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Modeling the upper tail of the distribution of
facial recognition non-match scores
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In facial recognition applications, the upper tail of the dis-
tribution of non-match scores is of interest because existing
algorithms classify a pair of images as a match if their score
exceeds some high quantile of the non-match distribution.
We develop a general model for the non-match distribution
above u,, the (1 — 7)th quantile, borrowing ideas from ex-
treme value theory. We call this model the GPD., as it can
be viewed as a reparameterized generalized Pareto distribu-
tion (GPD). This novel model treats 7 as fixed and allows
us to estimate u, in addition to parameters describing the
tail. Inference for both w, and the GPD. scale and shape
parameters is performed via M-estimation, where our objec-
tive function is a combination of the quantile regression loss
function and GPD, density. By parameterizing u, and the
GPD, parameters in terms of available covariates, we gain
understanding of these covariates’ influence on the tail of the
distribution of non-match scores. A simulation study shows
that our method is able to estimate both the set of param-
eters describing the covariates’ influence and high quantiles
of the non-match distribution. We apply our method to a
data set of non-match scores and find that covariates such
as gender, use of glasses, and age difference have a strong
influence on the tail of the non-match distribution.

KEYWORDS AND PHRASES: Generalized Pareto, M-estima-
tion, Quantile regression.

1. INTRODUCTION

1.1 Facial recognition

Facial recognition is the identification or verification of a
person from a still image or video using a stored database
of faces, and is used in law enforcement and surveillance,
information security, and entertainment [25]. Facial recog-
nition problems can be separated into identification or ver-
ification problems. In identification problems, an unknown
face is submitted and the system reports back the deter-
mined identity. In verification problems the system must
confirm or reject the claimed identity of the individual.

In both identification and recognition problems, facial
recognition compares a query, an image of a person being
examined, to a target, an image of a known individual of in-
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terest. The comparison of the two images is issued a score,
with higher scores indicating a better match between the
query and target. If the score exceeds a certain value, which
we will term the “classification threshold”, then the tar-
get/query pair is labeled as a match.

To make a meaningful determination of a classifica-
tion threshold, one needs to understand the distribution of
scores for target/query pairs known to be non-matches. Re-
searchers have extensive databases of images of known in-
dividuals from which they can create target/query pairs of
distinct individuals, and these can be subsequently scored
providing draws from the distribution of possible non-match
scores. Of particular interest is the upper tail of this dis-
tribution, as these are scores which indicate that the tar-
get/query pairs exhibit strong similarities. The bulk of this
distribution is of little interest.

Currently, the two most commonly used classification
thresholds are the empirical .99 or .999 quantiles of the non-
match distribution. That is, the threshold is set so that the
false match rate is 1-in-100 or 1-in-1000. Current algorithms
do not make use of available covariate information which is
included in a target/query pair.

Although the identities of the people in the target/query
pair are unknown, certain properties of the images are
known such as whether the images were taken indoors or
outdoors, if the people in the images are wearing glasses, or
metrics of image quality. Thus, the overall non-match dis-
tribution is actually a mixture of a number of distributions
given covariates. Our primary aim is to model the tail of the
non-match distribution given knowledge of the covariates,
thereby understanding how covariates influence the tail of
the resulting non-match distribution. We do not limit our-
selves to modeling a single quantile (like the classification
quantile), but instead develop a general model for the en-
tire tail of the distribution above the (1 — 7)th quantile,
where 7 is a level of interest set by the researchers, and
which is below any possible classification quantile. We will
denote the (1 — 7)th quantile by u.. A major goal is to
provide parametric estimates which are easily interpretable
by our facial recognition collaborators. That is, parameters
should link covariates to interpretable quantities like the lo-
cation of u,, the ‘scale’ of the tail above u., and the general
shape/behavior of the tail. Furthermore, we do not want
data from the bulk of the distribution to contaminate our
inference about the tail.


http://www.intlpress.com/SII/

1.2 Threshold exceedance methods from
extreme value theory

Extreme value analysis has well-developed methods for
modeling threshold exceedances above a suitably high
threshold. Let Y have distribution Fy whose upper tail
we wish to characterize. Typical extremes approaches fix
a threshold u in order to estimate 7, = P (Y > w) in addi-
tion to the parameters which characterize Fy|y,. In this
work, we do the reverse. We aim to model F' above the
(1 — 7)th quantile for fixed 7. That is, we wish to simulta-
neously estimate both w, (such that F (u;) = 1 — 7) and
the parameters which characterize Fy |y, . As in typical
extreme value analysis, we are interested in estimating very
high quantiles, but we also extend our focus to the value of
u, and how it is affected by available covariates.

