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Monotone function estimation in partially linear
models
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A kernel-based method is proposed for the monotone
estimation of the nonparametric function component of a
partially linear regression model. The estimated monotone
function is constructed via a density estimate and numeri-
cal inversion. This procedure does not require constrained
optimization and hence is fast to compute. Asymptotic nor-
mality is established for the proposed monotone function
estimator. We apply the proposed method to analyze mam-
malian eye gene expression data and reveal a complex non-
linear relation within a gene network; we also analyze the
German SOEP data using our method and validate the hu-
man capital theory.
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1. INTRODUCTION

A major goal in biomedical research is to discover ge-
netic mechanisms that underline complex heritable diseases.
Recent advances in microarray technology have enabled re-
searchers to use expression quantitative trait locus (eQTL)
mapping to identify genetic variation that are relevant to hu-
man diseases. The Bardet-Biedl syndrome (BBS) is a genet-
ically heterogeneous disorder that is characterized by mul-
tiple symptoms including retinopathy [1, 2, 14]. EQTL has
identified TRIM32, an E3 ubiquitin ligase, as a BBS gene
[9, 27]. Using a novel sure independence screening procedure,
[24] discovered that other genes may be functionally related
to gene TRIM32; some genes are linearly correlated with
gene TRIM32, some are nonlinearly correlated with gene
TRIM32. This motivates us to use a partially linear model
to study the functional relation between gene TRIM32 and
other genes that are potentially involved in regulation of
BBS.

A partially linear model is given by

(1) Y = XTβ + g(T ) + ε,
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where Y is the response variable, X = (X1, . . . , Xp)
T and

T = (T1, . . . , Td)
T are two vectors of explanatory vari-

ables. β = (β1, . . . , βp)
T is a vector of unknown parameters,

g : Rd → R
1 is an unknown function, ε is a random error

with mean zero and finite variance. In the above eQTL map-
ping application, Y is the expression level of gene TRIM32,
X denotes the expression levels of genes that are linearly
correlated with TRIM32, and T the expression levels of
genes that are nonlinearly correlated with TRIM32. Since
it contains a parametric part XTβ and a nonparametric
part g(·), model (1) is a semiparametric regression model.
The partially linear model is more flexible than the fully
parametric (linear regression) models because it allows a
nonparametric component g(·), hence reduces the possibility
of model misspecification. On the other hand, with a para-
metric part XTβ, model (1) has an advantage over a fully
nonparametric model as it diminishes the “curse of dimen-
sionality” of fully nonparametric models. In their pioneering
work [11], Engle, Granger, Rice and Weiss (1986) modeled
the electricity demand as a sum of a nonparametric function
of temperature and a linear function of electricity price and
income. Since then, the partially linear models have found
many applications in various fields; see [32, 28, 18], among
others. The monograph [18] gives a detailed account of re-
cent advances in partially linear models.

Several methods have been proposed for the estima-
tion of the linear coefficients β and function g(·) in model
(1). Penalized least squares approach was introduced by
[11, 15, 31, 33, 34], among others. [6] established a para-
metric convergence rate for parameter vector β while em-
ploying a piecewise polynomial estimator for the nonpara-
metric function g(·). [32] proposed to use kernel smoothing
for estimation, and obtained the asymptotic bias and vari-
ance for β. [7] used a two-stage spline smoothing method
for estimating the parametric and nonparametric compo-
nents, and showed that the parametric component can be
estimated at the parametric rate without undersmoothing
the nonparametric component. Many other methods have
also been proposed for estimation of model (1), for exam-
ple, profiled likelihood [29, 4], empirical likelihood [30], local
linear estimation [17], wavelet thresholding [5, 13].

Without any parametric assumptions on the function
form, the nonparametric component g(·) in model (1) pro-
vides a flexibility in modeling. [24] found out that the non-
linear relationship between gene TRIM32 and gene Zmat1
appears to be a monotone function. In fact, it is desired in
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many applications that the nonparametric component g(·)
be a monotone function. To study the monotone estimation
of g(·), let us begin with a completely nonparametric regres-
sion model:

Y = m(X) + ε.

For this model, there has been a vast amount of research de-
voted to the estimation of a monotone regression function.
Estimation of the monotone nonparametric function can be
based on maximum likelihood [3, 23, 8, 35, 12, 21], con-
strained spline smoothing [25, 19, 22], or kernel smoothing
[16, 10]. In this paper we will adopt the estimation proce-
dure given by [10], which is easy to carry out and has good
sampling properties. First, [10] constructs a kernel estimate
of m−1 by

(2)
1

Nhd

∫ t

−∞

N∑
k=1

Kd

(
m(Uk)− u

hd

)
du,

where the independent identically distributed random vari-
ables U1, . . . , UN are from the uniform distribution over in-
terval [0, 1], and N is a positive integer. Then, by replacing
Uk with k/N, k = 1, . . . , N in (2), they define the estimate
of m−1 as

m̂−1(t) =
1

Nhd

∫ t

−∞

N∑
i=1

Kd

(
m̂(i/N)− u

hd

)
du,

where m̂ is a kernel estimator of the nonparametric function,
Kd is a symmetric kernel function. The monotone estimate
of the regression function m(·) is finally defined as the in-
verse of the function m̂−1.

