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Estimation and variable selection in generalized
partially nonlinear models with nonignorable
missing responses
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∗
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Based on the local kernel estimation method and propen-
sity score adjustment method, we develop a penalized like-
lihood approach to simultaneously select covariates and ex-
planatory variables in the considered parametric respondent
model, and estimate parameters and nonparametric func-
tions in generalized partially nonlinear models with nonig-
norable missing responses. An EM algorithm is proposed to
evaluate the penalized likelihood estimations of parameters.
The ICQ criterion is employed to select the optimal penalty
parameter. Under some regularity conditions, we show some
asymptotic properties of parameter estimators such as or-
acle property. It can be shown that the proposed local lin-
ear kernel estimator of the nonparametric component is an
estimator of a least favorable curve. The consistency of the
ICQ-based selection procedure is obtained. Simulation stud-
ies are conducted, and a real data set is used to illustrate
the proposed methodologies.
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1. INTRODUCTION

Generalized nonlinear model (GNM) is a natural exten-
sion of generalized linear models and nonlinear regression
models, GNM provides an effective tool for modeling non-
normal data such as count data and nonlinear relationship
between mean of response variable and its associated factors.
Over the past three decades, many studies have been done
on GNMs. For example, Jorgensen [1] discussed asymptotic
properties of maximum likelihood estimators of parameters
in GNMs. Cordeiro and Paula [2] gave a general Bartlett ad-
justment formula for the expected likelihood ratio statistics
in GNMs. Cox and Ma [3] developed asymptotic confidence
bands for a linear combination of parameters in GNMs.
Lindsey et al. [4] used GNMs to fit pharmacokinetic data.
Kosmidis and Firth [5] presented a more general family of
bias-reducing adjusted scores for a class of GNMs. Recently,
Turner and Firth [6] developed an R package to make sta-
tistical inference on GNMs. However, it is recognized that
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incorporating a nonparametric function within parametric
regression models is important for accommodating a possi-
ble inhomogeneity with respect to some covariates of interest
and addressing the curse of dimensionality (e.g., see [7, 8]).
Therefore, this paper considers a new model that is referred
to as a generalized partially nonlinear model (GPNM) by
introducing a nonparametric function into a GNM.

GPNMs retain the flexibility of nonparametric models
and the ease of interpretation of parametric models, and in-
clude a lot of semiparametric regression models such as par-
tially linear models [7, 9], generalized partially linear models
[10] and partially nonlinear models [8, 11, 12].

Missing data commonly occurs in many fields such as psy-
chological, educational, economical and biomedical studies
[13]. The potential reasons for missing data may include:
study drop out, subjects’ refusal to answer items on a ques-
tionnaire, or failing to attend a scheduled clinic visit. To
this end, many methods have been developed to analyze
semiparametric regression models with missing data. For
example, see [14, 15, 16, 17]. Their works are mainly fo-
cused on missing at random (MAR) assumption of missing
responses/covariates. However, in many applications, miss-
ing data is nonignorable in the sense that the reason for
missingness often depends on the missing values themselves
[13, 18]. Hence, this paper aims to develop an approach to
estimate parameters and unknown functions, and select im-
portant explanatory factors for predicting responses in GP-
NMs with nonignorable missing responses.

Variable selection is an important step in data analysis.
Many methods have been proposed to address variable se-
lection issue for parametric, nonparametric and semipara-
metric models. Traditional variable selection methods in-
clude: the stepwise regression and best subset selection as-
sociated with the Akaike information criterion (AIC) [19],
Bayesian information criterion (BIC) [20] and Deviance in-
formation criterion (DIC) [21]. They often suffer from insta-
bility and computationally intensive burden [22] when the
number of covariates is large. To address the issue, various
penalization-based methods have been developed to simul-
taneously estimate parameters and select important covari-
ates over the past years. For example, see the least absolute
shrinkage and selection operator (LASSO) [23], smoothly
clipped absolute deviation (SCAD) [24], adaptive LASSO
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(ALASSO) [25], least squares approximation [26], and the
folded concave penalty method [27]. These methods have re-
ceived a lot of attention in recent years. For example, see [28]
for semiparametric models; [29] for partially linear measure-
ment error models; [30] and [31] for semiparametric varying-
coefficient models; [32] for semiparametric mixed models;
[33, 34] for regression models with missing data and Cox
regression models with covariates MAR; [35] for partially
linear single-index models with longitudinal data. However,
to the best of our knowledge, there is not work done on auto-
matically and simultaneously selecting variables in GPNMs
with nonignorable missing responses.

Motivated by [24] and [25], we here develop an approach
to simultaneously estimate parameters and nonparametric
functions, and select covariates in a GPNM as well as a
respondent model. Our proposed method incorporates the
idea of the least-favorable curve [36, 37], local kernel estima-
tion method [38], and propensity score adjustment method
for nonignorable nonresponse [39]. The ICQ criterion [40] is
adopted to select the optimal penalty parameter. We also
study asymptotic properties of parameter estimators and
nonparametric function estimators, and the consistency of
the ICQ-based selection procedure under some regularity
conditions. The proposed method has the following merits.
First, it allows us to simultaneously maximize the penalized
likelihood function and estimate the penalty parameters us-
ing the local linear approximation algorithm. Second, com-
pared with the profile approach, the linear approximation
approach is computationally less intensive.

The rest of this paper is organized as follows. In Section 2,
we propose an estimation procedure for parameter and non-
parametric function in GPNMs with nonignorable missing
responses. Asymptotic properties of the resulting estimators
are studied in Section 2. Section 3 develops an EM algorithm
to implement the maximum penalized likelihood (MPL) es-
timation and select penalty parameters via the ICQ criterion
[40]. Also, asymptotic properties of the resulting MPL esti-
mators are investigated in Section 3. Simulation studies are
used to evaluate the finite sample performance of the pro-
posed estimators, and an example is illustrated in Section
4. Some discussions are given in Section 5. Technical details
are presented in the Appendix.

2. MODEL AND ESTIMATION METHOD

2.1 Model and notation

Consider a data set {(yi,xi, ti) : i = 1, . . . , n} with ob-
servations measured on n independent subjects, where yi is
response variable, xi = (xi1, . . . , xip)

T (p < n) is a p × 1
vector of covariates, and ti is the time measured for the
ith subject. Let y = (y1, . . . , yn)

T, x = (x1, . . . ,xn)
T and

T = (t1, . . . , tn)
T. It is assumed that given xi and ti, yi fol-

lows a one-parameter exponential family, whose probability
density function is

(1) p(yi|xi, ti; θi, φ) = exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
,

where θi is the canonical parameter, b(·) and c(·, ·) are
known continuously differentiable functions, and φ is a scale
parameter which is known or to be estimated. For simplicity,
it is assumed that φ is known throughout this paper. Model
(1) includes normal distribution, Poisson distribution and
Gamma distribution as its special cases. Following McCul-
lagh and Nelder [41], we assume that the systematic part of
the model satisfies

(2) ηi = G(μi) = f(xi,β) + g(ti), i = 1, . . . , n,

where μi is the conditional mean of yi (i.e., μi =
E(yi|xi, ti)), G(·) is a known strictly monotone differen-
tiable link function, f(xi,β) is a known continuously dif-
ferentiable nonlinear function in β, β = (β1, . . . , βp)

T is a
set of unknown parameters of interest defined in a com-
pact set B ⊂ Rp and associated with covariates xi, and g(·)
is a twice continuously differentiable smooth function on
some finite interval, for example, [0, 1]. The model defined
in Equations (1) and (2) is referred to as a GPNM.

Suppose that xi’s and ti’s are fully observed, while yi’s
are subject to missingness. Let δ = (δ1, . . . , δn)

T, where δi =
1 if yi is observed and δi = 0 if yi is missing. It is assumed
that δi and δj are independent for any i �= j, and δi de-

pends on yi, zi and ti such that πi = π(yi, zi, ti)
�
= Pr(δi =

1|yi, zi, ti). Here, zi is a subset of xi, i.e., xi = (zT
i ,v

T
i )

T

in which vi is regarded as a vector of instrument variables.
Thus, the missing mechanism defined above is nonignorable
[13], and the respondent model is identifiable. Following [18],
we consider the following missingness data mechanism

(3)
p(δ|y, z, T ;ϕ)=

∏n
i=1 p(δi|yi, zi, ti;ϕ)

=
∏n

i=1 π
δi
i (1− πi)

1−δi ,

where z = {z1, . . . , zn}. Generally, πi = π(yi, zi, ti;ϕ) can
be specified by the following logistic regression model

(4) logit(πi) = ϕ0 +ϕT

zzi + ϕtti + ϕyyi,

where logit(a) = log{a/(1 − a)}, and ϕ = (ϕ0,ϕ
T
z , ϕt, ϕy)

T

is a m× 1 (m < p+ 3) vector of unknown parameters.
For notational simplicity, let yo be a vector of the ob-

served response variables, ym be a vector of missing com-
ponents of y (i.e., y = {yo,ym}), Dc = {y,x, δ, T } be the
complete data set, Do = {yo,x, δ, T } be the observed data
set, and γ = {β,ϕ} be the unknown parameter set of in-
terest. Then, the complete data likelihood for Dc is given
by

p(Dc|γ)=
n∏

i=1

p(yi, δi|xi, ti;γ)

=
n∏

i=1

p(yi|xi, ti;β, φ)p(δi|yi, zi, ti;ϕ).
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2.2 Estimations of parameters and
nonparametric functions

Denote L(β, gβ(t)) =
∑n

i=1 Li(β, gβ(ti)) =
∑n

i=1{(yiθi −
b(θi))/φ + c(yi, φ)} in which ηi = G(μi) = f(xi,β) +
gβ(ti), where gβ(t) = g(β, t). Let Li,β(β, gβ(ti)) =
∂Li(β, gβ(ti))/∂β be the first-order partial derivative of the
log-likelihood function for the ith subject with respect to β.
Let Li,gβ (β, gβ(ti)) = ∂Li(β, gβ(ti))/∂gβ be the first-order
partial derivative of the log-likelihood function for the ith
subject with respect to gβ . Their corresponding second or-
der partial derivatives are denoted by Li,ββ(·), Li,βgβ (·) and
Li,gβgβ (·), respectively.

It is assumed that the nonparametric component g(·) is
an infinite-dimensional nuisance parameter and ti ∈ [0, 1].
Motivated by Severini and Wong [36] and Murphy and van
der Vaart [37], we define a curve β → g(β, t), which satisfies
g(β∗, t) = g∗(t), where β∗ and g∗(t) are the true values of β
and g(t), respectively. Let SM(β) = {g(β, t) : g(·, ·) is twice
smooth continuous on B × [0,1]} be a submodel. Clearly,
gβ(t) = g(β, t) ∈ SM(β). Similar to Fan et al. [38] and using
the propensity score adjusted (PSA) method of Riddles [39],
for any fixed β, the local kernel estimator ĝβ = ĝβ(t) of gβ(t)

and its first derivative ĝ
(1)
β = ∂ĝβ(t)/∂t can be obtained by

solving the following equation

(5) 0 =
1

n

n∑
i=1

δi
πi

Kh(ti − t)Li,gβ (β, ĝβ(ti))(1,
ti − t

h
)T,

where ĝβ(ti) = ĝβ + ĝ
(1)
β (ti − t), Kh(·) = K(·/h)/h in

which K(·) is a kernel function, h is a bandwidth. For the
above specified missingness data mechanism, πi is usually
unknown and can be estimated via some proper method.
Let ϕ̂ be a consistent estimator of ϕ. Then, replacing πi for

π̂i = πi(ϕ̂) in Equation (5), we can obtain ĝβ and ĝ
(1)
β by

solving the following equation

(6) 0 =
1

n

n∑
i=1

δi
π̂i

Kh(ti − t)Li,gβ (β, ĝβ(ti))(1,
ti − t

h
)T.

Based on the local kernel estimator ĝβ of gβ(t), the max-
imum likelihood estimator (MLE) γ̂ of γ can be obtained
by maximizing the following log-likelihood function

L(γ)=
n∑

i=1

{δilogp(yi, δi|xi, ti;γ)

+(1− δi) log
∫
p(yi, δi|xi, ti;γ)dyi}.

Generally, it is rather difficult to maximize the above
objective function with respect to γ due to an intractable
integral involved. To address the issue, we can adopt the
expectation-maximization (EM) algorithm [42] to evaluate
the MLE of γ. Following [42], the EM algorithm is composed
of two steps: one is the expectation step (E-step) and the
other is the maximization step (M-step). Given the value

γ(s) of γ at the s-th iteration, the E-step is to evaluate the
following Q-function:

(7) Q(γ|γ(s)) = Q1(β|γ(s)) +Q2(ϕ|γ(s)),

where

Q1(β|γ(s)) =
n∑

i=1

[δi log p(yi|xi, ti;β)

+(1− δi)Eyi|·{log p(yi|xi, ti;β)}]

in which Eyi|· represents the conditional expectation taken
with respect to the posterior probability density function
p(yi|xi, ti, δi;γ

(s)) of yi given (xi, ti, δi,γ
(s)), and

Q2(ϕ|γ(s)) =
n∑

i=1

[δi log p(δi|yi, zi, ti;ϕ)

+(1− δi)Eyi|·{log p(δi|yi, zi, ti;ϕ)}].

