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The generalized half-t distribution
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In this paper, we introduce a new distribution as a scale
mixture of the generalized half normal (GHN) distribution
proposed by [3] and the generalized gamma (GG) distri-
bution. Since the half-t (HT) distribution given in [10] is a
special case of the new distribution, we call the new distribu-
tion as “generalized half-t (GHT)” distribution. We derive
the probability density function (pdf) of the GHT distribu-
tion and study some of its properties. We give maximum
likelihood (ML) estimators for its parameters based on the
Expectation-Maximization (EM) algorithm. We provide a
small simulation study to show the performances of the ML
estimators for GHT distribution. Also, we give a real data
example to illustrate the modeling performance of the pro-
posed distribution over the GHN and HT distributions.
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1. INTRODUCTION

A new family of lifetime distribution with two param-
eters was introduced by [3]. Since they noticed that the
cumulative distribution function (cdf) of the new distribu-
tion resembles to the cdf of the half normal distribution,
they called it generalized half normal (GHN) distribution.
In their study, they compared the GHN distribution with
other lifetime distributions such as Weibull, gamma, log-
normal and Birnbaum-Saunders.

In this paper, we introduce the scale mixture of the GHN
distribution and the generalized gamma (GG) distribution
[5, 8]. The new distribution has four parameters and con-
tains the half-t (HT) distribution given in [10]. We call the
new distribution as generalized half-t (GHT) distribution.
As a result of the scale mixture approach, the new distri-
bution will have heavier tail than the GHN distribution.
Therefore, it will be a robust alternative to the GHN distri-
bution to model lifetime data sets that may have outliers.

The rest of the paper is organized as follows. In Section
2, we introduce the GHT distribution and study some of
its distributional properties. Mainly in this section, we give
the probability density function (pdf), cdf, hazard function
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and provide the moments of this distribution. In Section 3,
we give the maximum likelihood (ML) estimators based on
the Expectation-Maximization (EM) algorithm. In Sections
4 and 5, we give a simulation study and a real data exam-
ple to illustrate the performance of proposed distribution,
respectively. Finally, Section 6 is devoted to conclusions.

2. GHT DISTRIBUTION: DEFINITION AND
ITS DISTRIBUTIONAL PROPERTIES

Theorem 2.1. Let the random variable X have a GHN
distribution with the parameters α > 0 and θ > 0 (X ∼
GHN(θ, α)) with the pdf
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θ )
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Let the random V have a GG distribution with the pa-
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and assume that X and V are independent. Then, the dis-
tribution of the random variable T
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V/η
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Proof. Using the pdfs of GHN and GG distributions given
in (1) and (2), the joint pdf of X and V can be written

fX,V (x, v)
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Using the transformation x = t
√

v
η , the joint pdf of T and

V can be obtained

fT,V (t, v)(5)
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From this joint pdf, the pdf of T can be obtained as follows

fT (t;α, β, θ, η) =

∫ ∞
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We get the GHN distribution when η tends to infinity. If
we set α = 1 and β = 2, the pdf given in (4) becomes as

(7) fT (t) =
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η+1
2

)
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2

,

which is the pdf of HT disitribution given in [10], see also
[9]. Further, if η tends to infinitiy we get the half normal
distribution which is a special case of folded normal and
truncated normal distribution [5].

Definition 2.1. The random variable T ∈ (0,∞) is said to
have a GHT distribution with the parameters α > 0, β > 0,
θ > 0 and η > 0 ( T ∼ GHT (α, β, θ, η)) if its pdf has the
form given in (4).

Figure 1 shows the pdf plots of the GHT distribution for
some values of the parameters. We observe from panel (a)
Figure 1 that the location of mode and the peakedness of
the density change for increasing α. From panel (b) Figure
1, we can see that when β is getting larger, the tail is get-
ting thicker and the density becomes more peaked. On the
other hand, we observe from panel (c) Figure 1 that the
tail becomes thicker for decreasing η. Finally, we see from
panel (d) Figure 1 that the parameter θ has influence on the
kurtosis of the density. Overall, we can conclude that using
the scale mixture approach thick tail distributions are pro-
duced, which may be useful alternatives in robust statistical
analysis of life time data sets.

2.1 CDF and hazard function

Theorem 2.2. i. For t ∈ R, the cdf of the GHT distribution
is
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where B (·) shows the incomplete beta function.
ii. The hazard rate function of the GHT distribution is

h(t) =
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Figure 1. Examples of the GHT pdf for some values of
parameters.