In this paper, we assume that d = 1 and the unknown
nonparametric function g(·) : [0, 1] → R is monotonous and
twice continuously differentiable. We propose a monotone
estimation procedure for the nonparametric component g(·)
in the partially linear model (1) based on the idea of [10],
and establish the asymptotic normality for the proposed es-
timator of the monotone function. The performance of the
estimation procedure is illustrated via simulations and real
data analysis.

The paper is organized as follows. In Section 2 we intro-
duce the monotone estimation procedure for g(·) and dis-
cuss the bandwidth selection problem. In Section 3 we study
the asymptotic properties of the proposed estimator of the
monotone function. Simulations and applications to mam-
malian eye gene expression data and German SOEP data
are presented in Section 4. Some discussions are given in
Section 5. Technical conditions and proofs are given in the
Appendix A.

2. ESTIMATION PROCEDURE

2.1 Estimation method

In this section, we describe the monotone estimation
procedure. Assume that {(Xi, Yi, Ti), i = 1, . . . , n} is a

random sample from the population (X, Y, T ), Xi =
(Xi1, Xi2, . . . , Xip)

T . We can obtain the Nadaraya-Watson
estimate (referred to simply as the N-W estimate in this
article) of g(·) as in [32]. If we define Z = Y − XTβ,
then model (1) becomes a nonparametric regression model
Z = g(T ) + ε. Consequently, the nonparametric function g
can be estimated by kernel smoothing:

ĝ(t) =

∑n
i=1 Kr

(
t−Ti

hr

)
Zi∑n

j=1 Kr

(
t−Tj

hr

) ,

where Kr(·) is a probability kernel function, hr is a band-
width. To simplify the notations, we define

ωni(t)=
Kr

(
t−Ti

hr

)
∑n

j=1 Kr

(
t−Tj

hr

) , V =

⎛
⎜⎝

ωn1(T1) · · ·ωnn(T1)
...

. . .
...

ωn1(Tn) · · ·ωnn(Tn)

⎞
⎟⎠ .

Then we can replace g(T ) with
n∑

i=1

ωni(T )(Yi − XT
i β) for

every given β. After making a change of variables X̃ =
XT − VXT , Ỹ = Y − V Y , we can obtain the least squares
estimate of β, the N-W estimate of g(·) and the estimate of
σ2:

β̂LS = (X̃T X̃)−1X̃T Ỹ ,

ĝ(t) =

n∑
i=1

ωni(t)(Yi −XT
i β̂LS),

σ̂2 =
1

n

n∑
i=1

(Ỹi − X̃iβ̂LS)
2.

(3)

ĝ(t) in (3) is a consistent estimate of g(t), but not nec-
essary a monotonous function. We use the method in [10]
to guarantee the monotonicity. If g(·) is a strictly increasing
function on the interval [0, 1], we define

(4) ĝ−1
I (t) =

1

Nhd

∫ t

−∞

N∑
k=1

Kd

(
ĝ(k/N)− u

hd

)
du

as the estimate of g−1(t), where N is a large enough positive
integer. In practice, if the sample size n is large enough, one
may use N = n. As a result, the monotonous estimate ĝI of
g is obtained as the inverse function of ĝ−1

I (t). In order to
study the consistency of ĝI , we replace the N-W estimate
ĝ(·) of equation (4) with the true value g(·) and define

g−1
N (t) =

1

Nhd

∫ t

−∞

N∑
k=1

Kd

(
g( k

N )− u

hd

)
du.

By Lemma 2.2 of [10], gN (t) is a good approximation of g(t)
under certain assumptions. If g(·) is a strictly decreasing
function on the interval [0, 1], then we define
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(5) ĝ−1
D (t) = 1− 1

Nhd

∫ t

−∞

N∑
k=1

Kd

(
ĝ(k/N)− u

hd

)
du

as the estimate of g−1(t). The monotonous estimate of g(·)
can be obtained similarly as in the strictly increasing case.

2.2 Bandwidth selection

Bandwidth selection is a fundamental issue in nonpara-
metric smoothing. We will use the method from [18] to de-
termine the bandwidth hr for each sample. For any fixed h
and 1 ≤ i ≤ n, we define

ω̃i,n(t) = Kr

(
Ti − t

h

)/ n∑
j=1,j �=i

Kr

(
Tj − t

h

)
,

g̃i,n(t,β) =

n∑
j=1,j �=i

ω̃j,n(t)(Yj −XT
j β),

and

β̃(h) = argmin
β

n∑
i=1

{Yi −XT
i β − g̃i,n(Ti,β)}2.

The cross-validation (CV) function is

CV (h) =
1

n

n∑
i=1

{Yi −XT
i β̃(h)− g̃i,n(Ti, β̃(h))}2.

As in [18], the optimal bandwidth is determined as hr =
argminh∈Θh

CV (h), with Θh = [λ1n
−1/5−η, λ2n

−1/5+η],
where λ1, λ2, η are constants which satisfy that 0 < λ1 <
λ2 < ∞, 0 < η < 1/20.

As discussed in Section 3, the asymptotic distribution of
monotonous estimator of g(·) depends on the asymptotic
behavior of the ratio hr/hd. In fact, there are two cases,
lim

n→∞
hr

hd
= a ∈ [0,∞) and lim

n→∞
hr

hd
= ∞. [10] argued that

bandwidths satisfying hd = o(hr) are preferred if we want to
minimize the MSE of the estimator. Hence we use hd = h3

r

as in [10].