Clearly, it is not easy to evaluate the Q-function due
to the intractable integrals involved. Following Ibrahim,
Chen and Lipsitz [43], we can approximate the Q-function
via the Markov chain Monte Carlo algorithm. That is,
when yi is missing, we first generate M observations

{y(s,l)i : l = 1, . . . ,M} from p(yi|xi, ti, δi;γ
(s)) via the

Metropolis-Hastings (MH) algorithm for i = 1, . . . , n,
and then Q1(β|γ(s)) and Q2(ϕ|γ(s)) can be approximated
by

Q1(β|γ(s)) ≈ 1

M

M∑
l=1

n∑
i=1

{
y
(s,l)
i θi − b(θi)

φ
+ c(y

(s,l)
i , φ)

}
,

Q2(ϕ|γ(s)) ≈ 1

M

M∑
l=1

n∑
i=1

{δiϕ(s,l)
ωi − log(1 + exp(ϕ

(s,l)
ωi ))},

respectively, where ϕ
(s,l)
ωi = ϕTω

(s,l)
i in which ω

(s,l)
i =

(1, zT
i , ti, y

(s,l)
i )T, and y

(s,l)
i = yi when yi is observed. The de-

tails for implementing MH algorithm are given in Appendix.
The M-step involves maximizing Q1(β|γ(s)) and Q2(ϕ|γ(s))
with respect to β and ϕ, respectively. There are not ana-
lytic solutions to the following equations: ∂Q1(β|γ(s))/∂β =
0 and ∂Q2(ϕ|γ(s))/∂ϕ = 0. To this end, the Fisher’s
scoring algorithm can be employed to obtain their solu-
tions.

The above introduced EM algorithm can be implemented
by the following steps.

Step 0. Select an initial value γ̂(0) = (β̂
(0)T

, ϕ̂(0)T)T of γ,

where γ̂(0) is taken to be an estimate of γ obtained from
the completely observed data set. And set s = 0.

Step 1. Given γ̂(s) and t, ĝβ̂(s) and ĝ
(1)

β̂(s)
are evaluated by

solving the following equation:

0 =
1

n

n∑
i=1

δi

π̂
(s)
i

Kh(ti − t)Li,g
β̂(s)

(β̂
(s)

, ĝβ̂(s)(ti))(1,
ti − t

h
)T,
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where ĝβ̂(s)(ti) = ĝβ̂(s) + ĝ
(1)

β̂(s)
(ti − t) and π̂

(s)
i = πi(ϕ̂

(s)).

Step 2. Given ĝβ̂(s) = gβ̂(s)(t), β̂
(s+1)

and ϕ̂(s+1) are com-
puted by solving the following equations:

Q̇1(β) =
1

M

M∑
l=1

n∑
i=1

(y
(s,l)
i − μi){Ġ(μi)b̈(θi)}−1ḟi(β) = 0,

Q̇2(ϕ) =
1

M

M∑
l=1

n∑
i=1

{
δi −

exp(ϕTω
(s,l)
i )

1 + exp(ϕTω
(s,l)
i )

}
ω

(s,l)
i = 0,

respectively, via the Fisher’s scoring algorithm, where
μi = ḃ(θi) = db(θi)/dθi, Ġ(μi) = dG(μi)/dμi, b̈(θi) =
d2b(θi)/dθ

2
i , ḟi(β) = ∂f(xi,β)/∂β, and ηi = G(μi) =

f(xi,β) + gβ̂(s)(ti).

Step 3. Repeat steps 1 and 2 until the convergence of the
EM algorithm. The algorithm is monitored by the following

stopping rule: if maxj∈{1,...,p+m}|γ(s+1)
j −γ

(s)
j | ≤ c0, we claim

the convergence of the EM algorithm; otherwise, we repeat
steps 1 and 2, where γj is the jth component of γ and c0 is
some user-given sufficiently small constant.

2.3 Asymptotic properties

In this subsection, we investigate the consistency of the
local kernel estimators of gβ(t) and its derivative as well as
asymptotic properties of the MLE of γ. To this end, we first
consider the semiparametric efficiency and least-favorable
curve when there is not missing data. Following Severini
and Wong [36], any curve gβ = g(β, t) ∈ SM(β) is said to
be a least favorable curve if

(8)

E
{

∂
∂βL(β, gβ)

∂
∂βTL(β, gβ)

}
β=β∗

≤ E
{

∂
∂βL(β, g1β)

∂
∂βTL(β, g1β)

}
β=β∗

holds for any other smooth curve g1β ∈ SM(β) with g1β∗ =
gβ∗ , where β∗ is the true value of β. The left term in Equa-
tion (8) is referred to as the semiparametric information
bound. Under Assumption A given in the Appendix, we have

Lemma 2.1. A function g(β, t) ∈ SM(β) is a least favorable
curve if and only if

∂gβ∗

∂β
= −

Et[Lβgβ (β
∗, gβ∗)]

Et[Lgβgβ (β
∗, gβ∗)]

,

where Et[·] = E[·|T = t], Lβgβ (β, gβ) =
∑n

i=1 Li,βgβ (β, gβ)
and Lgβgβ (β, gβ) =

∑n
i=1 Li,gβgβ (β, gβ).

Theorem 2.1. Under Assumption A given in the Appendix,

the estimators ĝβ(t) and ĝ
(1)
β (t) obtained by solving equa-

tion (6) satisfy

(i) ĝβ(t)
a.s.−→ g(β, t), ĝ

(1)
β (t)

a.s.−→ ∂
∂tg(β, t);

(ii)
∂ĝβ(t)
∂β

a.s.−→ ∂g(β,t)
∂β ,

∂2ĝβ(t)
∂β∂βT

a.s.−→ ∂2g(β,t)
∂β∂βT .

Corollary 2.1. Suppose that the conditions given in The-
orem 2.1 hold. Thus, the proposed estimator ĝβ(t) of gβ is
an estimator of the least favorable curve when there is not
missing data.

Theorem 2.2. Under Assumption A given in the Appendix,
the asymptotic expansion of ĝβ(t) is given by

ĝβ(t)− gβ(t) =
h2

2 κ2(K)g(2)(β, t)

− 1
nfT(t)ψ(t)

n∑
i=1

δi
πi
Kh(ti − t)Li,gβ (β, gβ(ti))

+op{h2 + (nh)−1/2},

which leads to

(nh)1/2{ĝβ(t)− gβ(t)− h2

2 κ2(K)g(2)(β, t)}
D−→ N(0, μ0f

−1
T

(t)ψ−1(t)),

where κ2(K) =
∫
t2K(t)dt, g(2)(β, t) = ∂2gβ(t)/∂t

2,
μ0(t) =

∫
K2(t)dt, ψ(t) and fT(t) are defined in the Ap-

pendix.

From Theorem 2.2, we can define the bias of local kernel
estimator of nonparametric function: bias(ĝβ) = E{ĝ(β, t)−
g(β, t)} = h2

2 κ2(K)g(2)(β, t) + op{h2}, which shows that
the bias of local kernel estimator depends on the bandwidth
and kernel function. Particularly, if we replace Assumption
A(5) by nh2/ logn → ∞ and nh5 → 0, that is, if under-
smoothing is used, thus the bias term h2κ2(K)g(2)(β, t)/2

vanishes asymptotically [44] and (nh)1/2{ĝβ(t)− gβ(t)} D−→
N(0, μ0f

−1
T

(t)ψ−1(t)).
The bandwidth h should be appropriately selected to ob-

tain an efficient estimator ĝβ of gβ(t). The commonly used
data-driven methods include cross-validation (CV) and gen-
eralized cross-validation (GCV). However, these methods
are not easily implemented in the presence of missing data.
From Theorem 2.2, it is easily seen that the optimal rate
is n−1/5, we here adopt a simple bandwidth h = cσ̂T n

−1/5,
where c is constant and σ̂T is the standard deviation of the
fixed design time points in T .

Theorem 2.3. Under Assumptions A(1) and B(1)–B(4)
given in the Appendix, we have

n1/2(γ̂ − γ∗)
D−→ N(0, A(γ∗)−1B(γ∗)A(γ∗)−1),

where γ∗ is the true value of γ, A(γ∗) and B(γ∗) are defined
in Assumption B(4).

3. VARIABLE SELECTION

3.1 EM algorithm for maximizing the
penalized likelihood

In this subsection, we simultaneously consider variable
selection and parameter estimation problem based on some
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proper penalized likelihood function. To this end, we con-
sider the following penalized log-likelihood function

PL(γ|λ)=
n∑

i=1

{δilogp(yi, δi|xi, ti;γ)

+(1− δi) log
∫
p(yi, δi|xi, ti;γ)dyi}

−n
p∑

j=1

pλβ,j
(|βj |)− n

m∑
k=1

pλϕ,k
(|ϕk|),

where λ = (λβ,1, . . . , λβ,p, λϕ,1, . . . , λϕ,m)T, λβ,j is the
penalty parameter corresponding to the jth coefficient βj

in β for j = 1, . . . , p, while λϕ,k represents the penalty pa-
rameter corresponding to the kth coefficient ϕk in ϕ for
k = 1, . . . ,m, and pλβ,j

(·) and pλϕ,k
(·) are user-specified

penalty functions, which are nonnegative, nondecreasing
and differentiable on the interval (0,∞) [24, 25]. Generally,
one can take the penalty function to be the LASSO penalty,
SCAD penalty [24, 25] and MC penalty [45]. It is rather
difficult to simultaneously select variables and estimate pa-
rameters based on the above penalized log-likelihood func-
tion PL(γ|λ) due to an intractable integral involved. In this
case, a Monte Carlo EM algorithm is employed to evalu-
ate the maximum penalized likelihood estimation (MPLE)
(denoted as γ̂λ) of γ. Following the idea of EM algorithm,
given the value γ(s) of γ at the sth iteration, the E-step is
to evaluate the following penalized Q-function

(9)

Qλ(γ|γ(s))

=Q(γ|γ(s))− n
p∑

j=1

pλβ,j
(|βj |)− n

m∑
k=1

pλϕ,k
(|ϕk|)

=Q1(β|γ(s)) +Q2(ϕ|γ(s))

−n
p∑

j=1

pλβ,j
(|βj |)− n

m∑
k=1

pλϕ,k
(|ϕk|)

�
=Q1,λ(β|γ(s)) +Q2,λ(ϕ|γ(s)),

where

Q1,λ(β|γ(s)) = Q1(β|γ(s))− n

p∑
j=1

pλβ,j
(|βj |)

and

Q2,λ(ϕ|γ(s)) = Q2(ϕ|γ(s))− n
m∑

k=1

pλϕ,k
(|ϕk|)

in which Q1(β|γ(s)) and Q2(ϕ|γ(s)) are defined in Equa-
tion (7).

The M-step is to maximize Qλ(γ|γ(s)), which is a rather
difficult task because Qλ(γ|γ(s)) is a non-differentiable and
nonconcave function of γ. Following Fan and Li [24], this
issue can be addressed by maximizing the second-order
Taylor expansions of Q1,λ(β|γ(s)) and Q2,λ(ϕ|γ(s)) at β(s)

and ϕ(s), respectively. Thus, the problem of maximizing
Q1,λ(β|γ(s)) and Q2,λ(ϕ|γ(s)) with respect to β and ϕ re-
duces to an optimization problem of the penalized weighted

least squares regression, which can be implemented via
some appropriate optimization algorithm such as the lo-
cal quadratic approximation algorithm [24], local linear ap-
proximation algorithm [46] and best convex minorization-
maximization algorithm [47].

Let β(s+1) = argmaxβQ1,λ(β, |γ(s)) and ϕ(s+1) =

argmaxϕQ2,λ(ϕ|γ(s)). Note that γ(s+1) is evaluated by max-

imizing the second-order Taylor expansions of Q1,λ(β|γ(s))
and Q2,λ(ϕ|γ(s)), respectively, but it is not the maximizer
of Qλ(γ|γ(s)) with respect to γ. To this end, a hybrid algo-
rithm combining the local linear approximation algorithm of
Zou and Li [46] and the expectation conditional maximiza-
tion algorithm [48] is developed to find γ(s+1) such that
Qλ(γ

(s+1)|γ(s)) > Qλ(γ
(s)|γ(s)). Iterating the above proce-

dure until the convergence of the hybrid algorithm yields
the desirable maximum penalized likelihood estimation γ̂λ

of γ.

3.2 Penalty parameter selection

To ensure that the resultant estimator γ̂λ of γ has the
well-known oracle property, it is necessary to appropri-
ately select the penalty parameter λ. The commonly used
criterion for selecting the penalty parameter includes the
generalized cross-validation (GCV) and Bayesian informa-
tion criterion (BIC), which are the data-driven methods.
These criteria are not easily implemented in the presence
of missing data because the observed data likelihood func-
tion involves an intractable integral. In addition, the GCV
method may lead to a significant overfitting even in lin-
ear models [14]. Hence, we here adopt the ICQ criterion
[40] to select the penalty parameter λ. Following [40], the
optimal penalty parameter γ can be obtained by minimiz-
ing

(10) ICQ(λ) = −2Q(γ̂λ|γ̂) + cn(γ̂λ),

where γ̂ is the MLE of γ introduced in Section 2, and cn(γ)
is a function of the data and the fitted model. Different
selection of cn(γ) leads to different criterion. For example,
when cn(γ) = 2dn, where dn is the total number of unknown
parameters, the above defined ICQ criterion reduces to the
AIC; when cn(γ) = dnlog(n), the ICQ criterion becomes the
BIC. For a given λ, it is easy to implement ICQ(λ) because
the Q-function is a direct byproduct of the above introduced
hybrid algorithm output.

