi, ·)∑n

i=1(1− r
(l+1)
i )

.

3. Obtain the final estimates by plugging in μ̂, i.e., λ̂ = λ̂μ̂,

β̂ = β̂μ̂, and p̂(·) = p̂μ̂(·).

4. SIMULATION AND APPLICATION

4.1 Bandwidth selection

The choice of the bandwidth h is a challenging problem.
For kernel density estimation, several methods were intro-
duced in Li and Racine [19], including Rule-of-Thumb, Plug-
in, Least Square CV and Likelihood CV. For computation
consideration, we use a refinement of the Rule-of-Thumb
method. In Silverman [28], it is advocated to use the follow-
ing Rule-of-Thumb bandwidth for nonparametric density,

h = C∗n−1/5 min(σy, IQRy/1.34),

where C∗ = 0.9, σy and IQRy are the standard deviations
and the interquartile range of the sample, respectively. An-
other common variation is given by Scott [26], using factor
C∗ = 1.06 instead of 0.9. As our model is a mixture model,

not all the data come from the nonparametric component,
therefore a direct calculation of σy or IQRy in (18) will be
biased, and the deviation depends on the location and pro-
portion of the two components. For semiparametric mixture
model (2), a reasonable modification is

h = C∗(n(1− λ))−1/5 min(σp, IQRp/1.34),(18)

where σp and IQRp are the standard deviations and the
interquartile range of the nonparametric component. In this
paper, we use the following steps to deal with this problem.

1. Approximate the nonparametric component by a nor-
mal distribution, and maximize the log-likelihood

�(θ1) =

n∑
i=1

log
{
λg(Xi;α, β) + (1− λ)φ(Xi|μ, σ2)

}
,

(19)

with respect to θ1 = (λ, α, β, μ, σ2), where φ(x|μ, σ2) is
the density function of N(μ, σ2). The estimation pro-
cedure of (19) is given in the appendix.

2. With λ, σp and IQRp estimated by step 1, select a
bandwidth h0 by (18).

3. Given bandwidth h0, estimate λ, σp and IQRp in model
(2) using the procedure in section 3.2, and then select
bandwidth by (18).

4.2 Numerical simulation

We conduct simulation studies to demonstrate the perfor-
mance of the proposed model. The estimation of parameters
is evaluated via the root of mean square error (RMSE)

RMSE(θ̂) =

√√√√ 1

S

S∑
s=1

(θ̂(s) − θ)2,

and the performance of nonparametric density estimation
is evaluated via the root of mean intergraded squared error
(RMISE)

RMISE(p̂(·)) =

√√√√ 1

S

S∑
s=1

∫
{p̂(s)(u)− p(u)}2du,(20)

where θ̂(s) and p̂(s)(·) are the estimates in the s-th replica-
tion.

Example 1. The simulated data is generated from the mix-
ture of a normal distribution N(0.4, 0.52) and a Pareto dis-
tribution with parameters α = 0.1 and β = 3. The mixing
proportion λ takes values of 0.25, 0.5, and 0.75. We ran
S = 500 replications of n observations (n = 400, 800). We
estimate the parameters by two models, the SPMD model
where the normal distribution is regarded as the nonpara-
metric component, and the parametric model defined in
(19). For SPMD model, the bandwidth h is selected for
each simulated sample by using the modified Rule-of-Thumb
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Table 1. RMSE for parameters and RMISE for p(·) when p(·) is a normal distribution

Model (19) SPMD
n true λ α λ β μ p(·) λ β μ p(·)

0.25 0.0015 0.0324 0.6590 0.0299 0.0389 0.0373 0.6447 0.0334 0.0657
400 0.5 0.0005 0.0337 0.3786 0.0369 0.0462 0.0358 0.3868 0.0439 0.0821

0.75 0.0003 0.0300 0.2604 0.0510 0.0670 0.0300 0.2628 0.0669 0.1129

0.25 0.0007 0.0221 0.4543 0.0206 0.0260 0.0248 0.4497 0.0220 0.0481
800 0.5 0.0004 0.0242 0.2528 0.0255 0.0322 0.0260 0.2776 0.0279 0.0598

0.75 0.0002 0.0201 0.1846 0.0384 0.0469 0.0210 0.1896 0.0438 0.0840

Table 2. RMSE for parameters and RMISE for p(·) when p(·) is a t-distribution

Model (19) SPMD
n true λ α λ β μ p(·) λ β μ p(·)