3. PROPERTIES

It is shown in [18] that the least squares estimator of
β has the convergence rate of

√
n. In addition, the N-W

estimate of g(·) converges uniformly to the true value with
certain rate. In this section, we will study the asymptotic
behaviors of the proposed monotonous function estimator.
Six assumptions given in the Appendix A will be used in
the deduction of the sampling properties of our estimators.

Lemma 1 ([18] Theorem 2.1.1). Under assumptions 1 and

2, β̂LS is an asymptotically normal estimator of β, i.e.,

√
n(β̂LS − β)

L−→ N (0, σ2Σ−1).

Lemma 2 ([18] Theorem 3.2.2). Assume that assumptions
1, 3 and 4 hold, and that E|ε1|3 < ∞. Then

sup
t

|ĝ(t)− g(t)| = O

((
logn

nhr

)1/2
)

+O(h2
r) +Op(n

−1/2).

Lemma 3 ([10] Lemma 2.2). If g(·) is strictly increasing
and assumption 5 is satisfied, then for any t ∈ (0, 1) with
g′(t) > 0

gN (t) = g(t) + κ2(Kd)h
2
d

g′′(t)

(g′(t))2
+ o(h2

d) +O(
1

Nhd
),

where the constant κ2(K) is given by

κ2(K) =
1

2

∫ 1

−1

v2K(v)dv.

The asymptotic biases, variances, and normality of the
proposed monotonous function estimator are given in the
next two theorems. The proofs are given in the Appendix A.

Theorem 3.1. Assume that assumptions 1-6 hold. If

lim
n→∞

hr

hd
= a ∈ [0,∞), nh7

d = o(1), (logn)2

nh2
rhd

= o(1) and

g is strictly increasing, then for all t ∈ (g(0), g(1)) with
g′(g−1(t)) > 0, we have√

nhd

{
ĝ−1
I (t)− g−1

n (t) + B ◦ (g−1(t))
} d−→ N (0, r2(t)),

where

B(u) =h2
rκ2(Kr)

g′′(u)fT (u) + 2f ′
T (u)g

′(u)

fT (u)g′(u)
,

r2(t) =
σ2

g′fT
◦ (g−1(t))I(t),

I(t) =

∫∫∫
Kd

(
p+ ag′(g−1(t)(q − s))

)
Kd(p)

·Kr(q)Kr(s)dpdqds.

If lim
n→∞

hr

hd
= ∞,

nh9
r

h2
d

= o(1), (logn)2

nhrh2
d

= o(1) and g is strictly

increasing, then for all t ∈ (g(0), g(1)) with g′(g−1(t)) > 0,
we have√

nhd

{
ĝ−1
I (t)− g−1

n (t) + B ◦ (g−1(t))
} d−→ N (0, r̃2(t)),

where

r̃2(t) =
σ2

g′2fT
◦ (g−1(t))

∫
K2

r (s)ds.

Theorem 3.2. Assume that assumptions 1-6 hold. If

lim
n→∞

hr

hd
= a ∈ [0,∞), nh7

d = o(1), (logn)2

nh2
rhd

= o(1) and g

is strictly increasing, then for all t ∈ (0, 1) with g′(t) > 0,
we have√

nhd {ĝI(t)− gn(t)−D(t)} d−→ N (0, s2(t)),

where

D(t) =h2
rκ2(Kr)

g′′(t)fT (t) + 2f ′
T (t)g

′(t)

fT (t)
,
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Table 1. Mean squared errors of estimated β and σ2

ε, g(·) n hr β1 (10−5) β2 (10−5) β3 (10−5) σ2 (10−6)

N(0, 0.01)
100 0.0939 1.433 0.572 1.272 3.6644

g(T ) = T 3 200 0.076 7.199 2.405 5.892 1.6554
400 0.0636 3.431 1.246 2.517 0.68644

N(0, 0.01)
100 0.073 1.634 0.573 1.363 13.475

g(T ) = −1
0.2+e10T

200 0.0569 7.161 2.406 5.75 6.6355
400 0.0458 3.439 1.161 3.058 3.5857

0.05
√
2(χ2

1 − 1)
100 0.0951 1.514 0.515 1.251 4.3981

g(T ) = T 3 200 0.0769 7.349 2.729 5.606 1.8753
400 0.0643 3.228 1.195 2.801 0.79659

0.05
√
2(χ2

1 − 1)
100 0.0711 1.562 0.547 1.321 13.821

g(T ) = −1
0.2+e10T

200 0.0563 7.642 2.476 6.186 7.0492
400 0.0461 3.474 1.127 2.957 3.6179

s2(t) =
σ2g′(t)

fT (t)
I(t),

I(t) =

∫∫∫
Kd (p+ ag′(t)(q − s))Kd(p)

·Kr(q)Kr(s)dpdqds.

If lim
n→∞

hr

hd
= ∞,

nh9
r

h2
d

= o(1), (logn)2

nhrh2
d

= o(1) and g is strictly

increasing, then for all t ∈ (0, 1) with g′(t) > 0, we have

√
nhr {ĝI(t)− gn(t)−D(t)} d−→ N (0, s̃2(t)),

where

s̃2(t) =
σ2

fT (t)

∫
K2

r (u)du.

4. SIMULATION AND APPLICATIONS

4.1 Simulation study

In this part we will apply our method to simulated
datasets. We generate data from a partially linear model

Yi = XT
i β0 + g(Ti) + εi

for i = 1, 2, . . . , n, where β0 = (1.2, 1.3, 1.4)T , Ti ∼ U [0, 1]
and

Xi ∼ N(0,Σx) with Σx =

⎛
⎝ 0.81 0.1 0.2

0.1 2.25 0.1
0.2 0.1 1

⎞
⎠ .