×
(
1−
(

η

2α
− 1

α
+

1

2

)
Γ
(

η
2α − 1

α + 1
2

)
Γ
(

η
2α + 1

2

)

+
1√
π

Γ
(

η
2α − 1

α + 3
2

)
Γ
(

η
2α

) B

(
2ηαθ2α

2ηαθ2α +βαt2α
;
η

2α
,
1

2

))−1

(9)

Proof. i. Using the definition of the cdf and the pdf given
in (4), the cdf of T will be
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ii. This part of the proof can be easily obtain using the
definition of the hazard rate function and the pdf given in
(4).

2.2 Moments

The moments of the GHN distribution were derived by
[3] which are given as follows. Let X ∼ GHN (θ, α), then
kth non-central moments for k = 1, 2, . . . are given by

(10) E
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π
Γ
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)
θk.

Using these moments, the moments of the GHT distributed
random variable T can be obtained as follows.

Proposition 2.1. Let X ∼ GHT (α, β, θ, η). For k =
1, 2, . . ., the kth non-central moment of T is given by
(11)
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Proof. Using the stochastic representation given in (3) and
independence of X and V , we have
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Then, using (10) and moments of the GG distribution the
moment formula given in (11) can be obtained.

Corollary 2.1. Let T ∼ GHT (α, β, θ, η). The mean and
the variance of T are given by
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3. MAXIMUM LIKELIHOOD ESTIMATION

Let t = (t1, t2, . . . , tn) be a random sample from distri-
bution with unknown parameters α, β, θ and η. The log-
likelihood function is
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We can see that direct maximization of this function is not
very tractable. On the other hand, the scale mixture rep-
resentation of this distribution can allow us to use the EM
algorithm [4] to obtain the ML estimators for the unknown
parameters. Here, we will use the EM algorithm and it can
be applied as follows.

Assume that the latent variable V cannot be observable.
Let v = (v1, v2, . . . , vn) be missing data and let (t,v) be
the complete data. Now using the joint pdf of the (t,v)
given in (5), the complete data log-likelihood function can
be obtained as
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To obtain the ML estimators for the parameters (α, β, θ, η),
we should maximize (14). However, since we cannot be able
to observe V these estimators cannot be used. To overcome
this latency, we have to replace the functions of V by their
conditional expectations given the observed values ti and
the current values of parameters. Then, the conditional ex-
pectation of the complete data log-likelihood function will
be

Q(α, β, θ, η | α̂, β̂, θ̂, η̂) = E(�c (α, β, θ, η; t,v) | ti, α̂, β̂, θ̂, η̂)
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where
(
α̂, β̂, θ̂, η̂

)
are the current estimates for the

parameters. To find the conditional expectations
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)
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need to find the conditional distribution of V given T = t.
The pdf of this conditional distribution is
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Proposition 3.1. i. The conditional expectation of V α
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Γ(·) is the digamma function.

Proof. Using the conditional distribution given in (15) these
expectations can be easily reached.

The steps of the EM algorithm can be summarized as
follows:
EM Algorithm:

1. Take initial parameter estimates
(
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)
and a stopping rule ε.
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ŵ

(k)
i = E

(
V α
i | ti, α̂(k), β̂(k), θ̂(k), η̂(k)

)

= − 1

α̂(k)
log

⎛
⎝ 1

β̂(k)α̂
(k)

⎛
⎝1 + t2α̂

(k)

β̂(k)α̂
(k)

2η̂(k)
α̂(k)

θ̂(k)
2α̂(k)

⎞
⎠
⎞
⎠

×
Γ
(

η̂(k)

2α̂(k) +
1
2

)
Γ
(

η̂(k)

2α̂(k) − 1
α̂(k) +

3
2

)

+
1

α̂(k)
Ψ

(
η̂(k)

2α̂(k)
+

1

2

) Γ
(

η̂(k)

2α̂(k) +
1
2

)
Γ
(

η̂(k)

2α̂(k) − 1
α̂(k) +

3
2

) .
3. M-step: Maximize the following objective function with
respect to the unknown parameters (α, β, θ, η) to get the
(k + 1) th parameter estimates
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the following four equations simultaneously:
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û
(k)
i

+
α

2η(α+1)θ2α

n∑
i=1

t2αi ŵ
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From the solution of these equations, we will get(
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)
.

4. Repeat E and M steps until convergence criterion∥∥∥(α̂(k+1)−α̂(k), β̂(k+1)−β̂(k), θ̂(k+1)−θ̂(k), η̂(k+1)−η̂(k)
)∥∥∥ <
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Figure 2. The density plots of the GHT distributions used in
the simulation study.