3.3 Theoretical properties

In this subsection, we establish asymptotic properties of
the penalized likelihood estimators and the consistency of
the penalty parameter selection procedure based on the ICQ

criterion.
Let Sβ = {j : βj �= 0} be the index set of nonzero com-

ponents of the true value β∗ of β, and Sϕ = {k : ϕk �= 0} be
the index set of nonzero components of the true value ϕ∗ of
ϕ. Denote the cardinalities of Sβ and Sϕ as p1 = |Sβ | and
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q1 = |Sϕ|, respectively, which are usually unknown. Then,
SI = Sβ

⋃
Sϕ is the index set of the true model. With-

out loss of generality, we assume β = (βT

(1),β
T

(2))
T, where

β(1) and β(2) correspond to the nonzero and zero compo-
nents of β with the dimensions being p1 and p2 = p − p1,
respectively, which indicates that β∗ has the following de-
composition β∗ = (β∗T

(1),0
T)T. The corresponding decom-

position of β̂λ can be written as β̂λ = (β̂
T

(1)λ, β̂
T

(2)λ)
T.

Similarly, we assume that ϕ has the following decomposi-
tion: ϕ = (ϕT

(1),ϕ
T

(2))
T, where ϕ(1) and ϕ(2) correspond

to the nonzero and zero components of ϕ with the di-
mensions being q1 and q2 = m − q1, respectively, which
shows that ϕ∗ has the following form ϕ∗ = (ϕ∗T

(1),0
T)T, and

the corresponding decomposition of ϕ̂λ can be written as
ϕ̂λ = (ϕ̂T

(1)λ, ϕ̂
T

(2)λ)
T. Let ϑ = (βT

(1),ϕ
T

(1))
T, and its corre-

sponding penalized likelihood estimator and true value are

denoted as ϑ̂λ = (β̂
T

(1)λ, ϕ̂
T

(1)λ)
T and ϑ∗ = (βT∗

(1),ϕ
T∗
(1))

T, re-
spectively.

Theorem 3.1. Under Assumptions A(1) and B given in
the Appendix, we have

(i) (Consistency) γ̂λ − γ∗ = Op(n
−1/2) as n → ∞;

(ii) (Sparsity) Pr(β̂(2)λ = 0, ϕ̂(2)λ = 0) → 1;

(iii) (Asymptotic normality) n1/2{ϑ̂λ − ϑ∗ + (Ã(ϑ∗) +

J(ϑ∗))−1h(ϑ∗)} D→ N(0,Σ(ϑ∗)), where Ã(ϑ∗),
J(ϑ∗), h(ϑ∗) and Σ(ϑ∗) are defined in the Appendix.

Theorem 3.1 indicates that (i) γ̂λ is a root-n consistent
estimator of γ if the penalty parameter vector λ is appro-
priately selected; (ii) γ̂λ possesses the sparsity property, i.e.,

β̂(2)λ = 0 and ϕ̂(2)λ = 0 with probability tending to 1 as

n → ∞; (iii) (β̂
T

(1)λ, ϕ̂
T

(1)λ)
T is asymptotically distributed as

the normal distribution.

To investigate whether the ICQ(λ) criterion can consis-
tently select the correct model, we define the candidate
model as Sλ = {j : β̂λj �= 0}

⋃
{k : ϕ̂λk �= 0} based on

the MPLE γ̂λ of γ for a given λ ∈ Rp+m. Thus, Sλ might
be either an underfitted model or an overfitted model or a
correctly specified model, which correspond to the follow-
ing three disjoint regions: Ru = {λ ∈ Rp+m : Sλ �⊃ SI},
Ro = {λ ∈ Rp+m : Sλ ⊃ SI and Sλ �= SI} and
Rc = {λ ∈ Rp+m : Sλ = SI}, respectively. We can al-
ways choose a reference penalty parameter sequence {λn ∈
Rp+m}∞n=1 satisfying the conditions given in Theorem 3.1
so that Sλn = SI a.s. [33]. Following Ibrahim, Zhu and
Tang [40], we can use dICQ(λ2,λ1) = ICQ(λ2)− ICQ(λ1) =
2Q(γ̂λ1

|γ̂) − 2Q(γ̂λ2
|γ̂) + cn(γ̂λ2

) − cn(γ̂λ1
) to select the

better model in terms of the following criterion: under the
assumption Sλ2 ⊃ Sλ1 , if dICQ(λ2,λ1) > 0, we select the
penalty parameter λ1, otherwise λ2 is selected.

Define δQ(λ1,λ2) = E{Q(γ∗
Sλ1

|γ∗)} − E{Q(γ∗
Sλ2

|γ∗)}
and δc(λ2,λ1) = cn(γ̂λ2

) − cn(γ̂λ1
) in which γ∗

S =
argsupγ:γj �=0,j∈SE{Q(γ|γ∗)}.

Theorem 3.2. Suppose that Sλ1 is a subset of Sλ2 . Un-
der Assumptions A(1) and B in the Appendix, we have the
following results.

(i) If for all Sλ �⊃ SI , liminfnδQ(λ,0)/n > 0 and
δc(λ,0) = op(n), thus dICQ(λ,0) > 0 in probability
for all Sλ �⊃ SI ;

(ii) If E{Q(γ∗
Sλ1

|γ̂)} − E{Q(γ∗
Sλ2

|γ̂)} = Op(n
1/2) and

Q(γ̂λr
|γ̂) − E{Q(γ∗

Sλr
|γ̂)} = Op(n

1/2) for r =

1, 2, thus dICQ(λ2,λ1) > 0 in probability as

n−1/2δc(λ2,λ1)
p−→ ∞;

(iii) If Q(γ̂λ1
|γ̂)−Q(γ̂λ2

|γ̂) = Op(1), thus dICQ(λ2,λ1) >

0 in probability as δc(λ2,λ1)
p→ ∞.

Theorem 3.2(i) indicates that ICQ(λ) selects all the sig-
nificant covariates with probability 1 for any Sλ �⊃ SI .
Generally, the widely used criterion such as the BIC cri-
terion ĉn(γ) = dim(γ)log(n) and AIC criterion ĉn(γ) =
2dim(γ) satisfy the condition δc(λ,0) = op(n). The condi-
tion liminfnδQ(λ,0)/n > 0 is used to elucidate the effect of
the underfitted model [49] and to ensure that the ICQ cri-
terion can select a better model with large E{Q(γ∗

S |γ∗)}.
By Theorem 3.2(ii) and (iii), if λ1 and λ2 have the same

average n−1E[Q(γ∗
Sλ

|γ∗)], then the ICQ criterion selects the
optimal model Sλ1 when δc(λ2,λ1) increases to ∞ at a cer-
tain rate. For example, when Sλ1 ⊂ Sλ2 , since the BIC crite-
rion δc(λ2,λ1) = {dim(γ̂Sλ2

) − dim(γ̂Sλ1
)}log(n) increases

to ∞ at a rate log(n), Sλ1 is thus selected. However, the AIC
criterion δc(λ2,λ1) = 2{dim(γ̂Sλ2

) − dim(γ̂Sλ1
)} does not

satisfy the above mentioned condition, then the model se-
lected by the AIC criterion tends to be an overfitted model.
Thus, we extend the results given in Garcia, Ibrahim and
Zhu [33, 34] and Ibrahim et al. [50] to our considered GP-
NMs with nonignorable missing responses.

4. NUMERICAL EXAMPLES

In this section, simulation studies were conducted to in-
vestigate the finite sample performance of the above pro-
posed methodologies, and an example from the AIDS Clin-
ical Trials Group was used to illustrate the preceding pro-
posed methodologies.

4.1 Simulation studies

In the first simulation study, for i = 1, . . . , n, covari-
ates xij ’s were independently generated from the standard
normal distribution N(0, 1) for j = 1, . . . , 8, ti’s were inde-
pendently simulated from the uniform distribution U(0, 1),
yi’s were independently drawn from the normal distribu-
tion N(μi, σ

2) with μi = exp(xT
i β) + g(ti) and σ2 = 1,

where g(t) = cos(3πt) and xi = (xi1, . . . , xi8)
T. Clearly, the

above generated data set was from a GPNM. Here, the true
value of β was set to be β∗ = (0.5, 0.5, 0, 0, 0.5, 0, 0, 0)T,
which indicated that there were three non-zero coefficients
and five zero coefficients in β. To create missing data,
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Figure 1. True curve of g(t) against its estimated curve for
n = 75 (top left panel), 100 (top right panel) and 200

(bottom panel) in the first simulation study.

we considered the following missingness data mechanism:
logit(πi) = ϕ0 + ϕ1xi3 + ϕ2xi4 + ϕ3yi, and took the true
value of ϕ = (ϕ0, ϕ1, ϕ2, ϕ3)

T to be ϕ∗ = (1.2, 0, 0, 0.5)T,
which implied that there were two zero coefficients and two
non-zero coefficients in ϕ, where πi = Pr(δi = 1|yi, zi) in
which δi is the missing indicator for yi, and zi = (xi3, xi4)

T.
Here, we considered three different numbers of observations
(e.g., n = 75, 100 and 200). The average missing proportion
was about 15.7%.

For each of 100 data sets generated above, we used the
above introduced EM algorithm together with the MH al-
gorithm to evaluate estimates of unknown parameters in β
and nonparametric function g(t). To approximate Q func-
tion in implementing the E-step of EM algorithm, we gen-
erated 1000 observations (i.e., M = 1000) from the condi-
tional distribution p(yi|xi, ti, δi;β,ϕ) of missing yi via the
MH algorithm. For the MH algorithm, we took a normal
proposal distribution with σ2

y = 16, giving an average ac-
ceptance rate 0.303. To estimate nonparametric function, we
took the kernel function to be K(u) = (2π)−1/2exp(−u2/2)
and set the bandwidth h to be cσ̂T n

−1/5, where c was taken
to be 0.2, and σ̂T was the standard deviation of observations
{ti : i = 1, . . . , n}.

Figure 1 plotted the true value of g(t) against its esti-
mated value for n = 75, 100 and 200. Examination of Figure
1 showed that the above proposed nonparametric estimation
procedure was efficient in the sense that the estimated value
of g(t) fitted its true value well. Parameter estimations were
presented in Table 1, where ‘Bias’ was the absolute differ-
ence between the true value and the mean of the estimates
based on 100 replications. ‘RMS’ was the root mean square
between the estimates based on 100 replications and its true
value, and ‘SD’ was the standard deviation of the estimates
based on 100 replications. Inspection of Table 1 showed that

Table 1. Performance of MLEs of parameters in the first
simulation study

n = 75 n = 100 n = 200
Par. Bias RMS SD Bias RMS SD Bias RMS SD

β1 0.011 0.131 0.130 0.004 0.070 0.070 0.001 0.038 0.038
β2 0.005 0.118 0.118 0.009 0.072 0.072 0.005 0.042 0.041
β3 0.006 0.110 0.110 0.004 0.077 0.077 0.003 0.040 0.040
β4 0.011 0.104 0.103 0.007 0.080 0.079 0.003 0.050 0.050
β5 0.007 0.088 0.088 0.014 0.069 0.068 0.004 0.043 0.043
β6 0.002 0.103 0.103 0.009 0.080 0.080 0.002 0.044 0.044
β7 0.003 0.111 0.111 0.009 0.086 0.085 0.005 0.047 0.047
β8 0.015 0.106 0.106 0.008 0.072 0.071 0.002 0.043 0.043
ϕ0 0.168 0.459 0.427 0.153 0.409 0.379 0.092 0.211 0.190
ϕ1 0.006 0.353 0.353 0.001 0.351 0.351 0.026 0.213 0.211
ϕ2 0.036 0.380 0.378 0.017 0.371 0.378 0.001 0.225 0.225
ϕ3 0.010 0.372 0.371 0.035 0.343 0.341 0.054 0.165 0.156

(i) MLEs of β and ϕ were reasonably accurate in the sense
that almost all the Bias values of parameters were less than
0.1, and the RMS values of parameters were quite close to
their corresponding SD values; (ii) increasing sample size
improved the accuracy of parameter estimation as expected.

Also, for each of 100 data sets generated above, the above
introduced EM algorithm and variable selection procedure
together with (i) the SCAD penalty function (denoted as
EM-SCAD method) and (ii) the ALASSO penalty func-
tion (denoted as EM-ALASSO method) were used to eval-
uate the MPL estimates of parameters in β and ϕ and
select important covariates. Following Fan and Li [24], we
took the SCAD penalty of the form: ṗλ(|γ|) = λI(|λ| ≤
λ) + (aλ−|γ|)+

(a−1) I(|γ| > λ) for |γ| > 0, where ṗλ(|γ|) =

dpλ(γ)/dγ, I(·) was an indicator function, f+ = max{f, 0}
and a was taken to be 3.7. For the EM-SCAD method,
we set λβ,j = λ01 for j = 1, . . . , 8 and λϕ,k = λ02 for
k = 1, . . . , 4. Following Zou [25], the ALASSO penalty

functions were taken to be pλβ,j
(|βj |) = λ01|βj |/|β̂j |τ and

pλϕ,k
(|ϕk|) = λ02|ϕk|/|ϕ̂k|τ , where β̂j and ϕ̂k were MLEs

of βj and ϕk, respectively, and τ > 0 was set to be 1. To
evaluate ICQ, the BIC criterion cn(γ) = dim(γ)log(n) was
here used. Table 2 presented the average number of zero
coefficients correctly identified to be zero (i.e., the column
labeled ‘Correct’ in Table 2) and the average number of
nonzero coefficients incorrectly detected to be zero (i.e., the
column labeled ‘Incorrect’ in Table 2). For comparison, Ta-
ble 2 also depicted the performance of the oracle estimators
of parameters.