We take two cases for the distribution of εi, namely εi ∼
N(0, 0.01), εi ∼ 0.05

√
2(χ2

1 − 1), where χ2
1 − 1 is a chisquare

distribution with 1 degree of freedom minus 1. The nonpara-
metric function g(·) takes two forms, namely g(T ) = T 3 and
g(T ) = −1/(0.2 + e10T ).

In the simulation, we use sample sizes n = 200, 400
and 800, and for each sample size, we replicate 1000 times.
Epanechnikov kernel function is used for smoothing. The
mean squared errors(MSEs) for β and σ2 are reported in Ta-

Table 2. Mean and standard deviation of RASEs for N-W
estimate and monotone estimate

ε, g(·) n RASE of ĝ RASE of ĝI

N(0, 0.01)
100 .0336(.0080) .0311(.0075)

g(T ) = T 3 200 .0248(.0053) .0230(.0049)
400 .0187(.0036) .0174(.0034)

N(0, 0.01)
100 .0399(.0091) .0358(.0092)

g(T ) = −1/(0.2 + e10T )
200 .0298(.0054) .0256(.0053)
400 .0216(.0037) .0190(.0035)

0.05
√
2(χ2

1 − 1)
100 .0336(.0092) .0307(.0076)

g(T ) = T 3 200 .0249(.0055) .0231(.0050)
400 .0185(.0037) .0173(.0032)

0.05
√
2(χ2

1 − 1)
100 .0388(.0107) .0354(.0104)

g(T ) = −1/(0.2 + e10T )
200 .0288(.0065) .0260(.0064)
400 .0216(.0041) .0190(.0041)

ble 1. Table 2 compares the means and standard deviations
of the square root of the average squared errors(RASEs),
where

RASE2 = N−1
N∑
j=1

{ĝ(uj)− g(uj)}2.

We compare the unconstrained N-W estimate ĝ (left)
with the monotonous estimate ĝI(right) in Figure 1. From
Table 1 and 2, we can see that the proposed procedure gives
better results than the N-W estimate; for example, RASEs
of g(·) and MSE of β are significantly reduced.

The residuals of the fitted partially linear model are
ε̂ = Y − XT β̂ − ĝI(T ). Let F̂n be the centered empirical
distribution function of ε̂. For any given X and T , indepen-
dent samples ε∗1, · · · , ε∗n are drawn from F̂n, and let

Y ∗ = XT β̂ + ĝI(T ) + ε∗.

Based on 1000 bootstrap replications, we construct 95%
pointwise confidence intervals for the true nonparametric
function. The confidence intervals for the monotonous esti-
mates and N-W estimates are shown in Figure 2, together
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Figure 1. Comparison of estimates of g(·) with different function forms and error distributions. (N-W estimate: left, monotone
estimate: right). g(T ) = T 3, N(0, 0.01) (column 1), g(T ) = T 3, 0.05

√
2(χ2

1 − 1) (column 2),
g(T ) = −1/(0.2 + e10T ), N(0, 0.01) (column 3), g(T ) = −1/(0.2 + e10T ), 0.05

√
2(χ2

1 − 1) (column 4).

Figure 2. 95% pointwise confidence intervals of g(·) with different function forms and error distributions, sample size n = 200.
(red lines: true functions; blue dashed lines: monotonous estimates; green dotted lines: N-W estiamtes). (a)

g(T ) = T 3, N(0, 0.01), (b) g(T ) = T 3, 0.05
√
2(χ2

1 − 1), (c) g(T ) = −1/(0.2 + e10T ), N(0, 0.01), (d)
g(T ) = −1/(0.2 + e10T ), 0.05

√
2(χ2

1 − 1).

with the true nonparametric function. From Figure 2 we can
see that the true function lies more likely within the con-
fidence intervals based on the monotonous estimation than
based on the N-W estimation. The coverage probabilities
(CP) and median lengths (ML) of the confidence intervals
based on normal approximation with nominal confidence
level 95% are reported in Table 3. These illustrations in-
dicate the good performance of the proposed methodology
in general.

4.2 Applications to real data

In this subsection, we apply the newly proposed proce-
dure to mammalian eye gene expression data and German
SOEP data.

I. Mammalian eye gene expression data

In a year 2006 study of the regulation of gene expression
in the mammalian eye and its relevance to eye disease, [27]
analyzed the microarrays containing more than 31,000 gene
probes from 120 twelve-week-old male F2 offspring of labo-
ratory rats. The logarithm of the gene expression levels was
used in the analysis. The dataset is obtainable from the Gene
Expression Omnibus repository, www.ncbi.nlm.nih.gov/geo
(accession no. GSE5680).