4. SIMULATION STUDY

In this section, we will give a small simulation study to
show the performances of ML estimators for GHT distribu-
tion. The data are randomly generated from GHT distribu-
tion using the scale mixture representation given in (3). We
first generate data from from GHN distribution using its cdf
[3], and generate data from GG distribution. Finally, we use
the equation (3) to generate data from GHT distribution.
Several different values of α, β, θ and η are taken. We com-
pute estimates, biases and mean squared error (MSE) using
the following formulas

bias (α̂) = ᾱ− α, bias
(
β̂
)
= β̄ − β,

bias
(
θ̂
)
= θ̄ − θ, bias (η̂) = η̄ − η,

MSE (α̂) =
1

N

N∑
i=1

(α̂i − α)
2
,

MSE
(
β̂
)
=

1

N

N∑
i=1

(
β̂i − β
)2

,

MSE
(
θ̂
)
=

1

N

N∑
i=1

(
θ̂i − θ
)2

,

MSE (η̂) =
1

N

N∑
i=1

(η̂i − η)
2
,

where ᾱ = 1
N

∑N
i=1 α̂i, β̄ = 1

N

∑N
i=1 β̂i, θ̄ = 1

N

∑N
i=1 θ̂i,

η̄ = 1
N

∑N
i=1 η̂i and N = 100. We take the sample sizes

as n = 25, 50, 100 and the parameter values (α, β, θ, η) =
(1, 1, 1.5, 8) , (1, 1, 1.5, 6) , (1, 1, 5, 8) , (2, 1, 5, 8). Figure 2 dis-
plays the pdf plots of the distributions that we generate
data. In the simulation study, we use the method of mo-
ment (MOM) estimators of GHT distribution as starting
value for the EM algorithm given in Section 3 which is sug-

Figure 3. Boxplot of the remission times of bladder cancer
patients.

gested by one of the referee. The simulation study and real
data example are performed using MATLAB R2013a for the
computation and four estimating equations are simultane-
ously solved by using fsolve function.

Table 1 summarizes the simulation results for the sample
sizes 25, 50 and 100. In the table, we give the estimates of
parameters, bias and MSE values of the parameter estimates
and true parameter values. We observe from the simulation
results that the proposed EM algorithm is working accu-
rately to obtain estimates for all parameters.

5. REAL DATA EXAMPLE

In this section, we will analyze the data set used by [6].
The same data set has been also used by [2]. In their study,
they introduce Lindley-exponential distribution as a more
flexible model for modelling lifetime data set. The data set
consists of remission times (in months) of a random sample
from 128 bladder cancer patients.

In Figure 3, we show the boxplot of the cancer data set.
From this figure, we can reveal that the point 79.05 may
be possible outlier for this data set. In this real data exam-
ple, we will compare the performances of the GHT, GHN
and HT distributions for modeling this data set with the
cases without and with outlier. We assume that all the pa-
rameters are unknown for all distributions. We use the ML
estimation method to obtain the estimates for the parame-
ters of the GHN and HT distributions and we use the EM
algorithm given in Section 3 to obtain the estimates for the
parameters of the GHT distribution. To compare the perfor-
mances of the distributions, we use the values of the Akaike
information criterion (AIC) [1] and the Bayesian informa-
tion criterion (BIC) [7] with the following formula

−2�max +mcn,

where �max shows the maximized log-likelihood, m is the
number of free parameters to be estimated in the model
and cn is the penalty term. Here, we set cn = 2 for AIC and
cn = log (n) for BIC.

Table 2 gives the estimates, the values of the AIC and the
BIC for the data set without the point 79.05 for the GHT,
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Table 1. Estimates of parameters, bias and MSE for different sample sizes

MLE
n α β η θ

25

α = 1, β = 1, η = 1.5, θ = 8

Estimate 1.0076 1.2009 1.7624 8.4514
Bias 0.0076 0.2009 0.2624 0.4514
MSE 0.1231 3.1284 0.0838 10.9877

α = 1, β = 1, η = 1.5, θ = 6

Estimate 0.6296 1.1836 1.8722 6.3515
Bias −0.3704 0.1836 0.3722 0.3515
MSE 0.2046 1.9785 0.1556 5.0932

α = 1, β = 1, η = 5, θ = 8

Estimate 0.9659 1.0644 5.0448 7.2055
Bias −0.0341 0.0644 0.0448 −0.7945
MSE 0.0298 2.0380 0.3908 10.8055

α = 2, β = 1, η = 5, θ = 8

Estimate 1.1172 0.7130 4.9993 8.2982
Bias −0.8828 −0.2870 −0.0007 0.2982
MSE 0.9057 0.7913 0.0790 3.5795

50

α = 1, β = 1, η = 1.5, θ = 8

Estimate 1.1052 0.9090 1.7457 7.8656
Bias 0.1052 −0.0910 0.2457 −0.1344
MSE 0.1070 0.0257 0.0768 0.3995