[22] and [1] showed that if a distribution is in the domain
of attraction of an extreme value distribution, then the dis-
tribution of exceedances above a threshold u converges to
a generalized Pareto distribution (GPD) as u — y.4, where
y+ is the upper endpoint of the support of the distribution.
The GPD has a distribution given by

Gy 0,€) = 1= (14 929) 7 g0 ,
1—exp (—%) for £ =0

where o, > 0 and depends on u, and £ € (—o0,00). G has
support y > w when £ > 0 and u < y < u — 0,/ when
& < 0. ¢ is the shape parameter and controls the nature
of the tail. If & > 0 the tail is said to be heavy and the
distribution’s tail decays like a power function, if £ = 0 then
the distribution has an exponentially decaying tail, and if
& < 0 the distribution has a bounded tail. Additionally, we
denote the probability of a given observation exceeding the
threshold u by 7,, and this additional parameter is needed
to calculate unconditional high quantiles.

Given an i.i.d. sample of size n, traditional threshold
exceedance methods proceed by determining a threshold
u above which a GPD approximation is reasonable. Only
data exceeding this threshold are used to estimate o, and
¢, and 7, is estimated by the observed proportion of ex-
ceedances.

Selecting an appropriate threshold is both important and
difficult. If a chosen threshold is too low, then the GPD ap-
proximation will be poor, and estimates of high quantiles
may be biased. If a chosen threshold is too high, then pa-
rameter estimates will have high variability due to inade-
quate sample size. Thresholds are commonly chosen using
graphical methods such as mean exceedance plots and pa-
rameter stability plots [4, Section 4.3.1]. However, threshold
selection remains subjective and imprecise, and there has
been some work to develop automated threshold selection
methods, such as methods proposed by [7], [11], [24], and
[18].
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When covariate information is available, the data are no
longer identically distributed across different covariate val-
ues. Regression methods for extremes allow the character-
istics of the tail to change with covariates. A widely used
generalized-linear-model-like approach is to let the parame-
ters of the distribution describing tail behavior be simple, of-
ten linear, functions of covariates [2, Chapter 7], [4, Chapter
6]. Several studies have employed models where the shape
and scale parameters of the generalized Pareto distribution
vary with covariates [2, Section 7.4]. It is less common for
the threshold to vary with covariates in traditional meth-
ods. If it is desired that the threshold vary with covariates,
the point process characterization detailed by [23] can be
used. [4, Section 7.6] suggests using the point process set-
ting over a threshold exceedance model when working with
time-varying thresholds, for example. [6] further detail the
use of point process models involving covariates.

In Section 2 we develop a model for the upper 7th pro-
portion of a distribution, focusing on the more simple case
where there are no covariates. In Section 3 we discuss our
inference method via M-estimation, and discuss additional
inferential challenges when parameters are themselves func-
tions of covariates. In Section 4 we illustrate with an exten-
sive simulation study, and in Section 5 we model a dataset
of non-match facial recognition scores.

2. A MODEL FOR THE TAIL ABOVE THE
(1 — 7)TH QUANTILE

Because we aim to model the upper tail corresponding
to a fixed proportion 7, our approach cannot be viewed in
the usual context of extreme value theory. Nevertheless, we
borrow ideas from extremes, as extremes models provide a
flexible framework which can describe tail behavior in just a
few parameters which are largely interpretable. Our model,
developed below, assumes that the GPD is a useful approxi-
mation for the tail above the (1 —7)th quantile. Because 7 is
fixed, we cannot justify our model by a convergence result.
In fact, there is no limiting distribution for the distribution
above u, — one would have to know the distribution to
‘correctly’ model its upper 7th proportion. Importantly, our
approach follows the general practice of extremes of “letting
the tail speak for itself”. Our approach will use all of the
data to model u,, but will only use exceedances over this
threshold for inference on the tail model. Inference for our
model is more complicated than traditional extremes stud-
ies because the threshold u, is estimated rather than being
fixed at the outset, meaning that the exceedances vary with
the parameter u..

The three-types theorem [8, 10] states that as n — oo,

pr <Yb" < y) — exp [* (1+€y)7é} :

an

Assuming n is fixed and large enough for the above con-
vergence to imply approximate equality, then for z a high



quantile of Y,

nP (Y > z) ~ (1+§Z_b”>£.