To investigate the finite sample performance of the
proposed MPL estimators, we calculated model error
ME(β̂λ) = (β̂λ−β∗)TE(xxT)(β̂λ−β∗) for each of 100 MPL

estimates β̂λ. Since there was not a closed form of model er-
ror for ϕ̂λ, we approximated model error of ϕ̂λ via Monte
Carlo samples. To compare the performance of the proposed
MPL estimator and MLE, we calculated the relative model
error of MPL estimator to MLE for parameter vector γ via
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Table 2. Simulation results for variable selection in the first simulation study

β̂λ with NMAR(Complete Case) ϕ̂λ

MRME # of 0 coeff. MRME # of 0 coeff.
n Meth. (%) C IC (%) C IC

75 MS 98.78(89.60) 4.49(4.55) 0.13(0.09) 79.16 1.80 0.05
MA 41.99(37.71) 4.82(4.93) 0.08(0.04) 78.03 1.66 0.21
MO 23.23(22.65) 5.00(5.00) 0.00(0.00) 57.22 2.00 0.00

100 MS 93.20(96.22) 4.46(4.46) 0.01(0.00) 75.10 1.73 0.03
MA 42.38(36.59) 4.90(4.92) 0.01(0.00) 83.10 1.76 0.18
MO 16.43(16.15) 5.00(5.00) 0.00(0.00) 64.53 2.00 0.00

200 MS 85.52(85.31) 4.81(4.81) 0.00(0.00) 91.69 1.85 0.00
MA 27.35(29.32) 4.93(4.97) 0.00(0.00) 80.15 1.80 0.03
MO 23.29(23.76) 5.00(5.00) 0.00(0.00) 68.36 2.00 0.00

Note: ‘MS’ denotes the SCAD method, ‘MA’ represents the ALASSO method, ‘MO’ represents the Oracle method.
‘C’ represents the average number of zero coefficients correctly identified to be zero for 100 replications,

‘IC’ denotes the average number of nonzero coefficients incorrectly detected to be zero for 100 replications.

RME=ME(γ̂λ)/ME(γ̂). The median of the relative model
errors (MRME) for 100 simulated datasets for the SCAD
and ALASSO penalty functions were given in Table 2.

Examination of Table 2 showed that (i) the proposed
MPL estimator performed better than the MLE regardless
of sample sizes and the adopted penalty functions because
all the MRME values were less than 1; (ii) for β̂λ, the MPL
estimators obtained under the complete case assumption
performed as good as those obtained under nonignorable
missing assumption, the EM-ALASSO method behaved bet-
ter than the EM-SCAD method regardless of the nonignor-
able missing or complete case assumptions, and the former
significantly reduced model error regardless of sample sizes;
(iii) for ϕ̂λ, the SCAD method performed as similar as the
ALASSO when sample size is 75 and 100; while the SCAD
method outperformed the ALASSO method when sample
size is 200; (iv) the performance of the ALASSO method
was expected to be as good as that of the oracle estimator
as sample size n increases (e.g., n = 200).

In the second simulation study, 100 data sets {yi :
i = 1, . . . , n} were generated from the Poisson distri-
bution Poisson(μi) with the conditional mean satisfying
log(μi) = exp(xT

i β) + g(ti), where xi = (xi1, . . . , xi8)
T and

g(t) = cos(4πt). For j = 1, . . . , 8, covariates xij ’s were inde-
pendently generated from the standard normal distribution
N(0, 1). For i = 1, . . . , n, ti’s were independently simulated
from the uniform distribution U(0, 1). The missingness data
mechanism was logit(πi) = ϕ0+ϕ1xi3+ϕ2xi4+ϕ3xi5+ϕ4yi,
where πi = Pr(δi = 1|yi, zi) in which zi = (xi3, xi4, xi5)

T.
The true values of β and ϕ = (ϕ0, ϕ1, ϕ2, ϕ3, ϕ4)

T were
taken to be β∗ = (0.5, 0.5, 0, 0, 0.5, 0, 0, 0)T and ϕ∗ =
(1, 0.7, 0, 0, 0.3)T, respectively, which indicated that there
were five zero coefficients in β∗ and two zero coefficients
in ϕ∗. We considered n = 150, 200 and 300. The average
missing proportion was about 13.94%.

Similarly, for each of the above generated 100 data sets,
the above proposed EM algorithm and variable selection

Table 3. Performance of MLEs of parameters in the second
simulation study

n = 150 n = 200 n = 300
Par. Bias RMS SD Bias RMS SD Bias RMS SD

β1 0.007 0.015 0.014 0.009 0.015 0.012 0.010 0.014 0.010
β2 0.012 0.021 0.017 0.009 0.015 0.012 0.010 0.013 0.009
β3 0.002 0.017 0.017 0.003 0.013 0.013 0.002 0.012 0.011
β4 0.002 0.018 0.018 0.002 0.014 0.013 0.003 0.013 0.013
β5 0.010 0.017 0.014 0.009 0.014 0.011 0.009 0.013 0.010
β6 0.002 0.017 0.017 0.001 0.015 0.015 0.004 0.011 0.010
β7 0.003 0.018 0.017 0.003 0.015 0.014 0.005 0.011 0.010
β8 0.002 0.018 0.018 0.004 0.011 0.010 0.002 0.011 0.011
ϕ0 0.023 0.496 0.495 0.103 0.355 0.340 0.027 0.303 0.302
ϕ1 0.040 0.356 0.353 0.082 0.286 0.274 0.007 0.233 0.233
ϕ2 0.012 0.337 0.336 0.038 0.259 0.256 0.007 0.185 0.185
ϕ3 0.008 0.344 0.344 0.049 0.258 0.254 0.012 0.223 0.223
ϕ4 0.031 0.169 0.166 0.009 0.127 0.127 0.010 0.084 0.084

procedure were used to evaluate the MLEs and MPL es-
timates of parameters in β and ϕ, and select the important
covariates. The settings given in the first simulation study
were used except for σ2

y = 82 in the proposal distribution
for generating missing values of yi’s, which leaded to the
average acceptance rate 0.257, and c = 0.15 in setting the
bandwidth.

Figure 2 plotted the true curve of g(t) against its esti-
mated curve for 100 replications. From Figure 2, we ob-
served that the estimated value of g(t) fitted its true value
well. The MLEs of parameters were presented in Table 3.
Examination of Table 3 indicated that (i) MLEs of β and
ϕ were reasonably accurate in the sense that their corre-
sponding Bias values were less than 0.1, and RMS values
were quite close to their corresponding SD values for β and
ϕ; (ii) increasing sample size improved the accuracy of pa-
rameter estimation as expected.

Table 4 presented the median of the relative model er-
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Table 4. Simulation results for variable selection in the second simulation study

β̂λ with NMAR(Complete Case) ϕ̂λ

MRME # of 0 coeff. MRME # of 0 coeff.
n Meth (%) C IC (%) C IC

150 MS 88.5(80.8) 4.06(4.03) 0.03(0.03) 98.2 1.10 0.11
MA 69.2(55.0) 4.80(4.78) 0.01(0.00) 93.3 1.55 0.20
MO 22.4(22.2) 5.00(5.00) 0.00(0.00) 65.2 2.00 0.00

200 MS 94.0(98.7) 4.15(4.14) 0.01(0.01) 113.6 1.49 0.03
MA 83.2(51.0) 4.94(4.84) 0.00(0.00) 99.9 1.80 0.08
MO 28.5(30.6) 5.00(5.00) 0.00(0.00) 66.8 2.00 0.00

300 MS 100.0(100.0) 3.65(3.70) 0.00(0.00) 124.0 1.30 0.01
MA 81.2(92.3) 4.66(4.71) 0.00(0.00) 106.8 1.76 0.04
MO 39.7(41.4) 5.00(5.00) 0.00(0.00) 74.3 2.00 0.00

Note: ‘MS’ denotes the SCAD method, ‘MA’ represents the ALASSO method, ‘MO’ represents the Oracle method.
‘C’ represents the average number of zero coefficients correctly identified to be zero for 100 replications,

‘IC’ denotes the average number of nonzero coefficients incorrectly detected to be zero for 100 replications.

Figure 2. True curve of g(t) against its estimated curve for
n = 150 (top left panel), 200 (top right panel) and 300

(bottom panel) in the second simulation study.

rors (MRME) for 100 replications, and the average num-
bers of zero coefficients correctly identified to be zero and
nonzero coefficients incorrectly detected to be zero. Exami-
nation of Table 4 showed that (i) for β̂λ, the MPL estimates
under nonignorable missing assumption outperformed those
under the complete case assumption, the EM-ALASSO es-
timates performed better than the MLEs regardless of sam-
ple sizes, the complete case assumptions, and the adopted
penalty functions because all the MRME values were less
than 1; the EM-ALASSO estimates outperformed the MLEs
for n = 150 and 200, while the EM-SCAD estimates per-
formed the same good as the MLEs for n = 300; (ii) for
ϕ̂λ, the MPL estimate performed better than the MLE
for n = 150 regardless of the adopted penalty functions,
the EM-ALASSO estimate performed the same good as
the MLE for n = 200, the MLE outperformed the EM-

Figure 3. True curve of g(t) against its estimated curve for
n = 100 (left panel), and 150 (right panel) in the third

simulation study.

SCAD estimate for n = 200, the MLE outperformed the
MPL estimate regardless of the adopted penalty functions
for n = 300; (iii) for both β̂λ and ϕ̂λ, the ALASSO method
behaved better than the SCAD procedure regardless of sam-
ple sizes.

To investigate the effect of missing proportion, we con-
ducted the third simulation study. In this simulation study,
100 data sets {(yi,xi, ti, δi) : i = 1, . . . , n} were gener-
ated as in the second simulation study except for g(t) =
cos(3πt), and logit(πi) = ϕ0 + ϕ1xi3 + ϕ2xi4 + ϕ3yi, where
πi = Pr(δi = 1|yi, zi) and zi = (xi3, xi4)

T. The true
values of β and ϕ = (ϕ0, ϕ1, ϕ2, ϕ3)

T were taken to be
β∗ = (0.5, 0.5, 0, 0, 0.5, 0, 0, 0)T and ϕ∗ = (−1.2, 0, 0, 0.5)T,
respectively. Here, we considered n = 100 and n = 150. The
average missing proportion was about 36.7%. We calculated
the MLEs of parameters via EM algorithm with the same
settings as in the first simulation study except for σ2

y = 62,
giving an average acceptance rate of 0.313, and c = 0.3 in
selecting the bandwidth. Figure 3 plotted the true curve of
g(t) against its estimated curve for 100 replications. Exami-
nation of Figure 3 indicated that the estimated curve of g(t)
fitted its true curve well. The MLEs of β and ϕ were given
in Table 5. Comparing Table 3 and Table 5, we obtained the
same observations, which showed that there was not effect
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Table 5. Performance of MLEs of parameters in the third
simulation study

n = 100 n = 150
Par. Bias RMS SD Bias RMS SD

β1 0.008 0.029 0.027 0.009 0.023 0.021
β2 0.008 0.026 0.025 0.010 0.019 0.016
β3 0.001 0.030 0.030 0.003 0.020 0.020
β4 0.001 0.028 0.028 0.004 0.018 0.018
β5 0.007 0.027 0.025 0.011 0.024 0.021
β6 0.005 0.022 0.022 0.002 0.020 0.020
β7 0.007 0.026 0.025 0.002 0.015 0.015
β8 0.004 0.026 0.026 0.002 0.017 0.016
ϕ0 0.130 0.614 0.600 0.046 0.400 0.398
ϕ1 0.006 0.312 0.312 0.002 0.269 0.269
ϕ2 0.003 0.315 0.315 0.000 0.228 0.228
ϕ3 0.048 0.228 0.222 0.006 0.142 0.142

of missing proportions on the performance of the MLEs of
parameters.

Table 6 presented the results of variable selection corre-
sponding to Table 4. Examination of Table 6 showed that
(i) for β̂λ, the MPL estimators performed better than the
MLEs regardless of sample sizes and the adopted penalty
functions because all the MRME values were less than 1;
(ii) for ϕ̂λ, the EM-ALASSO estimators outperformed the
MLEs regardless of sample sizes, but the EM-SCAD esti-
mation procedure performed as good as the MLE method
for n = 100, and the MLE method outperformed the EM-
SCAD estimation procedure for n = 150; (iii) for β̂λ and
ϕ̂λ, the ALASSO method performed better than the SCAD
method. The above results indicated that the proposed esti-
mation method and variable selection procedure can be used
to the situation where the nonignorable missing proportion
was relatively high.