It has been shown that gene TRIM32, corresponding to
probe 1389163 at, is associated with human disease Bardet-
Biedl syndrome [9, 27]. Nonpositional analysis can help de-
tect functionally related genes and identify new gene net-
works. It is also useful in deducing unknown biological
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Table 3. The coverage probabilities(CP) and median
lengths(ML) of confidence intervals for N-W estimate and

monotone estimate

ε, g(·) n CPĝ MLĝ CPĝI MLĝI

N(0, 0.01)
100 .94 .1132 .94 .0972

g(T ) = T 3 200 .99 .0860 .99 .0752
400 .94 .0615 .94 .0548

N(0, 0.01)
100 .96 .1407 .98 .0768

g(T ) = −1/(0.2 + e10T )
200 .91 .0921 .90 .0571
400 1 .0745 1 .0396

0.05
√
2(χ2

1 − 1)
100 .99 .0869 .99 .0771

g(T ) = T 3 200 .96 .0697 .96 .0634
400 .98 .0639 .99 .0588

0.05
√
2(χ2

1 − 1)
100 .97 .1040 .98 .0644

g(T ) = −1/(0.2 + e10T )
200 .97 .0890 .96 .0436
400 .99 .0805 .98 .0386

Figure 3. The scatter plots.

pathways. [24] performed an analysis on the above mam-
malian eye gene expression data using sure independence
screen procedures and showed that the expression of gene
TRIM32 is highly correlated with that of an unnamed gene
(probe 1373887 at), gene Fam63b (probe 1389082 at) and
gene Zmat1 (probe 1373165 at); see Figure 3. It can be
seen that the unnamed gene (probe 1373887 at) and gene
Fam63b are linearly correlated with gene TRIM32, while
the relation between genes Zmat1 and TRIM32 appears to
be a monotone nonlinear function.

In this paper we use partially linear model (1) to study
the functional relation between gene TRIM32 and the un-
named gene (probe 1373887 at), Fam63b and Zmat1, with
X being the 2-dimensional vector of the expression levels
of the unnamed gene (probe 1373887 at) and gene Fam63b,

Figure 4. The monotonous estimator (red solid line) and the
N-W estimator (blue dashed line).

and T the expression level of gene Zmat1. The nonparamet-
ric component g(·) is assumed to be a smooth monotone
function. The range of variable T is [6.8653, 8.7130]. Two
observations with the smallest T values (6.8653 and 6.9455)
seem to be outliers and thus are excluded in the analysis for
the purpose of kernel smoothing. The estimated monotonous
curve g(·) is depicted in Figure 4, together with the N-W
estimator.

From Figure 4 we can see that, after taking into account
the expression levels of the unnamed gene and gene Fam63b,
gene TRIM32 is monotonously correlated with gene Zmat1.
The expression level of gene TRIM32 increases as the ex-
pression level of gene Zmat1 increases; The slope of the func-
tion depicting the relation between gene TRIM32 and gene
Zmat1 is high for expression level T approximately being less
than or equal to 8.2, and then diminishes a little after 8.2.
This indicates that the interaction within a gene network
can assume a complicated nonlinear form. Traditional lin-
ear analysis cannot detect this kind of nonlinear interaction
[24] and fails in identification of potential important genes
such as Zmat1 that play roles in regulation of mammalian
eye disease.

II. German SOEP data

The German Socio-Economic Panel (SOEP) is a wide-
ranging representative longitudinal study performed by the
German Institute for Economic Research. The study collects
data on household members living in Germany, including
household composition, occupational biographies, employ-
ment, earnings, health and so on. The data are available at
http://www.diw.de/en/soep. Based on the data of SOEP
1985, 1989 and 1993, [26] studied the relationship between
the log-earnings of an individual and personal character-
istics (gender, marital status) and measures of a person’s
human capital, such as time spent in school and labor mar-
ket experience. Experience suggests that there is a nonlinear
relationship between log earnings and labor market experi-
ence [26, 20]. As in [20], we fit to the data a partially linear
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Figure 5. The monotonous estimator (red solid line) and the
N-W estimator (blue dashed line).

model:

(6) ln(Y ) = Xβ + g(T ) + ε,

where Y is the earning of an individual, X the level of sec-
ondary school completed by the individual, and T is the
number of years spent in the labor market. Human capi-
tal theory suggests that the function g(·) is an increasing
function: human capital accumulation in the labor market
is associated with rising earnings. By using the local ker-
nel smoothing method, we first obtain the N-W estimate of
function g(·), and then modify it to attain a monotonous
estimate that is shown in Figure 5. This figure reveals that
accumulation of human capital in the early stage of an
individual’s career results in a rapid increase of earnings,
and the marginal effect of human capital on earnings peaks
somewhere during mid-life and drops off thereafter. In other
words, the nonparametric component g(·) is a concave func-
tion. This validates the law of diminishing marginal utility
in the human capital theory.

5. DISCUSSION

In this article, we extended the monotone estimation
method given by [10] to the partially linear models. Two ker-
nel functions with different bandwidths are used in the esti-
mation procedure. The asymptotic distributions of the pro-
posed monotone function estimator vary depending on the
asymptotic behavior of the ratio of the two bandwidths. The
asymptotic biases are of the same order, while the asymp-
totic variances differ. Even when the true nonparametric
component is a monotone function, traditional partial lin-
ear models do not necessarily produce a monotone estimate
for the component. The proposed method can guarantee to
give a nonparametric estimate for the nonparametric com-
ponent, and hence is particularly useful in applications when
monotonicity is desired in partial linear modeling. This pro-
cedure does not require constrained optimization and hence
is fast to compute. By using kernel smoothing technique,

our method requires enough data points around a point of
interest. Estimation of the nonparametric component is no
longer reliable in a region of sparse data points.

APPENDIX A

We outline the key steps for the proofs of Theorems 3.1
and 3.2.

A.1 Assumptions

The following six assumptions will be used.
Assumption 1 sup

0≤t≤1
E(‖X1‖3|T = t) < ∞,Σ =

cov(X1 −E(X1|T1)) is a positive definite matrix. The ran-
dom errors εi are independent of (Xi, Yi).