Gnp

Assuming this approximation is appropriate for u,,

1
‘r*bn €
nP(Y>uT)nT%<1+§u > .
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Treating as an equality and solving for b, yields b, = u, —
an /€ [(m')_5 — 1} so that for z > u,,

ol

nP (Y > 2) ~ (52 — Uy (m‘)E)

an
By conditioning we obtain

nP(Y > 2Y > u,)
nP(Y > u;)
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For our fixed n, defining o = a,n~¢ allows us to eliminate
n, yielding
1 Z— Uy —¢ ©
1) PY>zY>u)=—-|{——+7 .
T g

As this can be viewed as a reparametrization of the GPD,
we refer to the conditional distribution given in (1) as the
GPD.. Its density is given by

1 Z— Uy ¢ —g1
(2) gT(Z;UT,O'7£) = __ <£ p +7 )

TO

for z > u; when £ > 0 and u, < z < u, 707"5/5 when & <
0. Importantly, the scale parameter in (1, 2) does not depend
on the threshold. For £ = 0, both (1) and (2) should be
interpreted as limits, and yield the exponential distribution
just as with the standard GPD.

A version of the threshold stability property character-
ized by the generalized Pareto distribution is exhibited by
GPD... Suppose a random variable Y conditionally exceed-
ing ug follows a GPD. with parameters wug, o, and £ such
that P(Y > wg) = 79. Then Y conditionally exceeding
u > ug follows a GPD. with parameters u, o, and £ such

—1/¢
that P(Y > u) = 7, where 7 = (f(U—UO)/U+T(;E> :

3. PARAMETER ESTIMATION

Given a set of observations, fitting the model from Sec-
tion 2 would entail obtaining estimates for the parameters

ur, 0, and £. One estimation method used in traditional ex-
tremes threshold exceedance modeling is (numerical) maxi-
mum likelihood. Recall that a sample density considered as
a function of the parameters for fixed observations is con-
sidered a likelihood [17, Section 6.3]. For traditional GPD
modeling, once the threshold is selected, the data exceeding
the threshold are fixed and the generalized Pareto density
can be used to construct a likelihood. Such an approach can-
not be used with the density given in (2) as u, is a parameter
and the data exceeding this threshold is not fixed.

However, quantile regression [16] is a well-developed
method for estimating quantiles and additionally modeling
these quantiles’ behavior in terms of covariates. It would
seem quantile regression could be sensibly combined with
the model in Section 2 to obtain estimates for u.,, o, and &.
A sequential approach could be employed, first estimating
u, using quantile regression and then, treating u, as fixed,
using (2) to create a likelihood. However, a disadvantage to
this approach is that it would not propagate the uncertainty
in the threshold. Instead, since both quantile regression and
maximum likelihood are both M-estimators we create an ob-
jective function which combines the loss function from quan-
tile regression and a ‘likelihood’ for estimating the GPD,
parameters.

Let y = (y1,...,yn)T, where y; are independent observa-
tions. The objective function we employ is

(3) My (ur,0,69) = q(uriys)
i=1

1 n
+ N ;bggT (ur, 0,6 4i) Ly >, s

where N =" I,.~, and

(4) q (u’r; yz) =T (yl - u‘l’) ]Iy-;<u.,- + (T - ]-) (yz - u‘l’) ]IinuT
arises from the loss function commonly used in quan-
tile regression [16]. Thus, the objective function is the
quantile regression objective function plus the mean log-
‘likelihood’ contribution of the exceedances. We will per-
form M-estimation; that is, we seek the u,, o, and £ which
maximize (3).

We provide some explanation of why the mean log-
‘likelihood’ contribution is taken in (3) rather than the sum.
In short, the mean likelihood is taken so that the GPD, piece
has little influence on the estimate for u,. In the usual case,
a log-likelihood’s magnitude increases with sample size; be-
coming increasingly negative (positive) if the likelihood con-
tributions tend to be negative (positive). If the mean were
replaced with the sum in (3), this second term’s magnitude
would increase with N, resulting in biased estimates for u..
In our investigations, the contribution from the GPD, piece
has tended to be negative, thus, using the naive objection
function (with a sum rather than mean) results in estimates
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of u, which are biased high as the naive objective function
favors values which result in too few exceedances. With the
mean log-‘likelihood’, the second term of (3) converges to
the mean log-likelihood contribution above u, rather than
increasing with V. Since the mean is used, this piece’s influ-
ence relative to the quantile regression piece lessens as the
sample size grows (by design).

The objective function has the appealing property that
only observations which exceed u, will influence the esti-
mates of o and &, because these parameters only appear
in the mean log-‘likelihood’ piece. Importantly for a given
u, the same values of ¢ and £ which maximize the mean
log-‘likelihood’ also maximize the standard log-likelihood.