4.2 A real data

In this subsection, a data set from AIDS Clinical Tri-
als Group Protocol (ACTG175) [51] was used to illus-
trate the proposed methodologies. In this clinical trail,

2139 HIV-infected patients were randomized into four
groups to receive monotherapy (ZDV) or combined ther-
apy (ADV+didanosine, ZDV+zalcitabine, and didanosine).
The data set has been analyzed by Ding and Wang [52]
when comparing the treatment effect of monotherapy and
combined therapy for male patients. Inspired by Ding and
Wang [52], we only used the data set from the monother-
apy treatment for 100 female patients to illustrate the pro-
posed parameter estimation procedure and covariate selec-
tion method. To wit, our main objective is to simultaneously
estimate parameters in the considered model and select im-
portant factors leading to missingness of responses and im-
portant explanatory factors having significant effects on the
CD4 cell count at 96±5 weeks, whose decrease means the po-
tential to develop the acquired immunodeficiency syndrome
(AIDS). To this end, similar to Ding and Wang [52], we took
the CD4 cell count at 96±5 weeks (CD496, y) to be response
variable, regarded age as the time (i.e, variable t) measured,
and took the following five characteristics: weight (x1), CD4
cell counts at baseline (CD40, x2), CD4 cell counts at 20±5
weeks (CD420, x3), CD8 cell counts at baseline (CD80, x4)
and CD8 cell counts at 20 ± 5 weeks (CD820, x5) as five
covariates. Due to some reasons, response variable y was
subject to missingness, while five covariates were completely
observed. The missing proportion of responses was 42%.

To use the proposed method to select covariates and miss-
ing data mechanism, we considered the following GPNM:
yi ∼ IG(μi, φ) with log(μi) = exp(xT

i β) + g(ti) in which
xi = (1, xi1, xi2, xi3, xi4, xi5)

T and β = (β0, β1, . . . , β5)
T,

and the following missingness data mechanism: logit(πi) =
ϕ0 + ϕ1xi4 + ϕ2xi5 + ϕtti + ϕyyi, where πi = Pr(δi =
1|yi, zi, ti) and zi = (xi4, xi5)

T. IG(α1, α2) represents the
inverse Gamma distribution with parameters α1 and α2.

Based on the aforementioned specifications, we used the
above proposed EM algorithm to evaluate the MPL esti-
mates of unknown parameters β and ϕ = (ϕ0,ϕ

T
z , ϕt, ϕy)

T,
where ϕz = (ϕ1, ϕ2)

T. Similar to simulation studies, we
took the kernel function to be K(u) = (2π)−1/2 exp(−u2/2)
and set the bandwidth h to be cσ̂T n

−1/5, where c = 0.6

Table 6. Simulation results for variable selection in the third simulation study

β̂λ with NMAR(Complete Case) ϕ̂λ

MRME # of 0 coeff. MRME # of 0 coeff.
n Meth (%) C IC (%) C IC

100 MS 53.2(82.9) 3.98(4.28) 0.00(0.02) 99.8 1.61 0.13
MA 57.7(90.8) 4.87(4.87) 0.00(0.03) 82.5 1.81 0.14
MO 13.7(14.9) 5.00(5.00) 0.00(0.00) 80.9 2.00 0.00

150 MS 71.7(88.2) 4.04(4.11) 0.00(0.01) 111.7 1.74 0.04
MA 69.7(71.8) 4.88(4.88) 0.01(0.01) 91.4 1.89 0.05
MO 24.9(29.3) 5.00(5.00) 0.00(0.00) 86.7 2.00 0.00

Note: ‘MS’ denotes the SCAD method, ‘MA’ represents the ALASSO method, ‘MO’ represents the Oracle method.
‘C’ represents the average number of zero coefficients correctly identified to be zero for 100 replications,

‘IC’ denotes the average number of nonzero coefficients incorrectly detected to be zero for 100 replications.
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Table 7. Estimates (Est) and standard deviations (SD) in the ACTG175 data

SCAD ALASSO MLE
Model Cov. Est SD Est SD Est SD

Const. 1.52 0.66 1.62 0.59 5.58 1.79
Weight 0.00 0.00 0.00 0.11 -2.67 1.28
CD40 0.10 0.11 0.00 0.05 -0.43 0.46

GPNM CD420 -0.52 0.32 -0.41 0.25 -1.51 0.45
CD80 0.00 0.04 0.00 0.00 0.24 0.10

CD820 0.00 0.05 0.00 0.01 -0.27 0.13

Const. 0.09 0.55 0.07 1.32 0.34 1.57
Missing CD80 0.08 0.10 0.07 0.12 0.07 0.14

Mechanism CD820 0.00 0.09 0.00 0.10 -0.02 0.12
AGE 0.00 1.38 0.00 2.96 0.45 3.59

CD496 -0.12 0.06 -0.10 0.07 -0.15 0.07

Figure 4. MT value against iteration for β̂λ (left panel) and
ϕ̂λ (right panel) with the ALASSO penalty in the ACTG175
data. A small constant c0 = 10−5 was used to monitor the

convergence of the algorithm.

and σ̂T was the standard deviation of ti’s. In the MH al-
gorithm, we set σ2

y = 202 leading to an average accep-
tance rate 0.379. In the E-step of EM algorithm, we sam-
pled 1000 observations (i.e., M = 1000) from the condi-
tional distribution p(yi|xi, ti, δi;β,ϕ) after 200 burn-in it-
erations. To monitor the convergence of the proposed EM
algorithm, we computed the value of statistic: MT(s+1) =

maxj∈{1,...,p+m}|γ(s+1)
j −γ

(s)
j | for s = 0, 1, . . .. To save space,

we only presented index plot of MT(s+1) for the ALASSO
procedure in Figure 4. Inspection of Figure 4 showed that
the proposed EM algorithm converges after about 400 it-
erations for β̂λ and 15 iterations for ϕ̂λ in terms of the
convergence criterion given in Section 2.2. Hence, we took
the iteration value of β at the 400th iteration to be its MPL
estimate and set the iteration value of ϕ at the 15th it-
eration to be its MPL estimate. Parameter estimates were
presented in Table 7, where the standard deviation (SD) was
calculated via the bootstrapping resampling method for 100
replications.

Examination of Table 7 indicated that (i) the SCAD
method has the same performance as the ALASSO method
because they identified CD420 as the most negatively sig-
nificant predictor that was not detected by the ML method,
and weight as no significant predictor that was detected by

Table 8. Estimates (Est) and standard deviations (SD) in the
ACTG175 data with responses missing at random (MAR) and

not missing at random (NMAR)

MAR NMAR
Model Covariate Est SD Est SD

Constant 4.22 0.96 5.58 1.79
Weight -1.82 0.67 -2.67 1.28
CD40 -0.35 0.26 -0.43 0.46

GPNM CD420 -0.98 0.24 -1.51 0.45
CD80 0.09 0.05 0.24 0.10

CD820 -0.07 0.07 -0.27 0.13

Constant -0.69 1.19 0.34 1.57
Missing CD80 0.08 0.10 0.07 0.14

Mechanism CD820 -0.04 0.10 -0.02 0.12
AGE 1.79 2.79 0.45 3.59

CD496 — — -0.15 0.07

the ML method, which implied that the penalized meth-
ods performed better than the ML method; (ii) the SCAD
and ALASSO methods detected CD496 as the significant
covariate, which implied that the missing data mechanism
was nonignorable, while the ML method detected the miss-
ing data mechanism as ignorable. Also, we presented results
corresponding to NMAR and MAR assumptions in Table 8,
which indicated that parameter estimates were sensitive to
missing data mechanism. Figure 5 depicted the estimated
curve of nonparametric function g(t). From Figure 5, we
observed that CD496 changed as age increased.

5. CONCLUDING REMARKS

This paper first discusses the estimation problem of pa-
rameters and nonparametric function in a GPNM with non-
ignorable missing responses by combining the local kernel es-
timation method and propensity score adjustment method
for nonignorable nonresponse. An EM algorithm is devel-
oped to evaluate the MLEs of parameters and nonpara-
metric function by combining the EM algorithm and the
Metropolis-Hastings algorithm within the Gibbs sampler.
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Figure 5. The estimated curve of g(t) in the ACTG175 data.

Under some regularity conditions, we obtain the consistency
and asymptotic normality of the proposed MLEs for param-
eters and nonparametric function. Simulation studies are
conducted to investigate the finite sample performance of
the proposed estimation procedure and MLEs. Empirical re-
sults evidence that the proposed estimation method behaves
well in terms of Bias, RMS and SD.

Next, this paper considers the problem of simultaneously
estimating parameters and nonparametric functions and se-
lecting important covariates in a GPNM with nonignorable
missing responses. Although variable selection procedure in
the presence of missing responses/covariates has been in-
vestigated, to the best of our knowledge, there are not the-
ories and methods developed to simultaneously select im-
portant explanatory variables in GPNMs and missingness
data mechanism models. To this end, we propose a double
penalized likelihood approach by imposing two nonconcave
shrinkage penalties on nonlinear coefficients in a GPNM and
linear coefficient in a nonignorable missingness data mech-
anism model to achieve model sparsity based on the SCAD
and ALASSO penalty functions. We present a computation-
ally feasible algorithm for simultaneously optimizing the pe-
nalized likelihood function and estimating the penalty pa-
rameters. Particularly, we present an ICQ criterion to se-
lect the penalty parameters. Under some regularity condi-
tions, we show that the proposed variable selection proce-
dure based on ICQ consistently selects the significant covari-
ates in a GPNM or a nonignorable missingness data mech-
anism model. Simulation studies show that the proposed
maximum penalized likelihood method performs better than
the maximum likelihood method in terms of the median of
relative model errors, the average numbers of zero coeffi-
cients correctly identified to be zero and nonzero coefficients
incorrectly detected to be zero.

Although this paper only considers the situation where
responses are subject to missingness, the proposed maxi-
mum penalized likelihood method can be easily extended to
the case that responses and covariates are subject to miss-
ingness.

It is also interesting to consider robust estimate proce-
dure in a GPNM with nonignorable missing data when the
missingness data mechanism model is misspecified or the
link function in a GPNM is misspecified.

APPENDIX

A.1 Sampling missing data via MH
algorithm

It can be shown that the conditional distribution
p(yi|xi, ti, δi;β,ϕ) is proportional to
(11)

p(yi|xi, ti, δi;β,ϕ)∝ p(yi|xi, ti;β)p(δi|yi, zi, ti;ϕ)

∝ exp{yiθi−b(θi)
φ + c(yi, φ)

+δiϕ
Tωi − log(1 + exp(ϕTωi))}

where ωi = (1, zT
i , ti, yi)

T.
To simulate observations from the conditional dis-

tribution p(yi|xi, ti, δi;β,ϕ), we denote c̈(0, φ) =
∂2c(yi, φ)/∂y

2
i |yi=0 and

Ω−1
y =

exp(ϕ0 + ϕT
zzi + ϕtti)

{1 + exp(ϕ0 + ϕT
zzi + ϕtti)}2

ϕ2
y − c̈(0, φ).

Then, the MH algorithm for sampling observations from (11)

at the (s+ 1)th iteration with a current value y
(s)
i is imple-

mented as follows.

Step 1. Sample a new candidate y∗i from N(y
(s)
i , σ2

yΩy),
and independently sample κ from the uniform distribution
U(0, 1);

Step 2. if

κ ≤ min

{
1,

p(y∗i |xi, ti, δi;β,ϕ)

p(y
(s)
i |xi, ti, δi;β,ϕ)

}
,

we let y
(s+1)
i = y∗i , otherwise let y

(s+1)
i = y

(s)
i . The variance

σ2
y is chosen such that the average acceptance rate is about

0.25 or more [53].

A.2 Assumptions and proofs

To obtain asymptotic properties of the proposed estima-
tors, we require the following assumptions.

Assumption A. Regularity conditions:

(1) The true value γ∗ of γ is unique, it lies in the interior
of parameter space, and the true function g∗(t) of g(t)
is twice smooth in the interval [0, 1].

(2) f(xi,β) and g(β, ti) are thrice continuously differen-
tiable with respect to β ∈ B.

(3) Integration and differentiation with respect to gβ =
g(β, t) can be interchanged in E{Lgβ (β, gβ)}.

(4) The kernel function K(u) is symmetry and continu-
ously differentiable in the interval [−1, 1], and satis-
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fies
∫ 1

−1
uK(u)du = 0 and Lipschitz condition, i.e.,

|K(u1) − K(u2)| ≤ α0|u1 − u2|α1 with α0 > 0 and
0 < α1 ≤ 1.

(5) As n → ∞, the bandwidth satisfies h → 0, nh/log(n) →
∞, h ≥ {log(n)/n}1−2/α with α > 2. Define fT(t) as the
probability density of {ti}, which is bounded, positive
and continuous.

(6) Let I(t) = E{Lgβ (β, g(β, t))LT
gβ
(β, g(β, t))} be the local

Fisher information matrix, then I′(t) is bounded and
continuous and inft∈T min{fT(t), I(t)} > 0.

(7) For any one in {(yi,xi, ti) : i = 1, . . . , n},
(∂r+s/∂βr∂gsβ)L(β, gβ) exists for 0 ≤ r, s ≤ 4, r+ s ≤ 4

and E{supβsupgβ |(∂r+s/∂βr∂gsβ)L(β, gβ)|2} < ∞.