Assumption 2 Let hj(Ti) = E(Xij |Ti) and Uij =
Xij − hj(Ti) for i = 1, · · · , n, j = 1, · · · , p. The first two
derivatives of g(·) and hj(·) are Lipschitz continuous of or-
der one.

Assumption 3 the following equations hold uniformly
over [0, 1] and n ≥ 1:

(i)

n∑
i=1

|ωni(t)|I(|t− Ti| > μn) = O(h2
r),

(ii) sup
i≤n

|ωni(t)| = O((nhr)
−1),

(iii)

n∑
i=1

ω2
ni(t)Eε2i =

σ2
0

nhr
+ o

(
1

nhr

)
for some σ2

0 > 0,

where bandwidth hr satisfying lim
n→∞

n−1/2 log n/hr = 0 and

lim sup
n→∞

n2h4
r < ∞.

Assumption 4 The weight functions ωni(·) satisfy

max
i≥1

|ωni(s)− ωni(t)| ≤ C2|s− t|

uniformly over n ≥ 1 and s, t ∈ [0, 1], where C2 is a positive
constant.

Assumption 5 Kr and Kd are symmetric kernels with
compact support [−1, 1], and finite second moments, hr and
hd are the corresponding bandwidths converging to 0 with
the sample size n. Kd is twice continuously differentiable on
its support.

Assumption 6 nh5
r = O(1), n = O(N).

A.2 Proof of Theorem 3.1

Proof. Let

Δn(t) = ĝ−1
I (t)− g−1

n (t) = Δ(1)
n (t) +

1

2
Δ(2)

n (t),

where

Δ(1)
n (t)

=
1

nh2
d

n∑
i=1

∫ t

−∞
K ′

d

(
g
(
i
n

)
− u

hd

){
ĝ

(
i

n

)
− g

(
i

n

)}
du
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=
−1

nhd

n∑
i=1

Kd

(
g
(
i
n

)
− t

hd

){
ĝ

(
i

n

)
− g

(
i

n

)}
,

Δ(2)
n (t)

=
1

nh3
d

n∑
i=1

∫ t

−∞
K ′′

d

(
ξi − u

hd

){
ĝ

(
i

n

)
− g

(
i

n

)}2

du

=
−1

nh2
d

n∑
i=1

K ′
d

(
ξi − t

hd

){
ĝ

(
i

n

)
− g

(
i

n

)}2

with |ξi−g(i/n)| < |ĝ(i/n)−g(i/n)|, j = 1, . . . , n. A straight
calculation shows that

|Δ(2)
n (t)|

<
1

h2
d

∣∣∣∣ 1n
n∑

i=1

K ′
d

(
ξi − t

hd

){
ĝ

(
i

n

)
− g

(
i

n

)}2 ∣∣∣∣
=

1

h2
d

∣∣∣∣
∫ 1

0

K ′
d

(
g(x)− t

hd

)
{ĝ(x)− g(x)}2dx

∣∣∣∣(1 + op(1)).

If lim
n→∞

hr

hd
= a ∈ [0,∞), nh7

d = o(1) and (logn)2

nh2
rhd

= o(1),

then √
nhdΔ

(2)
n (t)

=Op

(√
nhd

hd

(
h4
r +

logn

nhr
+ n−1

))

=Op

⎛
⎝
√

nh8
r

hd
+

√
(log n)2

nh2
rhd

+
1√
nhd

⎞
⎠ = op(1).

If lim
n→∞

hr

hd
= ∞,

nh9
r

h2
d

= o(1) and (logn)2

nhrh2
d

= o(1), then

√
nhrΔ

(2)
n (t)

=Op

(√
nhr

hd

(
h4
r +

logn

nhr
+ n−1

))

=Op

(√
nh9

r

h2
d

+

√
(log n)2

nhrh2
d

+

√
hr

nh2
d

)
= op(1).

We split Δ
(1)
n (t) as follows.

Δ(1)
n (t)

=
−1

nhd

n∑
i=1

Kd

(
g
(
i
n

)
− t

hd

)(
ĝ

(
i

n

)
− g

(
i

n

))

=
−1

n2hd

n∑
i=1

Kd

(
g
(
i
n

)
− t

hd

)⎧⎨
⎩

n∑
j=1

ωnj

(
i

n

)
g(Tj)− g

(
i

n

)⎫⎬
⎭

+
−1

n2hd

n∑
i=1

Kd

(
g
(
i
n

)
− t

hd

)
n∑

j=1

ωnj

(
i

n

)
εj

+
−1

n2hd

n∑
i=1

Kd

(
g
(
i
n

)
− t

hd

)
n∑

j=1

ωnj

(
i

n

)
XT

j (β − β̂LS).