An M-estimator is any estimate 6 defined by minimizing
iy p(x4;0) [14, Section 3.2]. While there are some estab-
lished sufficient conditions for M-estimator consistency, they
are either hard to show or not widely applicable. [14] gives
a set of five conditions that are sufficient for M-estimator
consistency, but three of them rely on the existence of some
unknown functions. [12] and [20] outline sufficient conditions
that rely on convexity of the criterion function p(z;; T},), but
the objective function we minimize does not adhere to such
a requirement.

Since scale and shape parameters only appear in the
GPD, piece of (3), consistency of these parameters follows
from standard extremes arguments. In order to prove con-
sistency of u,, we show that for u* # u, and as n — oo,

P (M (yitr 60,6, ) = Mo (50,60, 600 ) > 0) > 1,

which is sufficient for showing consistency. We note that
plugging u* into M,, creates a mismatch: the true probabil-
ity that an observation exceeds u* is 7%, but M, fixes this
at 7. The difference term can be broken down into quan-
tile regression and GPD pieces. The proof, given as sup-
plementary material (http://intlpress.com/site/pub/pages/
journals/items/sii/content/vols/0010/0004 /s004), proceeds
to show that the quantile regression difference inflates as n
increases and the GPD difference is bounded below, so that
the sum of the two must exceed 0 above some n.

3.1 Estimation and optimization

M-estimation provides a viable method to estimate the
parameters in our model; however, it does not imply that
optimization is straightforward. There are some practical
modifications to such optimization to improve estimation.

The parameter u, appears in both the quantile regression
and GPD; pieces of the objective function. As discussed ear-
lier, because the quantile regression piece grows with n and
the GPD. piece converges to a value, the quantile regres-
sion exerts far more influence on the estimate of u, (by
design). However the imbalance of the magnitudes of the
two pieces can lead to poor shape and scale estimates if
the optimization scheme updates the three parameters all-
at-once. In order to counteract this, we employ non-linear
Gauss-Seidel iterization [9, Section 2.2.5]. Each iteration of
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our optimization has two steps: the first step optimizes the
threshold parameter(s), and the second step optimizes the
GPD parameters.

It is known that numerical maximum likelihood can pro-
duce very high estimates for &, particularly when sample
size is small [5]. As our M-estimation method also requires
numerical optimization, similar difficulties can arise. In ini-
tial tests of our simulation study (presented in Section 4),
we found that a small number of the simulations would nu-
merically converge to absurdly high estimates of £. Both
[5] and [19] advocate penalized likelihood approaches which
enforce £ to take on reasonable values. Similar to [19], for
our simulation study we construct a penalty via a shifted
beta distribution centered at 0, which restricts the shape
parameter to values in [—0.5,0.5]. We think it is reasonable
to assume that £ is in this interval because if the shape is
less than -0.5, the density evaluated at the upper endpoint
exceeds 0 and if the shape is greater than 0.5, then the dis-
tribution does not have a finite variance. The shifted beta’s
log-density is

B (a, B)

where B(a, ) denotes the beta function. Throughout this
study we set & = 2 and 8 = 2 yielding a penalty symmetric
about 0.

Implementation of the penalty must be done slightly dif-
ferently for our M-estimator than in the likelihood setting.
In the penalized likelihood setting, a penalty such as the
one in (5) is added onto the log-likelihood, and because the
log-likelihood’s magnitude increases with sample size and
the penalty does not, the influence of the penalty on the
estimate of £ decreases with sample size. With the objective
function defined in (3), since the magnitude of the ‘likeli-
hood’ piece does not increase with sample size, we need to
impose a penalty whose influence will decrease with sample
size. Our penalized objective function is

a—1 _ \B-1
(5) p<f)=log<(°'5+f) 05-¢) )

M, (UT, a, f; y) = Z q (UT; yi)
1=1

1 — 1
+ N Zg‘r (uT7Ua§; yZ) ]I’ULZUT + Np<£)

i=1

Consequently, as n — oo, the estimate of £ from the penal-
ized objective function approaches the estimate of £ from the
unpenalized objective function. In the application in Sec-
tion 5, we performed estimation both with and without this
penalty term, and found that it had very little influence on
the results.

(6) M, (y;ur,0,8) =q(ur;y) + Z%p &y)

i=1 Wi

1 n
+n7 w'loggT (u.,,a,f;y-)
S ; i i
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3.2 Covariates

Our study is motivated by a desire to understand how
covariate information affects the upper tail of a distribution.