(8) There exists a neighborhood N (β∗, g∗(t)) satisfying

max
k=1,2

sup
t∈T

∥∥∥∥∥ sup
(β,gβ)∈N (β∗,g∗(t))

∣∣∣ ∂k

∂gkβ
L(β, gβ)

∣∣∣
∥∥∥∥∥
α,t

< ∞

for α ∈ (2,∞], where ‖ · ‖α,t is the Lα-norm conditioned
on T = t. Furthermore,

sup
t∈T

Et

{
sup

(β,gβ)∈N (β∗,g∗(t))

∣∣∣ ∂3

∂g3β
L(β, gβ)

∣∣∣
}

< ∞,

where Et(·) = E(·|T = t).
(9) Let ϕ̂ be the maximum likelihood estimator of ϕ. The

respondent probability π(ω,ϕ) is positive on the sup-
port (Y,Z, T ) and is thrice continuously differentiable
in ϕ and

E

{
∂logπ(ω,ϕ)

∂ϕ

}
= 0, E

{
∂2logπ(ω,ϕ)

∂ϕ∂ϕT

}
= −J(ϕ),

where ω = (1n,Z, T , Y )T.

Conditions A(1) and A(2) are commonly used in many
literatures such as Chen [54]. Condition A(3) holds for ex-
ponential family nonlinear models, generalized linear mod-
els and nonlinear regression models. Assumptions A(4) and
A(5) are quite common in nonparametric regression mod-
els, and assumption A(4) is the standard condition of the
kernel function and assumption A(5) is needed to ensure
the strong consistency of local kernel estimator of nonpara-
metric function. Assumption A(6) ensures that the nonpara-
metric function can be reasonably estimated. Assumptions
A(7) and A(8) are the moment requirements imposed on the
log-likelihood function, and are extensions of conditions re-
quired in deriving theories of maximum likelihood estimator
in parametric models. Assumption A(9) is needed to ensure
the consistency of local kernel estimator of nonparametric
function when nonignorable missing data exist.

The observed data log-likelihood is given by l(γ) =∑n
i=1 li(γ) =

∑n
i=1{δilogp(yi, δi|xi, ti,γ) + (1 −

δi) log
∫
p(yi, δi|xi, ti,γ)dyi}. According to White [55],

even though the model is misspecified, MLE γ̂ of γ

converges to its pseudo true value γ∗. It is assumed that
γ∗
n = argsupγE{l(γ)}. Then, without loss of generality,

we assume that E{∂γ li(γ)}|γ=γ∗
n
= 0 holds for ∀n and ∀i.

We define γ∗
S = argsupγ: γj �=0,j∈SE{Q(γ|γ∗)}, where the

expectation E{·} is taken with respect to the probability
density of the observed random variables. To derive asymp-
totic properties for variable selection procedure, we require
the following assumptions.

Assumption B. Conditions for variable selection proce-
dure:

(1) γ̂
p→ γ∗, where γ̂ is the MLE of γ.

(2) For i = 1, . . . , n, the likelihood function li(γ) is thrice
continuously differentiable with respect to γ on pa-
rameter space of γ. Furthermore, there exist functions
Bi(Do,i) for i = 1, . . . , n such that li(γ), |∂j li(γ)|2 and
|∂j∂k∂lli(γ)| are dominated by Bi(Do,i) for all j, k, l =
1, . . . , p+m, where Do,i is the subset of Do correspond-
ing to the ith subject. The same smoothness condition
holds for E{logp(ym,i|Do,i;γ)|Do,i;γ}, where ym,i = yi
if δi = 1.

(3) For any ε > 0, there exists a finite constant K such that
supn≥1n

−1
∑n

i=1 E{Bi(Do,i) 1Bi(Do,i)>K} < ε holds.
(4) There are positive definite matrices A(γ∗) and B(γ∗)

such that

lim
n→∞

− 1

n

n∑
i=1

∂2
γ li(γ

∗) = A(γ∗),

lim
n→∞

1

n

n∑
i=1

∂γ li(γ
∗)∂γ li(γ

∗)T = B(γ∗).

(5) Denote an = max(maxj=1,...,p{p′λβ,j
(|β∗

j |) : β∗
j �=

0}, maxk=1,...,m{p′λϕ,k
(|ϕ∗

k|) : ϕ∗
k �= 0}), and bn =

max(maxj=1,...,p{p′′λβ,j
(|β∗

j |) : β∗
j �= 0}, maxk=1,...,m

{p′′λϕ,k
(|ϕ∗

k|) : ϕ∗
k �= 0}). It is assumed that

(i) max(maxj=1,...,p{λβ,j : β∗
j �= 0},maxk=1,...,m{

λϕ,k : ϕ∗
k �= 0}) = op(1);

(ii) an = Op(n
−1/2);

(iii) bn = op(1).

(6) Denote dn = min(minj=1,...,p{λβ,j : β∗
j = 0},

mink=1,...,m{λϕ,k : ϕ∗
k = 0}). It is assumed that

(i) for any j ∈ {j : β∗
j = 0},

limn→∞λ−1
β,j liminfε→0+p

′
λβ,j

(ε) > 0 holds in
probability;

(ii) for any k ∈ {k : ϕ∗
k = 0},

limn→∞λ−1
ϕ,kliminfε→0+p

′
λϕ,k

(ε) > 0 holds in
probability;

(iii) n1/2dn
p→ ∞.

Proof of Lemma 2.1. According to [36], inequality (8) is
equivalent to
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E
{

∂
∂βL(β, gβ)

∂
∂βTL(β, gβ)

} ∣∣∣∣
β=β∗

= inf
g
E

{
∂
∂βL(β, g1β)

∂
∂βTL(β, g1β)

} ∣∣∣∣
β=β∗

for any other smooth curve g1β = g(1β, t) ∈ SM(β), which
indicates that −Lgβ (β

∗, gβ∗)∂gβ∗/∂β is the projection of
Lβ(β

∗, gβ∗) onto the span {Lgβ (β
∗, gβ∗)∂g1β/∂β : g1β ∈

SM(β)}. Then, we have

E
{(

Lβ(β
∗, gβ∗)+Lgβ (β

∗, gβ∗)
∂gβ∗
∂β

)
Lgβ (β

∗, gβ∗)
∂g1β
∂β

}
= 0,

that is,

E

{
Lβgβ (β

∗, gβ∗)
∂g1β
∂βT

+ Lgβgβ (β
∗, gβ∗)

∂gβ∗

∂β

∂g1β
∂βT

}
= 0,

where Lβgβ (β, gβ) =
∑n

i=1 Li,βgβ (β, gβ) and Lgβgβ (β, gβ) =∑n
i=1 Li,gβgβ (β, gβ).
Thus, we obtain

E

{
Lβgβ (β

∗, gβ∗)
∣∣T = t

}
∂g1β
∂βT

+E

{
Lgβgβ (β

∗, gβ∗)
∣∣T = t

}
∂gβ∗
∂β

∂g1β
∂βT = 0,

for any continuous smooth curve g1β on B× [0, 1], the above
equation yields

∂gβ∗

∂β
= −

E
{
Lβgβ (β

∗, gβ∗)
∣∣T = t

}
E

{
Lgβgβ (β

∗, gβ∗)
∣∣T = t

} ,
which shows that Lemma 2.1 holds.

Proof of Corollary 2.1. According to equation (6), the esti-

mators ĝβ and ĝ
(1)
β satisfy

1

n

n∑
i=1

δi
π̂i

Kh(ti − t)Li,gβ (β, ĝβ(ti))(1,
ti − t

h
) = 0,

where ĝβ(ti) = ĝβ+ĝ
(1)
β (ti−t). By taking a partial derivative

with respect to β on both sides of the above equation and
taking the first element of the resulting vector, we have

1
n

n∑
i=1

δi
π̂i
Kh(ti − t)

{
Li,βgβ (β

∗, ĝβ∗(ti))

+ Li,gβgβ (β
∗, ĝβ∗(ti))

∂ĝβ∗
∂β

}
= 0.

Therefore,

∂ĝβ∗

∂β
= −

1
n

n∑
i=1

δi
π̂i
Kh(ti − t)Li,βgβ (β

∗, ĝβ∗(ti))

1
n

n∑
i=1

δi
π̂i
Kh(ti − t)Li,gβgβ (β

∗, ĝβ∗(ti))
.

According to condition A(9), we obtain ||π̂i − πi|| =
Op(n

−1/2) = op(1), and

(12)

1
n

n∑
i=1

δi
π̂i
Kh(ti − t)Li,βgβ (β

∗, ĝβ∗(ti))

= 1
n

n∑
i=1

δi
πi
Kh(ti − t)Li,βgβ (β

∗, ĝβ∗(ti)) + op(1)

=E
[
δ
πLβgβ (β

∗, ĝβ∗)
∣∣T = t

]
fT(t) + op(1)

=Et

[
Lβgβ (β

∗, ĝβ∗)
]
fT(t) + op(1),

where fT(t) is the probability density function of series {ti}
defined in condition A(5), Et[·] = E[·|T = t]. The last equal-
ity is obtained by using the iterated expectation.

Similarly, we have

(13)
1
n

n∑
i=1

δi
π̂i
Kh(ti − t)Li,gβgβ (β

∗, ĝβ∗(ti))

=Et

[
Lgβgβ (β

∗, ĝβ∗)
]
fT(t) + op(1).

From Theorem 2.1, for any β ∈ B, ĝβ(t) a.s.−→ g(β, t) holds.
Then, from the above equations (12) and (13), we have

(14)
1
n

n∑
i=1

δi
π̂i
Kh(ti − t)Li,βgβ (β

∗, ĝβ∗(ti))

= Et

[
Lβgβ (β

∗, gβ∗)
]
fT(t) + op(1),

(15)
1
n

n∑
i=1

δi
π̂i
Kh(ti − t)Li,gβgβ (β

∗, ĝβ∗(ti))

= Et

[
Lgβgβ (β

∗, gβ∗)
]
fT(t) + op(1).

In addition, by condition A(5), fT(t) is positive, bounded
and continuous, we have

∂ĝβ∗

∂β
−→ −

Et[Lβgβ (β
∗, gβ∗)]

Et[Lgβgβ (β
∗, gβ∗)]

.

Thus, Corollary 2.1 holds.

Proof of Theorem 2.1. For any β ∈ B, g(β, ti) = gβ(ti)
can be approximated by a linear function within the neigh-
borhood of t via the Taylor’s expansion: gβ(ti) ≈ gβ(t) +

g
(1)
β (t)(ti − t). Then, the local linear estimators ĝβ and ĝ

(1)
β

of gβ and g
(1)
β can be obtained by solving the following equa-

tion:

n−1
n∑

i=1

δi
π̂i

Li,gβ (β, ĝβ(ti))Kh(ti − t)

(
1,

ti − t

h

)T

= 0.

Since ϕ̂ is the MLE of ϕ and πi = πi(ϕ) is a continuous
function of ϕ, ||π̂i−πi|| = Op(n

−1/2) holds. By the iterated
expectation, we have

E

{
1

n

n∑
i=1

δi
π̂i

Li,gβ (β, ĝβ(ti))Kh(ti − t)

(
1,

ti − t

h

)T
}

= 0,

where ĝβ(ti) = ĝβ+ĝ
(1)
β (ti−t). Under conditions A(1)–A(8),

similar to the argument of Lemma 4.1 given in Zhao [56],
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we obtain

sup
t

∣∣∣∣n−1
n∑

i=1

δi
π̂i
Li,gβ (β, ĝβ(ti))Kh(ti − t)

(
ti−t
h

)j∣∣∣∣
= O

({
log(n)
nh

} 1
2

+ h2

)
(a.s.),

for j = 0 and 1. Hence, it follows from Theorem 2.2 of Zhao

[56] that the local estimators (ĝβ , ĝ
(1)
β ) exist and satisfy

sup
t
|ĝβ(t)− g(β, t)| = O

({ log(n)

nh

} 1
2

+ h2

)
(a.s.),

sup
t
|ĝ(1)β (t)− ∂

∂t
g(β, t)| = O

({ log(n)

nh

} 1
2

+ h2

)
(a.s.),

which imply that ĝβ(t) → g(β, t) (a.s.) and ĝ
(1)
β (t) →

∂g(β, t)/∂t (a.s.).
For any fixed t, we denote

u(β, a0) = n−1
n∑

i=1

δi
π̂i

∂a0Li(β, a0 + ĝ
(1)
β (ti − t))Kh(ti − t),

where ∂a0 = ∂/∂a0. Since ĝ
(1)
β (t) → ∂g(β, t)/∂t and ĝβ is the

local estimator of gβ , it follows from conditions A(2)–A(3)
that

0= ∂
∂βu(β, ĝ(β, t))

= ∂
∂βu(β, ĝ(β, t)) +

∂
∂gβ

u(β, ĝ(β, t)) ∂
∂β ĝ(β, t).

Hence, we have ∂ĝ(β, t)/∂β = −L−1
n,gβgβ

Ln,βgβ , where

Ln,gβgβ = n−1
∑n

i=1 δiLi,gβgβ (β, ĝβ + ĝ
(1)
β (ti − t))Kh(ti −

t)/π̂i and Ln,βgβ = n−1
∑n

i=1 δiLi,βgβ (β, ĝβ + ĝ
(1)
β (ti −

t))Kh(ti − t)/π̂i. Similar to the proof of Corollary 2.1 of
Claeskens and Van Keilegom [57], we have

sup
t

∣∣Ln,gβgβ − E(Lgβgβ |T = t)fT(t)
∣∣

= O

({ log(n)

nh

} 1
2

+ h2

)
,

sup
t

∣∣Ln,βgβ − E(Lβgβ |T = t)fT(t)
∣∣

= O

({ log(n)

nh

} 1
2

+ h2

)
.