α = 1, β = 1, η = 1.5, θ = 6

Estimate 0.7129 0.9599 1.8039 5.9828
Bias -0.2871 −0.0401 0.3039 −0.0172
MSE 0.1881 0.0243 0.1173 0.1416

α = 1, β = 1, η = 5, θ = 8

Estimate 0.9880 1.0584 4.9756 7.0633
Bias −0.0120 0.0584 −0.0244 −0.9367
MSE 0.0234 1.4666 0.2361 9.8821

α = 2, β = 1, η = 5, θ = 8

Estimate 1.1379 0.6785 5.0081 8.2368
Bias −0.8621 −0.3215 0.0081 0.2368
MSE 0.8586 0.2561 0.0611 2.5755

100

α = 1, β = 1, η = 1.5, θ = 8

Estimate 1.1978 0.9060 1.7280 7.9984
Bias 0.1978 −0.0940 0.2280 −0.0016
MSE 0.0827 0.0150 0.0557 0.0280

α = 1, β = 1, η = 1.5, θ = 6

Estimate 0.7855 0.9604 1.7727 6.0509
Bias −0.2145 −0.0396 0.2727 0.0509
MSE 0.1838 0.0114 0.0926 0.0251

α = 1, β = 1, η = 5, θ = 8

Estimate 0.9931 0.9176 4.9535 7.2117
Bias −0.0069 −0.0824 −0.0465 −0.7883
MSE 0.0111 0.9289 0.1832 8.2417

α = 2, β = 1, η = 5, θ = 8

Estimate 1.2400 0.6383 5.0388 7.8891
Bias −0.7600 −0.3617 0.0388 −0.1109
MSE 0.6772 0.1393 0.0540 1.4889
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Table 2. ML estimates and some information criterion for
fitting GHT, GHN and HT distributions to the remission
times of bladder cancer patients without outlier (79.05)

Model

GHN HT GHT

Estimate Estimate Estimate

α 0.8364 - 0.9549
β - - 1.0397
η - 3.4174 1.6915
θ 11.0941 8.3961 7.9730

�max -450.4970 -401.7152 -409.7782
AIC 904.9940 807.4304 827.5564
BIC 910.6824 813.1188 838.9332

Figure 4. Histogram with the fitted densities obtained from
ML estimates of GHT, HT and GHN distributions of the
remission times of bladder cancer patients without outlier

(79.05).

GHN and HT distributions. Also, we give the histogram of
the data set without the point 79.05 with the fitted densities
obtained from the three considered distributions in Figure
4. We can see from the results that the HT distribution
performs better than the GHN and GHT distributions in
terms of AIC and BIC values.

To see the applicability of the proposed model for the
outlier case, we will analyze the full data set for all distribu-
tions. We give the estimates and the values of AIC and BIC
in Table 3. Also, we display the histogram of the full data
set with the fitted densities obtained from the GHT, GHN
and HT distributions in Figure 5. We can observe that since
the values of the AIC and BIC for the GHT distribution
is smaller than the GHN and HT distributions, the GHT
distribution provides better fit than the GHN and HT dis-
tributions when the data set has outlier.

6. CONCLUSIONS

In this paper, we have proposed the new distribution and
called it “Generalized Half-t Distribution”. The new distri-

Table 3. ML estimates and some information criterion for
fitting GHT, GHN and HT distributions to the remission

times of bladder cancer patients

Model

GHN HT GHT

Estimate Estimate Estimate

α 0.7598 - 0.9387
β - - 1.1845
η - 2.7494 1.5166
θ 11.6398 8.1452 8.0454

�max -465.0387 -411.0771 -403.9355
AIC 934.0774 826.1542 815.8711
BIC 939.7815 831.8583 827.2792

Figure 5. Histogram with the fitted densities obtained from
ML estimates of GHT, HT and GHN distributions of the

remission times of bladder cancer patients.

bution has been defined as a scale mixture of GHN and
GG distribution. We have explored some properties of the
newly proposed distribution. The pdf, cdf, hazard function
and moments of this distribution have been given in detail.
We have used the EM algorithm to estimate the parameters
of the GHT distribution. We have given a small simulation
study and a real data example to illustrate the modeling
performance of the proposed distribution. From the simula-
tion results, we have observed that the parameters can be
accurately estimated. According to the real data example,
the new distribution can be used as a robust alternative dis-
tribution to the GHN and HT distributions to model data
sets that may have outliers.
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Eskişehir
Turkey
E-mail address: ymbulut@ogu.edu.tr

Ahad Jamalizadeh
Shahid Bahonar University of Kerman
Department of Statistics
Kerman
Iran
E-mail address: A.Jamalizadeh@uk.ac.ir

Fatma Zehra Doğru
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