Let X = (X1,...,Xk) be a vector of covariate information.
Taking a GLM-like approach, we assume
ur = fu, (X7 /6)
o = Jfs (X, ’Y)
(7) £ = [fe(Xim).

We continue to perform M-estimation finding the 3, o, and
7 which maximize the objective function.

However, there is an optimization issue which introduc-
ing covariates makes more complex. The issue is that as
the value of u, changes such that data points are either
included in or excluded from the set of exceedances, the ob-
jective function has a discontinuous jump which typically
cause optimization programs to perform poorly. In a simple
setting with no covariates for u., the objective function has
a local maximum at each observation and optimization of u,
can be done by individually testing the discrete possible val-
ues [15]. Such a discrete approach is not possible when u. is
a function of covariates. To improve the performance of the
optimization, we introduce smoothness into the objective
function. Essentially, rather than treating each observation
as a unitary mass at a point, we center a kernel density at
each observation. This introduces a weight into the objective
function, where the weight corresponds to mass of the ker-
nel which exceeds the threshold. Thus, whereas exceedances
and non-exceedances were given respective weights of 1 and
0 before, now if the value of u, increases across an observa-
tion’s value, the observation’s contribution to M smoothly
varies from 1 down to 0. This kernel smoothing also allows
for the implementation of continuous covariates, which may
have been adversely affected by the presence of discontinu-
ous jumps in the objective function, into the model.

We use an isotropic kernel density with finite support
and we denote § to be the radius of the kernel. Observa-
tions which exceed u, — § will contribute to the general-
ized Pareto portion of the objective function, which must
be adjusted slightly to account for this. Using threshold sta-
bility of GPD, (and assuming this holds for values above
ur — ¢), one can show 75 = (T’E — 55/0)71/5, allowing us
to fit observations above u, — ¢ and still estimate u,. The
bandwidth of the kernel involves a tradeoff: a wider band-
width introduces more smoothness aiding the optimization,
but too wide a bandwidth could introduce bias for estimates
of o and ¢ as information about the tail becomes contam-
inated by observations in the bulk. In both the simulation
study and the application, we use a uniform kernel with
bandwidth 0.01, and sensitivity analysis performed on band-
width selection had very little effect on results.

Thus, an objective function that can properly handle con-
tinuous covariates with the kernel density smoothing imple-
mented is given in equation (6), where w; are weights. These

are defined such that w; = P (Y; > u,) for Y; ~ kp (y;)
where kj, (y;) is the kernel density of the ith observation
with bandwidth h.

In order to set the initial threshold parameters, we used
a simple quantile regression fit. Shape and scale parameters
are given initial values as in the ismev package in R [13].

4. SIMULATION STUDY
4.1 Set up

Monte Carlo data sets each with n = 5000 observations
Y were generated according to the formula

(8)

where X is a continuous variable with values spanning uni-
formly from 20 to 60, X5 is binary, and T} is a t-distributed
random variable with four degrees of freedom. The first three
terms of the equation will effect the threshold, whereas the
terms inside the exponential function will effect both the
threshold and scale.

Using a kernel density bandwidth of 0.01, we fit a model
that includes the continuous and categorical covariates in
both the threshold and scale, such that u, = B¢ + $1.X1 +
B2Xo and o = exp (70 + 11 X1 + 72 X2). Importantly, while
the model we fit captures the general behavior of the gener-
ating equation (8), it does not correspond exactly. For ex-
ample, the true u, resulting from (8) is not linear. Also note
that we fit a scale parameter using the categorical variable
despite that it does not appear in the scaling term applied
to the t-distributed random variable. Most importantly, the
model we fit only models the tail using a very general model,
whereas (8) specifies the entire distribution.

To obtain confidence intervals for both parameter esti-
mates and estimated high quantiles, we perform a semipara-
metric paired bootstrap. Our procedure is as follows, where
(zi,9i),3=1,...,n denotes independent observations from
(8):

1. Resample with replacement from {(z;,y;),
1,...,n}. Denote these resampled realizations as
(xf,yf),i=1,...n.

If y¥ < wuy(xf), then yf* = yf.
3. If y* > u, (z}), then we let y* be drawn from a GPD,
with fixed parameter values ﬁ, 4, and «f , and covariate

value x7, where 8 = (fo, f1. 02)" and § = (J0.91,92)""
4. The model is fitted to the (z},y;*) realizations.

Y =10+ 5X; + 20X5 + exp (14 0.02X;) T,

N

By using this semiparametric bootstrap process, we elimi-
nate ties in the tail of the resampled data set, so that when
it is used to fit our model, we have a better representation
of the tail.