0.25 0.0018 0.1449 1.5099 0.0529 0.2539 0.0573 0.9227 0.0243 0.0951
400 0.5 0.0005 0.1094 0.9487 0.0528 0.2655 0.0473 0.4979 0.0301 0.1154

0.75 0.0003 0.0589 0.4939 0.0859 0.2708 0.0368 0.3019 0.0479 0.1588

0.25 0.0011 0.1404 1.5185 0.0332 0.2592 0.0417 0.7121 0.0170 0.0720
800 0.5 0.0003 0.1121 0.9625 0.0492 0.2691 0.0344 0.3626 0.0211 0.0850

0.75 0.0002 0.0535 0.4630 0.0504 0.2630 0.0264 0.2324 0.0323 0.1195

Table 3. Standard error estimation when p(·) is a t-distribution

λ = 0.25 λ = 0.50 λ = 0.75
SD SE(STD) SD SE(STD) SD SE(STD)

α 0.0009 0.0224(0.0264) 0.0004 0.0006(0.0004) 0.0002 0.0003(0.0002)
λ 0.0439 0.0395(0.0058) 0.0445 0.0390(0.0042) 0.0331 0.0317(0.0026)
β 0.6869 0.7363(0.2747) 0.3661 0.4057(0.0768) 0.2531 0.2769(0.0363)
μ 0.0245 0.0240(0.0030) 0.0286 0.0314(0.0062) 0.0467 0.0520(0.0142)

method described in Section 4.1. The simulation results are
shown in Table 1.

The parameter estimation of α has the smallest RASE,
which shows that the estimator based on difference of his-
togram works quite well. We see that the estimation proce-
dure of model (2) works almost as well as the parametric
model (19). Both the methods give good estimation of λ
and μ. The RMSE of β is relatively large as compared to λ
and μ. However, it shrinks when sample size increases from
n = 400 to n = 800 for both models. For the RMISE of p(·),
the result of semiparametric model are about 1.8 times of
the results of parametric model. Also note that the RMISE
of p(·) increases when λ increases from 0.25 to 0.75. This is
because (1− λ) is the proportion of nonparametric compo-
nent and then larger λ means fewer information of p(·).
Example 2. In this example we generate data from a mix-
ture of a Pareto distribution with parameters α = 0.1 and
β = 3, and a scaled t-distribution. The scaled t-distribution
is assumed to be T/

√
12+μ, where T follows a t-distribution

with df = 3 and the symmetry point μ = 0.4. We estimate
the parameters by the two models as in example 1, and the
results are given in Table 2.

Since the normal assumption is not satisfied, the param-
eters estimated by parametric model (19) are much worse
than that of the SPMD model as expected. The RMSE of λ

and β are quite large, and increasing the sample size does
not yield significant improvements. On the other hand, esti-
mates by SPMD model have smaller RMSE for all parame-
ters, and the RMSE reduces as sample size increases. As to
the estimation of nonparametric part, the estimate of SPMD
model has much smaller RMISE than that of the parametric
model. Similar to Example 1, the RMISE of p(·) increase as
λ increase for SPMD model. However, for Model (19), the
RMISE of p(·) show little difference when λ varies.

We use a nonparametric bootstrap method for standard
error estimation, and conduct simulation to test its perfor-
mance. In 500 simulations, we calculate the standard devia-
tion of 500 estimates as a proxy of the true standard error,
denoted by SD. In each simulation, the standard error is
estimated by bootstrap. The mean and standard deviation
of the 500 estimated standard errors are recorded, denoted
by SE and STD. From the results in Table 3, we see that
the bootstrap procedure provides reasonable estimates for
the true standard deviation, except for α when the sample
size of the Pareto component is small in the case of true
λ = 0.25.

4.3 Analysis of Chinese ROE data

In this section we analyze a dataset on ROE of Chinese
listed companies. The dataset is obtained from the Wind Fi-
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Figure 2. (a) Scaled histograms and the fitted density; (b) Two components (shifted) of the fitted density.

nancial Terminal Database (http://www.wind.com.cn). We
collect a total of 2,110 observations in 2010 for all Chinese
listed companies. Return On Equity (ROE) refers to the
amount of net income returned as a percentage of share-
holders equity and is an important index which measures
a corporation’s profitability. It is also a useful indicator for
fundamental analysts to price the value of stocks. Under-
standing the companies’ ROE plays a critical role in invest-
ment analysis. Wang and Tsai [29] investigated the extreme
situations of Chinese stock market by a tail index regression
with the ROE of Chinese listed firms.