Combining the above equations yields ∂ĝ(β, t)/∂β
a.s.−→

∂g(β, t)/∂β. Following the similar argument, we can obtain

∂2ĝβ(t)/∂β∂β
T a.s.−→ ∂2g(β, t)/∂β∂βT.

Proof of Theorem 2.2. Under Assumptions A(4) and A(5),
following the argument of Theorem 1 of Carroll et al. [58],
the first-order Taylor’s expansion of Equation (6) yields

(16)

0 =n−1
n∑

i=1

δi
π̂i
Kh(ti − t)Li,gβ (β, gβ(ti))Hi

+n−1
n∑

i=1

δi
π̂i
Kh(ti − t)Li,gβgβ (β, gβ(ti))HiH

T
i Δ

+op(1).

where Hi = (1, (ti − t)/h)T, Δ = (ĝβ − gβ , ĝ
(1)
β − g

(1)
β )T.

Let ξi = δiKh(ti − t)/π̂i. Then, according to assumption
A(9), we have

(17)
√
n(ϕ̂−ϕ) = J

−1(ϕ)
1√
n

n∑
i=1

∂logπ(ωi,ϕ)

∂ϕ
+ op(1),

where ωi = (1, zT
i , ti, yi)

T. Taking the first-order Taylor’s
expansion of πi(ϕ̂) yields

(18) πi(ϕ̂) = πi(ϕ) + (
∂πi

∂ϕ
)T(ϕ̂−ϕ) + op(1).

Under condition A(9) and Equations (17) and (18), we ob-
tain

1
n

n∑
i=1

ξi(ti−t)
h

= 1
n

n∑
i=1

δi
πi
Kh(ti − t) ti−t

h − 1
n

n∑
i=1

π̂i−πi

π2
i

δiKh(ti − t) ti−t
h

+op(1)

=− 1
n

n∑
i=1

δi
π2
i
(∂πi

∂ϕ )T
{
V (ϕ) + op(n

−1/2)
}
Kh(ti − t) ti−t

h

+op(1)

=−V (ϕ) 1n

n∑
i=1

δi
π2
i
(∂πi

∂ϕ )TKh(ti − t) ti−t
h + op(n

−1/2)

=−V (ϕ)E
{

1
π (

∂π
∂ϕ )

T T −t
h |T = t

}
fT(t) + op(n

−1/2)

= op(n
−1/2),

where V (ϕ) = J−1(ϕ) 1n

n∑
j=1

∂logπ(ωj ,ϕ)/∂ϕ. The fourth

equality is obtained by using the law of iterated expecta-
tion and the definition of kernel function.

Similarly, we have

1
n

n∑
i=1

ξiLi,gβgβ (β, gβ(ti))

= 1
n

n∑
i=1

δi
πi
Kh(ti − t)Li,gβgβ (β, gβ(ti))

− 1
n

n∑
i=1

π̂i−πi

π2
i

δiKh(ti − t)Li,gβgβ (β, gβ(ti)) + op(1)

=E
{

δ
πLgβgβ (β, gβ(t))|T = t

}
fT(t)

−V (ϕ)E
{

1
π (

∂π
∂ϕ )

TLgβgβ |T = t
}
fT(t) + op(n

−1/2)

=�(t)fT(t)− V (ϕ)ω̃(t)fT(t) + op(n
−1/2)

=ψ(t)fT(t) + op(n
−1/2),

where �(t) = E{Lgβgβ (β, gβ(t))|T = t}, ω̃(t) =
E{(∂π/∂ϕ)TLgβgβ/π|T = t}, ψ(t) = �(t)−V (ϕ)ω̃(t), �(t)
and ω̃(t) are obtained by using the iterated expectation.
Then, it follows from Equation (16) and the proof of Theo-
rem 1 of Carroll et al. [58] that

− ψ(t)fT(t)(ĝβ − gβ)

= 1
n

n∑
i=1

ξiLi,gβ (β, gβ(ti))
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− h2

2 g(2)(β, t) 1n

n∑
i=1

ξi(
ti−t
h )2Li,gβgβ (β, gβ(ti))

+ op{h2 + (nh)−1/2}

= 1
n

n∑
i=1

ξiLi,gβ (β, gβ(ti))− h2

2 g(2)(β, t)μ2(K)ψ(t)fT(t)

+ op{h2 + (nh)−1/2},

which leads to asymptotic expansion of ĝβ(t). Combining the
above equations yields the asymptotic bias of nonparametric
estimator.

Proof of Theorem 2.3. Under Assumptions A(1) and B(1)–
B(4), it follows from White [55] that

(19)
n−1/2

n∑
i=1

∂γ li(γ
∗)

D→ N(0,B),

√
n(γ̂ − γ∗)

D→ N(0,A−1BA−1),

where A and B are evaluated at γ∗.

Proof of Theorem 3.1. Let u = (uT
1 ,u

T
2 ,u

T
3 )

T be a (p+m)×
1 vector corresponding to parameter vector γ, where u1 is
a p1 × 1 subvector corresponding to nonzero components
in β∗, u2 is a q1 × 1 subvector corresponding to nonzero
components in ϕ∗, and u3 is a (p+m−p1−q1)×1 subvector
corresponding to zero components in β∗ and ϕ∗. To show
that γ̂λ is a

√
n-consistent estimator of γ∗, it is sufficient to

show that for an enough large C, as n → ∞, we have

p

(
sup

‖u‖=C

{
l(γ̃u)− n

p∑
j=1

pλβ,j
(|β̃uj |)

− n
m∑

k=1

pλϕ,k
(|ϕ̃uk|)

}
− l(γ∗)

+n
p∑

j=1

pλβ,j
(|β∗

j |) + n
m∑

k=1

pλϕ,k
(|ϕ∗

k|) < 0

)
→ 1,

which shows that there exists a local maximizer γ̂λ of
PL(γ|λ) in the ball {γ = γ∗ + n−1/2u : ‖u‖ ≤ C} such
that ‖γ̂λ − γ∗‖ = Op(n

−1/2), where γ̃u = γ∗ + n−1/2u,

β̃uj = β∗
j +n−1/2uj and ϕ̃uk = ϕ∗

k+n−1/2up+k. The second-
order Taylor’s expansion of PL(γ|λ) yields

l(γ̃u)− n
p∑

j=1

pλβ,j
(|β̃uj |)− n

m∑
k=1

pλϕ,k
(|ϕ̃uk|)

− l(γ∗) + n
p∑

j=1

pλβ,j
(|β∗

j |) + n
m∑

k=1

pλϕ,k
(|ϕ∗

k|)

≤ l(γ̃u)− n
p1∑
j=1

pλβ,j
(|β̃uj |)− n

q1∑
k=1

pλϕ,k
(|ϕ̃uk|)

− l(γ∗) + n
p1∑
j=1

pλβ,j
(|β∗

j |) + n
q1∑

k=1

pλϕ,k
(|ϕ∗

k|)

= n−1/2uT∂γ l(γ
∗)− 1

2u
T{− 1

n∂
2
γ l(γ

∗)}

− n1/2
p1∑
j=1

{p′λβ,j
(|β∗

j |)sgn(β∗
j )uj}

− n1/2
q1∑
k=1

{p′λϕ,k
(|ϕ∗

k|)sgn(ϕ∗
k)uk}(20)

− 1
2

p1∑
j=1

{p′′λβ,j
(|β∗

j |)u2
j}

− 1
2

q1∑
k=1

{p′′λϕ,k
(|ϕ∗

k|)u2
k}+ op(1)

≤ n−1/2uT∂γ l(γ
∗)− 1

2u
TA(γ∗)u

+ (p1n)
1/2an‖u1‖+ (q1n)

1/2an‖u2‖
− 1

2 |bn|‖u1‖2 − 1
2 |bn|‖u2‖2 + op(1)

≤ n−1/2uT∂γ l(γ
∗)− 1

2u
TA(γ∗)u

+ (p1n)
1/2an‖u1‖+ (q1n)

1/2an‖u2‖+ op(1).

The first inequality in Equation (20) holds because of
pλ(0) = 0 and pλ(·) > 0 for the SCAD and ALASSO
penalty functions. The second inequality in Equation (20)
is obtained from Equation (19) and the second-order Tay-
lor’s expansion of the penalty function. Condition B(4) and∑p1

j=1 |uj | ≤ (p1
∑p1

j=1 u
2
j )

1/2 yields the third inequality in
Equation (20). Equation (19) and Assumptions B(2)–B(5)
indicate n−1/2uT∂γ l(γ

∗) = Op(1). Note that uTA(γ∗)u is
bounded below by Emin{A(γ∗)}‖u‖2, where Emin{A(γ∗)}
is the smallest eigenvalue of matrix A(γ∗). Thus, the second
term in the last inequality of Equation (20) dominates other
four terms, and the last inequality in Equation (20) is neg-
ative by selecting an enough large C. The above argument
shows that Theorem 3.1(i) holds.

Now, we prove Theorem 3.1(ii). From the above argu-
ment, we obtain that γ̂λ is a

√
n-consistent estimator of

γ∗ and satisfies ‖γ̂λ − γ∗‖ = Op(n
−1/2) and ‖β̂(2)λ‖ =

‖ϕ̂(2)λ‖ = Op(n
−1/2) = op(1). Let p̃λβ

=
∑p

j=1 pλβ,j
(|βj |)

and p̃λϕ =
∑q

k=1 pλϕ,k
(|ϕk|). Then, we have

(21)

0 = n−1/2{∂γ l(γ̂λ)− n∂γ p̃λβ
|γ=γ̂λ

− n∂γ p̃λϕ |γ=γ̂λ
}

= n−1/2∂γ l(γ
∗)− n1/2(γ̂λ − γ∗)T{− 1

n∂
2
γ l(γ

∗)}
+ op(1)− n1/2∂γ p̃λβ

|γ=γ̂λ
− n1/2∂γ p̃λϕ |γ=γ̂λ

= Op(1)− n1/2∂γ p̃λβ
|γ=γ̂λ

− n1/2∂γ p̃λϕ |γ=γ̂λ
.

The second equality is obtained from the Tay-
lor’s expansion, and the last equality holds because of
n−1/2∂γ l(γ

∗) = n1/2(γ̂λ − γ∗)T{−∂2
γ l(γ

∗)/n} = Op(1).

Note that for j = 1, . . . , p, we have −n1/2∂βj p̃λβ
|γ=γ̂λ

=

−sgn(β̂j)n
1/2λβ,j{λ−1

β,jp
′
λβ,j

(|β̂j |)}. Since ‖β̂(2)λ‖ = op(1),

Assumption B(6i) implies that λ−1
β,jp

′
λβ,j

(|β̂j |) > 0 holds

for j = 1, . . . , p. Then, −sgn(β̂j)n
1/2dn dominates

the second term of the last equality of (21). Simi-
larly, for k = 1, . . . ,m, we have −n1/2∂ϕk

p̃λϕ |γ=γ̂λ
=

−sgn(ϕ̂k)n
1/2λϕ,k{λ−1

ϕ,kp
′
λϕ,k

(|ϕ̂k|)}. Again, since ‖ϕ̂(2)λ‖ =

op(1), Assumption B(6ii) implies that λ−1
ϕ,kp

′
λϕ,k

(|ϕ̂k|) > 0

holds for k = 1, . . . ,m. Thus, the term −sgn(ϕ̂k)n
1/2dn

dominates the third term of the last equality of (21). It
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follows from Assumption B(6iii) that n1/2dn
p→ ∞, which

shows that β̂j must be zero for j = p1 + 1, . . . , p and ϕ̂k

must be zero for k = q1 + 1, . . . ,m, otherwise the absolute
values of the gradients of the second and third terms in the
last equality of (21) could be large so that the last equality
of (21) is not equal to zero.

Next, we prove Theorem 3.1(iii). From the above ar-
guments, it is easily seen that under Assumptions A(1)
and B(1)–B(6), there is a consistent MPL estimator γ̂λ =

(β̂
T

(1)λ, β̂
T

(2)λ, ϕ̂
T

(1)λ, ϕ̂
T

(2)λ)
T of γ = (β̂

T

(1), β̂
T

(2), ϕ̂
T

(1), ϕ̂
T

(2))
T

satisfying β̂(2)λ = ϕ̂(2)λ = 0. Let β∗ = (β∗T

(1),0
T)T,

ϕ∗ = (ϕ∗T

(1),0
T)T, γ∗

(1) = (β∗T

(1),ϕ
∗T

(1))
T, γ(1) = (βT

(1),ϕ
T

(1))
T,

γ̂(1)λ = (β̂
T

(1)λ, ϕ̂
T

(1)λ)
T, γ∗ = (β∗T

,ϕ∗T)T, and l̃(γ) =

l((βT

(1),0
T,ϕT

(1),0
T)). Let Ã(γ) be an sub-matrix of A(γ∗)

obtained by deleting the p1+1, . . . , p and p+q1+1, . . . , p+m
rows and columns of A(γ∗), and B̃(γ) is similarly defined.
Denote

h1(γ) =
{
p′λβ,1

(|β1|)sgn(|β1|), . . . , p′λβ,p1
(|βp1 |)sgn(|βp1 |) ,

p′λϕ,1
(|ϕ1|)sgn(|ϕ1|), . . . , p′λϕ,q1

(|ϕq1 |)sgn(|ϕq1 |)
}T

,

J1(γ) =diag
{
p′′λβ,1

(|β1|), . . . , p′′λβ,p1
(|βp1 |) ,

p′′λϕ,1
(|ϕ1|), . . . , p′′λϕ,q1

(|ϕq1 |)
}
,

h(γ∗) =

(
h1(γ

∗)
0

)
, J(γ∗) =

(
J1(γ

∗) 0
0 0

)

Σ(γ∗) = {Ã(γ∗) + J(γ∗)}−1B̃(γ∗){Ã(γ∗) + J(γ∗)}−1.