Because optimization is computationally expensive, this
process is performed on the CSU ISTeC Cray HPC Sys-
tem, a cluster computing environment composed of nodes
each with 32 CPU cores and dedicated memory allocation.
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Figure 1. Fitted and true quantile against Monte Carlo generated data set 1 (top) and data set 2 (bottom).

We distribute the computing by running each Monte Carlo
iteration and its bootstrap on an individual core, with 24
instances run on each node to prevent exceeding memory
limits. The Cray could perform the process on each node in
under 24 hours, and the system’s queueing system allowed
us to use up to four nodes at one time for a process of this
length. Ultimately, we generated 504 Monte Carlo data sets
with corresponding bootstraps.

4.2 Results

Figure 1 helps to illustrate the model fitting procedure
by examining the fit for two separate simulated data sets.
Shown are both the true and fitted 0.95 and 0.999 quantiles.
These two particular instances were chosen because they
reflect a good range of observed fits. The top panels show
an instance where the fitted model mimics the truth quite
well, where the bottom panels show some difference, but
which still seems to capture the overall behavior reasonably
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well. We note that the fit shown for data set 2 was among
the worst we observed.

Figure 2 shows histograms for the parameter estimates
from the 504 Monte Carlo data sets. The top row shows es-
timates for the threshold parameters. Due to the mismatch
between the generating equation and the fitted model, the
estimates for 3 are not centered at the values in (8). De-
spite the mismatch, the threshold parameters remain very
interpretable. Estimates of 81 are slightly larger than 5, im-
plying that the threshold grows at approximately this rate
with a per unit increase in the continuous covariate X;. Es-
timates of 3 are approximately 20, also indicating the effect
the binary covariate has on u,. The middle row of Figure
2 shows the histograms for the scale parameter estimates.
The positive estimates for v; show that the fitted model is
able to find the increasing scale with X7, and we notice that
the estimates for ~5 are centered about 0 as they should be.
The bottom panel of Figure 2 shows estimates of the shape
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Figure 2. Histograms of threshold (top), scale (middle), and shape (bottom) parameter estimates from 504 Monte Carlo
simulations.

parameter. The true shape for a GPD fit to the tail of a ¢-
distribution with 4 degrees of freedom is 0.25. However, this
parameter value is achieved as the sample size increases to
infinity, and finite-sample estimates for £ for a ¢-distribution
tend to be lower than the asymptotic value.

In contrast to the model parameter estimates which can-
not be compared to truth due to the mismatch between gen-
erating and fitted models, we can compare the estimated
quantiles to the true quantiles for specified covariate val-
ues. Histograms for the five quantiles of interest are given
for two specific sets of covariates in Figure 3. The first set
uses X; = 27.5 and X, = 1, whereas the second set uses
Xy, = 42.5 and X5 = 0. The line on each histogram indi-

cates where the true quantile is located. Overall, the per-
formance of our model in predicting the quantiles appears
to be quite good. The estimates are relatively unbiased and
roughly normally distributed. While some bias appears at
the 0.9999 quantile, this is likely due to the underestima-
tion of the shape parameter £&. We would expect only five
observations above the 0.999 quantile for a data set of size
n = 5000, and we find the performance quite reasonable.
We also assess the bootstrap method’s ability to accu-
rately account for estimation uncertainty. Table 1 shows the
parameter estimates along with 95% bootstrap confidence
intervals for the data set illustrated in the top panels of
Figure 1. While we cannot assess coverage due to the mis-
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Figure 3. Histograms of quantile estimates from 504 Monte Carlo simulations evaluated for two covariate settings. The top
row corresponds to X1 = 27.5 and X5 = 1 and the bottom row corresponds to X1 = 42.5 and X5 = 0. The vertical lines

indicate the location

of the true quantile.

Table 1. Parameter estimates and 95% bootstrap confidence intervals

Parameter Bo b1 Ba Yo Y1 Y2 £
Estimate 14.23 5.22 19.54 1.13 0.0131 0.0199 0.0403
Confidence Interval | (11.64, 16.40) | (5.16, 5.30) | (18.15,20.76) | (0.347, 1.965) | (-0.003,0.029) | (-0.0258,0.292) | (-0.103, 0.179)

Table 2. Quantile estimates and 95% bootstrap confidence intervals for GPD, and quantile regression (QR)