As shown in Figure 1, China’s ROE data is an example of
asymmetry of ROE data with a jump on the right of zero.
This empirical phenomenon is not unique to the Chinese
stock market, but exists in many other markets. This phe-
nomenon has been noted and studied in literature such as
in Burgstahler and Dichev [5], Ding et al. [8], and Jiang and
Wang [15]. However, to the best of our knowledge no quanti-
tative model has been proposed for the ROE data which has
a jump near the right of the zero point and heavy-tailed dis-
tributions, and consist of probabilistic categories of real and
manipulated earnings. Since empirical accounting researches
show that the reported ROE values should constitute two
different components [15], a tail index model is insufficient
to precisely model the data patterns and provide reasonable
estimates. We analyze the data using the proposed SPMD
model and estimation procedure. The real and manipulated
earnings are characterized by a symmetric nonparametric
distribution and a Pareto distribution, respectively. Pareto
distribution is well known for heavy-tail modeling, and has
been demonstrated as a useful model for the size distribution
of various heavy-tail phenomena, including incomes, earn-
ings, and stock returns (See Reed and Jorgensen [25]). The
underlining assumption to employ Pareto distribution for
earning manipulation is that most companies manipulate

loss as small profit, while a few companies manipulate loss
as large profit.

Table 4 depicts the estimates and their confidence in-
tervals.The estimated Pareto component coefficients are
α = 0.065 and β = 2.911, with the estimated proportion
λ = 0.102. The estimated nonparametric component is sym-
metric about μ = 0.1172 with proportion 0.898. The result
suggests that about 89.8% of Chinese listed firms show the
real earnings, with average return on equity 11.72%; about
10.2% of Chinese listed companies manipulate their earn-
ings to show a slightly positive profit, whose earnings may
actually be negative. The fitted density superimposed on a
scaled version of the histogram is shown in Figure 2(a), and
the two components are separately shown in Figure 2(b). We
further obtain the 95% confidence intervals by a nonpara-
metric bootstrap method. From Table 4, λ is significantly
larger than zero and the proportion of manipulated earn-
ings is between 6.27% and 13.84% with probability 95%.
The above analysis showed significant earning manipulation
in the Chinese listed companies from the quantitative per-
spective, which is consistent with the previous qualitative
analyses obtained by Burgstahler and Dichev [5], Ding et al.
[8], and Jiang and Wang [15].

Table 4. Estimators and the 95% confidence intervals for the
estimators, based on 500 bootstrap replications, for the ROE

data example

estimator 95 % CI

α 0.065 ( 0.0031, 0.1330)
λ 0.102 (0.0627, 0.1384)
β 2.911 (2.0463, 4.7851)
μ 0.1172 (0.1107, 0.1237)

One practical application of the analysis is to provide a
model-based revision of the average ROE. Note that in the
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2010 dataset, the naive average of ROE is 12.13%. Since ma-
nipulation exists, the value 12.13% is over estimated. Given
the estimates of our model, a reasonable revision of the av-
erage ROE is the weighted average of the means of the two
components, where the mean of the manipulated component
can be estimated using the average of all negative ROE of
the original data, which is -8.48%. Therefore, the revised
average ROE is 0.898 ∗ 11.72%+0.102 ∗ (−8.48%) = 9.66%.

5. DISCUSSION

In this paper, we introduced a novel semiparametric
Pareto mixture density model, and proposed an efficient
estimation procedure via maximum smoothed likelihood
estimation and EM algorithm. We showed that the pro-
posed model are identifiable under mild conditions. We con-
structed the objective function via the smoothed likelihood
framework, and developed an estimation procedure via pro-
filed likelihood and EM algorithm. Furthermore, we proved
the ascent property of proposed EM algorithm. However,
the proposed EM algorithm is not limited to the Pareto
component. Our algorithm can be implemented for other
parametric component, e.g., normal or exponential distri-
bution, provided that the model is identifiable. Therefore,
research on the identifiability of model (2) with other specific
parametric component is undoubtedly of great importance.
Further research on the asymptotic distribution is also of
interest.