Since β̂LS − β = Op(1) and |
∑n

i=1 ωni(t)xij | = O(1),
the third term of above expression is Op(n

−1). Denote

f̂T (t) =
1

nhr

∑n
i=1 Kr

(
Ti−t
hr

)
, then f̂T (t)

P−→ gT (t),
1

f̂T (t)
=

1
gT (t) (1 + op(1)). Therefore the first two terms of above

expression can be rewritten as Δ
(1,1)
n (t)(1 + op(1)) and

Δ
(1,2)
n (t)(1 + op(1)) respectively, where

Δ(1,1)
n (t)

=
−1

n2hdhr

n∑
i=1

Kd

(
g
(
i
n

)
− t

hd

)

×
n∑

j=1

Kr

(
Tj − i

n

hr

)
g(Tj)− g

(
i
n

)
fT
(
i
n

)
Δ(1,2)

n (t)

=
−1

n2hdhr

n∑
i=1

Kd

(
g
(
i
n

)
− t

hd

)
n∑

j=1

Kr

(
Tj − i

n

hr

)
εj

fT
(
i
n

) .
E(Δ(1,1)

n (t))

=
−1

n2hdhr

n∑
i=1

Kd

(
g
(
i
n

)
− t

hd

)

×
n∑

j=1

Kr

(
Tj − i

n

hr

)
g(Tj)− g

(
i
n

)
fT
(
i
n

)
=

−(1 + o(1))

hdhr
·∫∫

Kd

(
g(u)− t

hd

)
Kr

(
w−u

hr

)
g(w)− g(u)

fT (u)
fT (w)dwdu.

Let

w − u

hr
= p,

g(u)− t

hd
= q.

Since fT (w)
fT (u) = 1 +

f ′
T (u)

fT (u)phr + o(phr) and g(w) − g(u) =

g′(u)phr +
1
2g

′′(u)p2h2
r + o(p2h2

r),

E(Δ(1,1)
n (t))

= − (1 + o(1))h2
rκ2(Kr)

∫
Kd(q)

g′′fT + 2f ′
T g

′

fT g′

◦ (g−1(t+ qhd)dq

= − h2
rκ2(Kr)

g′′fT + 2f ′
T g

′

fT g′
◦ (g−1(t))(1 + o(1)).

var(Δ(1,1)
n (t))

=
1 + o(1)

nh2
dh

2
r

var

{∫
Kd

(
g(u)− t

hd

)
Kr

(
T1 − u

hr

)

× g(T1)− g(u)

fT (u)
du

}

≤ 1 + o(1)

nh2
dh

2
r

E

{∫
Kd

(
g(u)− t

hd

)
Kr

(
T1 − u

hr

)
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× g(T1)− g(u)

fT (u)
du

}2

=
1 + o(1)

nh2
dh

2
r

∫∫∫
Kd

(
g(u)− t

hd

)
Kd

(
g(v)− t

hd

)

×Kr

(
w − u

hr

)
·

Kr

(
w − v

hr

)
(g(w)− g(u))(g(w)− g(v))fT (w)

fT (u)fT (v)
dudvdw.

Let

g(u)− t

hd
= p,

w − u

hr
= q,

w − v

hr
= s,

then var(Δ
(1,1)
n (t)) = o

(
1

nhd

)
. Further,

Δ(1,1)
n (t)+h2

rκ2(Kr)
g′′fT + 2f ′

T g
′

fT g′
◦(g−1(t)) = op

(
1√
nhd

)
.

By simple calculation, E(Δ
(1,2)
n (t)) = 0 and

var(Δ(1,2)
n (t))

=
σ2(1 + o(1))

nh2
dh

2
r

∫∫∫
Kd

(
g(u)− t

hd

)
Kd

(
g(v)− t

hd

)
·

Kr

(
w − u

hr

)
Kr

(
w − v

hr

)
fT (w)

fT (u)fT (v)
dudvdw.

If lim
n→∞

hr

hd
= a ∈ [0,∞), nh7

d = o(1), (logn)2

nh2
rhd

= o(1) and g is

strictly increasing. For all t ∈ (g(0), g(1)) with g′(g−1) > 0,
let

g(u)− t

hd
= p,

w − u

hr
= q,

w − v

hr
= s,

then

var(Δ(1,2)
n (t))

=
σ2(1 + o(1))

nhdg′fT
◦ (g−1(t))·∫∫∫

Kd

(
p+

hr

hd
g′(g−1(t))(q − s)

)
Kd(p)Kr(q)Kr(s)dpdqds.

Therefore, √
nhdΔ

(1,2)
n (t)

d−→ N (0, r2(t)).

If lim
n→∞

hr

hd
= ∞,

nh9
r

h2
d

= o(1), (logn)2

nhrh2
d

= o(1) and g is strictly

increasing. For all t ∈ (g(0), g(1)) with g′(g−1) > 0, let

g(u)− t

hd
= p,

g(v)− t

hd
= q,

w − u

hr
= s,

then var(Δ
(1,2)
n (t)) = σ2(1+o(1))

nhrg′2fT
◦(g−1(t))

∫
K2

r (s)ds. There-
fore, √

nhrΔ
(1,2)
n (t)

d−→ N (0, r̃2(t)).

If lim
n→∞

hr

hd
= a ∈ [0,∞), then

n∑
j=1

E

{
εj

n3/2h
1/2
d hr

n∑
i=1

Kd

(
g
(
i
n

)
− t

hd

)

×Kr

(
Tj − i

n

hr

)
1

fT
(
i
n

)
}4

= O

(
1

nhd

)
= o(1),

where we make a change of variables

g(u1)− t

hd
= w̃,

w − up

hr
= sp, p = 1, 2, 3, 4.

If lim
n→∞

hr

hd
= ∞, then

n∑
j=1

E

{
εj

n3/2hdh
1/2
r

n∑
i=1

Kd

(
g
(
i
n

)
− t

hd

)

×Kr

(
Tj − i

n

hr

)
1

fT
(
i
n

)
}4

= O

(
1

nhr

)
= o(1),

Where we make a change of variables

g(up)− t

hd
= w̃p, p = 1, 2, 3, 4.

w − u1

hr
= s.