\ Quantile | 0.95: Setting 1 | 0.999: Setting 1 | 0.95: Setting 2 | 0.999: Setting 2 |
GPD Estimate 177.33 199.01 236.16 262.04
T Confidence Interval (176.92, 178.40) (193.42, 204.45) (234.64, 236.52) (255.77, 268.83)
QR Estimate 177.80 211.12 235.83 269.41
Confidence Interval (176.81, 178.85) (191.93, 219.17) (234.69, 237.24) (253.43, 286.99)
True Value 177.52 201.27 236.08 268.15

match between generating and fitted models, we do notice
that the 8 estimates show relatively little uncertainty, while
the confidence interval for ¢ is relatively wide as is com-
mon for extremes studies. The GPD, row of Table 2 uses
the same data set and shows selected quantile estimates and
95% bootstrap confidence intervals for the two covariate set-
tings, along with the true quantile values in the last row. For
this Monte Carlo simulation, the true quantile is contained
in each of the confidence intervals. Bootstrap 95% confi-
dence interval coverage rates for the entire simulation study
are reported in the GPD., row of Table 3 for both covari-
ate settings, and the coverage rate appears reasonable for
the 0.95, 0.97, and 0.99 quantiles. Once again, we see that
performance deteriorates slightly in the 0.999 and 0.9999
quantiles, but the achieved coverage rate still yields a rea-
sonable estimate of the uncertainty associated with these
very high quantiles.
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Tables 2 and 3 also include QR rows, corresponding to
estimates of the quantiles obtained using standard quantile
regression methods. Table 2 shows that our new method
and quantile regression yield similar estimates and 95% con-
fidence intervals for the .95 quantile. Results for the .999,
however, suggest that our method may be an improvement
in generating confidence intervals for high quantiles, as our
method’s confidence intervals are narrower than those pro-
vided by quantile regression. Table 3 shows that the cov-
erage rate of the confidence intervals are comparable for
our method versus quantile regression for the .95, .97, .99,
and .999 quantiles, whereas our method clearly outperforms
quantile regression for the .9999 quantile.

Figure 4 plots the width of each of the 504 confidence
intervals provided by our method against the confidence
interval widths of quantile regression for the .95 and .999
quantiles. The plotted line shows a one-to-one relationship.



Table 3. 95% bootstrap confidence interval coverage rates and widths for GPD, and quantile regression (QR)

| Quantile [ 0.95 [ 097 [ 0.99 | 0.999 | 0.9999 |
Coverage Rate (%) |—CEDr | 9325 | 92.66 | 9464 | 92.46 [ 86.90
Setting 1 QR | 93.85 | 94.05 | 96.03 | 92.46 | 42.46
Width | _GPDr | 1752 | 2189 [ 4.251 [ 14.020 | 42.105
QR | 1.743 | 2.439 | 5.302 | 29.682 | 35.492
Coverage Rate (%) | _CEDr | 9544 | 93.65 | 92.86 | 9187 [ 88.10
Setting 2 QR | 95.83 [ 94.84 [ 9425 | 93.85 | 49.80
Width | _GPD- [ 2.165 | 2.809 | 5.698 [ 18.880 | 56.856
QR | 2.159 | 3.023 | 6.557 | 35.364 | 49.604
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Figure 4. Comparison of 95% bootstrap confidence interval widths for GPD,. versus quantile regression for the .95 quantiles
(top row) and the .999 quantiles (bottom row). The line shows a 1:1 relationship.

The .95 quantile figures suggest that our method and quan-
tile regression yield similar 95% confidence interval widths,
whereas the .999 figures suggest that our method will pro-
duce a narrower confidence interval more often than quan-
tile regression. Table 3 also shows the average width of the
95% confidence intervals for the different quantiles across

both methods. While our method has larger average in-
terval widths for the .95 quantile, the average widths are
smaller for the .97, .99, and .999 quantiles. Interestingly,
the .9999 quantile’s mean interval width is actually larger for
our method than in quantile regression, but our method also
does a much better job in capturing the true .9999 quantile.
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In summary, our simulation study shows that our method
yields both interpretable parameter estimates and reason-
able estimates for high quantiles. That the parameter es-
timates remain interpretable in our case of slight model
mismatch is important as we turn our attention to the
application, as one of the primary goals is to understand
how covariates of the match scores influence the tail of
the distribution. That the quantile estimates are reason-
able is important for understanding approximate false dis-
covery rates associated with some classification thresh-
old.

5. FACIAL RECOGNITION APPLICATION

5.1 Data: non-match scores and covariates

We will fit a sample of the non-match pairs of the
Bad partition of the Good, the Bad, and the Ugly (GBU)
face challenge problem presented by [21] to our model for
7 = 0.05. This data set consists of similarity scores yielded
by an algorithm that compares still query and target im-
ages to each other, along with a set of covariates attached
to each image. The Good partition of the GBU data set
contains images that are easy to match, whereas the Ugly
partition contains images that are difficult to match. The
Bad partition, which we use, is considered to have average
matching difficulty. The Bad partition contains 1,173,928
non-match pairs. To keep computational time manageable,
we randomly selected 100,000 of these pairs to fit to the
model.