In this paper, we focused on the Pareto distribution as
the parametric component, which is motivated by the jump
in the density of the ROC data of Chinese firms. We ana-
lyzed the Chinese ROE dataset, which may consist of real
and manipulated earning as suggested by the previous qual-
itative studies. Our analysis confirmed that there are sig-
nificant manipulation in the ROE dataset, and provided a
novel model-based analysis including a quantitative mea-
sure for the proportion of the manipulated earning, and a
quantitative revision of the average ROE.

APPENDIX A. APPENDIX SECTION

A.1 Proofs

Proof of Theorem 2.1. Since the symmetric component
density p(x) is continuous, x = α is the unique discontinuity
point of the mixture density f(x) of (3), hence the location
parameter α for Pareto density is identifiable. Moreover, the
jump size f(α)−f(α−) of f(x) at x = α is also identifiable,
while f(α−) denotes the left limit of f(x) when x approaches
α from the left side, f(α)− f(α−) = λβ/α, hence the prod-
uct λβ is identifiable. For simplicity and without loss of
generality, we assume that α = 1.

Now for any constant γ > 0, let us consider

lim
x→∞

f(x)xγ+1 = λβxγ−βI{x ≥ 1}+ (1− λ)xγ+1p(x− μ).

It follows that

lim
x→∞

f(x)xγ+1 =

⎧⎨
⎩

0 γ < β
λβ γ = β
∞ γ > β.

Hence γ = β is the unique value such that the limit is a
positive constant. Thus parameter β of the Pareto density
is identifiable. Since the product λβ is identifiable, the pro-
portion parameter λ is identifiable. By the symmetry of p(x),
the center of the nonparametric component μ is also identi-
fiable. This proves Theorem 2.1.

Proof of Theorem 3.2. By applying Jensen’s inequality, we
have

�(ξ, λ, p(·))− �(ξ(l), λ(l), p(l)(·))

=

n∑
i=1

log
λg(Xi; ξ) + (1− λ)Nμp(Xi)

λ(l)g(Xi; ξ(l)) + (1− λ(l))Nμp(l)(Xi)

=

n∑
i=1

log

{
r
(l+1)
i

λg(Xi; ξ)

λ(l)g(Xi; ξ(l))

+ q
(l+1)
i

(1− λ)Nμp(Xi)

(1− λ(l))Nμp(l)(Xi)

}

≥
n∑

i=1

{
r
(l+1)
i log

λg(Xi; ξ)

λ(l)g(Xi; ξ(l))

+ q
(l+1)
i log

(1− λ)Nμp(Xi)

(1− λ(l))Nμp(l)(Xi)

}

=L(ξ, λ, p(·))− L(ξ(l), λ(l), p(l)(·)),

where q
(l+1)
i = 1 − r

(l+1)
i . Taking C(l) to be �(ξ(l), λ(l),

p(l)(·))− L(ξ(l), λ(l), p(l)(·)) proves Theorem 3.2.

A.2 Estimation procedure for model (19)

We present an estimation procedure to maximize the log-
likelihood (19) with respect to α, β, λ, μ and σ2. Similar to
Section 3.2, α is estimated using the estimator in Chu et al.
[6], denoted by α̂.

Then we use an EM algorithm as follows:

1. Give initial values (β(0), λ(0), μ(0), σ2(0)), iterate E-step
and M-step until convergence.

2. E-Step. For each i,

r
(l+1)
i =

λ(l)g(Xi; α̂, β
(l))

λ(l)g(Xi; α̂, β(l)) + (1− λ(l))φ(Xi;μ(l), σ2(l))
.

3. M-Step.

λ(l+1) =

∑n
i=1 r

(l+1)
i

n
,

β(l+1) =

∑n
i=1 r

(l+1)
i∑n

i=1 r
(l+1)
i (logXi − log α̂)

,

μ(l+1) =

∑n
i=1(1− r

(l+1)
i )Xi∑n

i=1(1− r
(l+1)
i )

38 M. Huang et al.



σ2(l+1)
=

∑n
i=1(1− r

(l+1)
i )(Xi − μ(l+1))2∑n

i=1(1− r
(l+1)
i )

.
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