A.3 Proof of Theorem 3.2

Proof. Let

An = − ĝ−1
I − g−1

n

(g−1
n )′

◦ gn(t)

and

Bn = 2 {ĝI(t)− gn(t)−An} .
From Lemma A.1 of [10], Bn can be rewritten as 2Bn1−Bn2,
where

Bn1 =
(ĝ−1

I − g−1
n )(ĝ−1

I − g−1
n )′(tn)

{(g−1
nc + λ∗(ĝ−1

I − g−1
n ))′}2(tn)

,

Bn2 =
(ĝ−1

I − g−1
n )2(g−1

n + λ∗(ĝ−1
I − g−1

n ))′′(tn)

{(ĝ−1
I + λ∗(ĝ−1

I − g−1
n ))′}3(tn)

,

tn =(g−1
n + λ∗(ĝ−1

I − g−1
n ))−1(t).

for some λ∗ ∈ [0, 1].
Let

Dn =(ĝ−1
I − g−1

n ) ◦ gn(t)− (ĝ−1
I − g−1

n ) ◦ g(t)
=(ĝ−1

I − g−1
n )′(ξn)(gn(t)− g(t)),

where |ξn − g(t)| ≤ |gn(t)− g(t)|.

(ĝ−1
I − g−1

n )′(ξn)
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=
1

nhd

n∑
i=1

{
Kd

(
ĝ(i/n)− ξn

hd

)
−Kd

(
g(i/n)− ξn

hd

)}

=− 1

nh2
d

n∑
i=1

K ′
d

(
ηi,n − ξn

hd

){
ĝ

(
i

n

)
− g

(
i

n

)}
,

where |ηi,n − g(i/n)| ≤ |ĝ(i/n) − g(i/n)| = O(Rn) almost
surely, with

Rn = h2
r + (log(n)/nhr)

1/2.

Further, we have

(ĝ−1
I − g−1

n )′(ξn) = O

(
Rn

hd
+

R2
n

h3
d

+
1

nhd

)
a.s.

Because
h4
r

h3
d
= o(1) and logn

nhrh3
d
= o(1), we have

R2
n

h3
d
= o(1). If

lim
n→∞

hr

hd
= a ∈ [0,∞), nh7

d = o(1) and (logn)2

nh2
rhd

= o(1), then

√
nhdDn =O(

√
nh3

dRn +
√

n/hdR
2
n +
√
h3
d/n) a.s.

=o(1) a.s.

By the fact that (g−1
n )′(t) = (g−1)′(t) + o(1), we obtain

An = − ĝ−1
I − g−1

n

(g−1)′
◦ g(t) + op

(
1√
nhd

)
.

Note that tn
P−→ g(t), (g−1

n + λ∗(ĝ−1
I − g−1

n ))
P−→ g−1, we

obtain

Bn1 =Op

(
1√
nhd

(
Rn

hd
+

R2
n

h3
d

))
= op

(
1√
nhd

)
,

Bn2 =Op

(
1

nhd

)
.

As a consequence, we obtain

ĝI(t)− gn(t) = − ĝ−1
I − g−1

n

(g−1)′
◦ g(t) + op

(
1√
nhd

)
,

and √
nhd {ĝI(t)− gn(t)−D(t)}

=−
√

nhd

(
ĝ−1
I − g−1

n

(g−1)′
◦ g(t) +D(t)

)
+ op(1)

=− g′(t)
√

nhd

{
(ĝ−1

I − g−1
n ) ◦ g(t) +D(t)

}
+ op(1)

d⇒N (0, s2(t)).

The second assertion follows by exactly the same arguments.

If lim
n→∞

hr

hd
= ∞,

h4
r

h3
d
= o(1) and logn

nhrh3
d
= o(1), then

nh9
r

h2
d

=

o(1), (logn)2

nhrh2
d

= o(1) and

√
nhrDn

=O

(√
nhrh2

dRn +
√

nhr/h2
dR

2
n +
√
hrh2

d/n

)
a.s.

=o(1) a.s.

By the fact that (g−1
n )′(t) = (g−1)′(t) + o(1), we obtain

An = − ĝ−1
I − g−1

n

(g−1)′
◦ g(t) + op

(
1√
nhr

)
.

Note that tn
P−→ g(t), (g−1

n + λ∗(ĝ−1
I − g−1

n ))
P−→ g−1, we

obtain

Bn1 =Op

(
1√
nhr

(
Rn

hd
+

R2
n

h3
d

))
= op

(
1√
nhr

)
,

Bn2 =Op

(
1

nhr

)
.

As a consequence, we obtain

ĝI(t)− gn(t) = − ĝ−1
I − g−1

n

(g−1)′
◦ g(t) + op

(
1√
nhr

)
.

and√
nhr {ĝI(t)− gn(t)−D(t)}

=−
√
nhr

(
ĝ−1
I − g−1

n

(g−1)′
◦ g(t) +D(t)

)
+ op(1)

=−
√
nhr

(
(ĝ−1

I − g−1
n ) ◦ g(t)+D(t)(g−1)′ ◦ g(t)

(g−1)′ ◦ g(t)

)
+ op(1)

=− g′(t)
√

nhr

{
(ĝ−1

I − g−1
n ) ◦ g(t) +D(t)

}
+ op(1)

d⇒N (0, s̃2(t)).
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