Then, taking the second-order Taylor’s expansion of the
penalized likelihood at γ∗ yields

0 = ∂γ l̃(γ̂λ)− n∂γ

{
p∑

j=1

pλβ,j
(|βλj |)

}
|γ=γ̂λ

− n∂γ

{
m∑

k=1

pλϕ,k
(|ϕλk

|)
}
|γ=γ̂λ

= ∂γ l̃(γ
∗)− nh(γ∗)

− n(γ̂λ − γ∗)T{− 1
n∂

2
γ l̃(γ

∗) + J(γ∗)}+ op(1)

= n−1/2∂γ l̃(γ
∗)− n1/2h(γ∗)

− n−1/2(γ̂λ − γ∗)T{Ã(γ∗) + J(γ∗)}+ op(1),

which implies n1/2{γ̂λ − γ∗ + [Ã(γ∗) + J(γ∗)]−1h(γ∗)} D
=

n−1/2{Ã(γ∗) + J(γ∗)}−1∂γ l(γ
∗). Therefore, it follows from

Theorem 2.3 that Theorem 3.1(iii) holds.

Proof of Theorem 3.2. It follows from Garcia, Ibrahim and
Zhu [33], Ibrahim et al. [50] and Garcia, Ibrahim and Zhu
[34] that Theorem 3.2 holds.

ACKNOWLEDGEMENTS

The authors are grateful to the Editor, an Associate
Editor, and two referee for their valuable suggestions and

comments that greatly improved the manuscript. This work
was supported by grants from the National Natural Science
Foundation of China (No. 11671349).

Received 9 June 2016

REFERENCES

[1] Jorgensen, B. (1983). Maximum likelihood estimation and large-
sample inference for generalized linear and nonlinear regression
models. Biometrika 70 19–28. MR0742972

[2] Cordeiro, G. M. and Paula, G. A. (1989). Improved likeli-
hood ratio statistics for exponential family nonlinear models.
Biometrika 76 93–100.

[3] Cox, C. and Ma, G. (1995). Asymptotic confidence bands for
generalized nonlinear regression models. Biometrics 51 142–150.
MR1341232

[4] Lindsey, J., Byrom, W., Wang, J., Jarvis, P. and Jones, B.

(2000). Generalized nonlinear models for pharmacokinetic data.
Biometrics 56 81–88.

[5] Kosmidis, L. and Firth, D. (2009). Bias reduction in exponential
family nonlinear models. Biometrika 96 793–804. MR2564491

[6] Turner, H. and Firth, D. (2012). Generalized nonlinear models
in R: an overview of the gnm package, R package version 1.0-6.
http://CRAN.R-project.org/package=gnm.

[7] Engle, R. F., Granger, C. W., Rice, J. and Weiss, A. (1986).
Semiparametric estimate of the relation between weather and elec-
tricity sales. Journal of the American Statistical Association 81
310–320.

[8] Zhu, Z. Y., Tang, N. S. and Wei, B. C. (2000). On confidence re-
gions of semiparametric nonlinear regression models (a geometric
approach). Acta Mathematica Scientia 20 68–75. MR1770397

[9] Hardel, W., Liang, H. and Gao, J. (2000). Partially linear mod-
els. Springer-Verlag, New York.

[10] Severini, T. A. and Staniswalis, J. G. (1994). Quasi-likelihood
estimation in semi-parametric models. Journal of the American
Statistical Association 89 501–512.

[11] Li, R. and Nie, L. (2008). Efficient statistical inference procedures
for partially nonlinear models and their applications. Biometrics
64 904–911.

[12] Wang, Y. and Ke, C. (2009). Smoothing spline semiparamet-
ric nonlinear regression models. Journal of Computational and
Graphical Statistics 18 165–183. MR2649643

[13] Little, R. J. A. and Rubin, D. B. (2002). Statistical analysis
with missing data, 2nd ed. Wiley, New York.

[14] Wang, Q. H., Lindon, Q. and Hardle, W. (2004). Semiparamet-
ric regression analysis with missing response at random. Journal
of the American Statistical Association 99 334–345.

[15] Liang, H., Wang, S. J. and Carroll, R. J. (2007). Partially
linear models with missing response variables and error-prone co-
variates. Biometrics 94 185–198.

[16] Liang, H. and Qin, Y. S. (2008). Empirical likelihood based in-
ference for partially linear models with missing covariates. Aus-
tralian New Zealand Journal of Statistics 50 347–359.

[17] Tang, N. S. and Zhao, P. Y. (2013). Empirical likelihood semi-
parametric nonlinear regression analysis for longitudinal data
with responses missing at random. Annals of the Institute of Sta-
tistical Mathematics 65 639–665.

[18] Lee, S. Y. and Tang, N. S. (2006). Bayesian analysis of nonlin-
ear structural equation models with nonignorable missing data.
Psychometrika 71 541–564. MR2272542

[19] Akaike, H. (1973). Information theory and an extension of the
maximum likelihood principle, in Proceedings of the 2nd Interna-
tional Symposium Information Theory, B. N. Petrov and F. Csaki
(Eds.), pp. 267–281, Akademia Kiado, Budapest, Hungary, 1973.

[20] Schwarz, G. (1978). Estimating the dimension of a model. An-
nals of Statistics 6 461–464.

Estimation and variable selection in GPNMs with nonignorable missing responses 17

http://www.ams.org/mathscinet-getitem?mr=0742972
http://www.ams.org/mathscinet-getitem?mr=1341232
http://www.ams.org/mathscinet-getitem?mr=2564491
http://www.ams.org/mathscinet-getitem?mr=1770397
http://www.ams.org/mathscinet-getitem?mr=2649643
http://www.ams.org/mathscinet-getitem?mr=2272542


[21] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der

Linde, A. (2002). Bayesian measures of model complexity and fit
(with discussion). Journal of the Royal Statistical Society, Seies
B 64 583–639. MR1979380

[22] Breiman, L. (1996). Heuristics of instability and stabilization in
model selection. Annals of Statistics 24 2350–2383.

[23] Tibshirani, R. (1996). Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society, Series B 58 267–
288. MR1379242

[24] Fan, J. and Li, R. (2001). Variable selection via nonconcave pe-
nalized likelihood and its oracle properties. Journal of the Amer-
ican Statistical Association 96 1348–1360.

[25] Zou, H. (2006). The adaptive lasso and its oracle properties. Jour-
nal of the American Statistical Association 101 1418–1429.

[26] Wang, H. and Leng, C. (2007). Unified lasso estimation via least
squares approximation. Journal of the American Statistical As-
sociation 101 1039–1048. MR2411663

[27] Lv, J. and Fan, Y. (2009). A unified approach to model selection
and sparse recovery using regularized least squares. Annals of
Statistics 37 3498–3528.

[28] Fan, J. and Li, R. (2004). New estimation and model selection
procedures for semiparametric modeling in longitudinal data anal-
ysis. Journal of the American Statistical Association 99 710–723.

[29] Liang, H. and Li, R. (2009). Variable selection for partially lin-
ear models with measurement errors. Journal of the American
Statistical Association 104 234–248.

[30] Li, R. and Liang, H. (2008). Variable selecion in semiparametric
regression modeling. Annals of Statistics 36 261–286.

[31] Kai, Bo, Li, R. and Zou, H. (2011). New efficient estimation and
variable selection methods for semiparametric varying-coefficient
partially linear models. Annals of Statistics 39 305–332.

[32] Ni, X., Zhang, D. and Zhang, H. (2010). Variable selection for
semiparametric mixed models in longitudinal studies. Biometrics
66 79–88.

[33] Garcia, R. I., Ibrahim, J. G. and Zhu, H. T. (2010a). Variable
selection for regression models with missing data. Statistica Sinica
20 149–165.

[34] Garcia, R. I., Ibrahim, J. G. and Zhu, H. T. (2010b). Variable
selection in the Cox regression model with covariates missing at
random. Biometrics 66 97–104. MR2756695

[35] Li, G., Lai, P. and Lian, H. (2015). Variable selection and esti-
mation for partially linear single-index models with longitudinal
data. Statistics and Computing 25 579–593.

[36] Severini, T. A. and Wong, H. W. (1992). Profile likelihood and
conditionally parametric models. Annals of Statistics 20 1768–
1802.

[37] Murphy, S. A. and van der Vaart, A. W. (2000). On profile
likelihood. Journal of the American Statistical Association 95
449–485.

[38] Fan, J. Q., Farmen, M. and Gijbels, I. (1998). Local maximum
likelihood estimation and inference. Journal of the Royal Statis-
tical Society, Series B 60 591–608.

[39] Riddles, M. K. (2013). Propensity score adjusted method for
missing data (Doctoral dissertation). Iowa State University.

[40] Ibrahim, J. G., Zhu, H. and Tang, N. (2008). Model selection
criteria for missing data problem via the EM algorithm. Journal of
the American Statistical Association 103 1648–1658. MR2510293

[41] McCullagh, P. and Nelder, J. A. (1989). Generalized linear
models, 2nd edition. Chapman and Hall, London.

[42] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maxi-
mum likelihood for incomplete data via the EM algorithm. Jour-
nal of the Royal Statistical Society, Series B 39 1–38.

[43] Ibrahim, J. G., Chen, M. H. and Lipsitz, S. R. (1999). Monte
carlo EM for missing covariates in parametric regression models.
Biometrics 55 591–596.

[44] Staniswalis, J. G. (1989). The kernel estimate of a regression
function in likelihood-based models. Journal of the American Sta-
tistical Association 84 276–283.

[45] Zhang, C. H. (2010). Nearly unbiased variable selection under
minimax concave penalty. Annals of Statistics 38 894–932.

[46] Zou, H. and Li, R. (2008). One-step sparse estimates in noncon-
cave penalized likelihood modles. Statistica Sinica 36 1509–1533.

[47] Hunter, D. R. and Li, R. (2005). Variable selection using MM
algorithm. Annals of Statistics 33 1617–1642.

[48] Meng, X. L. and Rubin, D. B. (1993). Maximum likelihood esti-
mation via the ECM algorithm: A general framework. Biometrika
80 267–278.

[49] Wang, H., Li, R. and Tsai, C. L. (2007). Tuning parameter
selector for the smoothly clipped absolute deviation method.
Biometrika 80 267–278.

[50] Ibrahim, J. G., Zhu, H. T., Garcia, R. I. andGuo, R. X. (2011).
Fixed and random effects selection in mixed effects models. Bio-
metrics 67 495–503.

[51] Hammer, S. M., et al. (1996). Trial comparing nucleotide
monotherapy with combined therapy in HIV-infected adults with
CD4 cell counts from 200 to 500 per cubic millimeter. New Eng-
land Journal of Medicine 335 1081–1090.

[52] Ding, X. B. and Wang, Q. H. (2011). Fusion-refinement proce-
dure for dimension reduction with missing response at random.
Journal of the American Statistical Association 106 1193–1207.

[53] Gelman, A., Roberts, G. O. and Gilks, W. R. (1996). Effi-
cient Metropolis jumping rules, in Bayesian Statistics 5, J. M.
Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith (Eds),
pp. 599–607. Oxford University Press, Oxford.

[54] Chen, H. (1995). Asymptotically efficient estimation in semipara-
metric generalized linear models. Annals of Statistics 23 1102–
1129.

[55] White, H. (1994). Estimation, Inference and Specification Anal-
ysis. Cambridge University Press, New York.

[56] Zhao, P. L. (1994). Asymptotics of kernel estimator based on
local maximum likelihood. Journal of Nonparametric Statistics 4
79–90.

[57] Claeskens, G. and Van Keilegom, I. (2003). Bootstrap confi-
dence bands for regression curves and their derivatives. Annals of
Statistics 31 1852–1884.

[58] Carroll, R. J., Gijbels, I. and Wand, M. P. (1997). General-
ized partially linear single-index models. Journal of the American
Statistical Association 92 477–489.

Niansheng Tang
Yunnan Provincial Key Laboratory of Statistical Modeling
and Data Analysis
Yunnan University
Kunming
China
E-mail address: nstang@ynu.edu.cn

Lin Tang
Yunnan Provincial Key Laboratory of Statistical Modeling
and Data Analysis
Yunnan University
Kunming
China
E-mail address: totoroxyz@163.com

18 N. Tang and L. Tang

http://www.ams.org/mathscinet-getitem?mr=1979380
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=2411663
http://www.ams.org/mathscinet-getitem?mr=2756695
http://www.ams.org/mathscinet-getitem?mr=2510293
mailto:nstang@ynu.edu.cn
mailto:totoroxyz@163.com

	Introduction
	Model and estimation method
	Model and notation
	Estimations of parameters and nonparametric functions
	Asymptotic properties

	Variable selection
	EM algorithm for maximizing the penalized likelihood
	Penalty parameter selection
	Theoretical properties

	Numerical examples
	Simulation studies
	A real data

	Concluding remarks
	Appendix
	Sampling missing data via MH algorithm
	Assumptions and proofs

	Acknowledgements
	References
	Authors' addresses