Covariates in the GBU data set are assigned to each im-
age. In the non-match setting, it is common for the covari-
ates in the query and target images to be different. Thus,
we found it necessary to create new covariates from the
ones given in many instances. Specifically, in addition to
an age difference covariate, we created new gender, glasses,
and indoor or outdoor setting covariates so that each one
had four categories based on the target/query pair. Gender,
for example, would be classified as either female/female, fe-
male/male, male/female, or male/male. When fitting the
model, we will separate each of these categorical covariates
into three binary covariates.

In addition to our newly created covariates, we will also
use target and query FRIFM covariates when fitting the
model. FRIFM is a continous measurement of picture qual-
ity, which is defined in Section 3.2 of [3]. FRIFM is expected
to differ between any two images, so we will include the tar-
get/query FRIFM values separately in our model.

5.2 Exploratory data analysis and model
choice

The empirical .999 quantile of the non-match scores is
4.093, thus this could be the classification threshold under
current algorithms, regardless of covariates. The histograms
in Figure 5 explore how the different covariates affect the tail
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and the probability of being incorrectly classified as a match.
The top two rows of Figure 5 correspond to the categorical
covariates, and the bottom two rows to the continuous co-
variates. The top row of each pair shows histograms for the
entire sample, whereas the second row shows histograms for
those non-match pairs in the sample that would exceed a
classification threshold of 4.093. For many of these covari-
ates, it is clear that the histograms differ, indicating that the
value of the covariate affects the match score. Based on these
histograms, it appears that images in which the categorical
covariates match are more likely to be classified as matches
than those in which the categorical covariates do not match.
Using gender as an example, a disproportionate amount of
the target/query pairs which would be classified as matches
were either MM or FF. Turning attention to the continuous
covariates, it seems images comparing people with a smaller
age difference are more likely to be classified as matches than
those with large age differences. It appears the two FRIFM
covariates don’t have much of an effect on increasing the
similarity score between two non match pairs.

We also explore the tail index parameter £ for different
covariates. We calculated the 95% confidence intervals given
by fitting a GPD to data exceeding the fixed empirical .95
quantile for different subsets of the data. For all the sub-
sets, é is roughly in the range from —.1 to .05, and there
is a lot of overlap in the confidence intervals. Additionally,
likelihood ratio tests performed on each of the six group-
ings of covariate subsets yielded large p-values when com-
paring the null model with common shape parameter to a
model with a shape parameter that varies by subset, fur-
ther suggesting that the use of a common £ is appropriate.
We conclude that we can adequately model the data with a
common ¢ parameter which is not a function of covariates.
Further, if slight differences in true £ values exist between
the different groups, this will likely be compensated for by
the flexibility in o, allowing us to adequately capture tail
behavior.

Based on the results of the exploratory analysis we will
fit our model with v, = X3, ¢ = X+ where 8 =
(Bos---,B12)T, v = (90, ---,712)T, and X is a design ma-
trix with 13 columns. Coefficients 1 through 3 are indicators
for the gender covariates, 4 through 6 are indicators for the
glasses covariates, 7 through 9 are indicators for indoor or
outdoor setting covariates, 10 corresponds to the age differ-
ence covariate, and 11 and 12 correspond to the two picture
quality covariates. We once again use 0.01 as the kernel den-
sity bandwidth.

We distribute the computing differently on the cluster
than we did in the simulation study. Optimization here is
much more expensive than it was in our simulation study,
as the sample size is much larger and we have many more
parameters to estimate. We distribute the bootstrapping
across nodes, running 24 bootstrap fits on each node at a
time, resulting in 1008 bootstrap instances used to calculate
confidence intervals.
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Figure 5. Top two rows are histograms showing breakdown of categorical variables in the overall sample (top row) and for
pairs classified as matches (second row). Bottom two rows are histograms showing breakdown of numeric variables in the
overall sample (third row) and for pairs classified as matches (bottom row).

5.3 Results
5.3.1 Parameter estimates and interpretation

The parameter estimates, along with bootstrap confi-
dence intervals, are reported in Table 4. We first interpret
the parameters 8 which determine the threshold w.. All
interpretations assume all other coefficients are being held
constant.

The parameter estimates for the gender coefficients
81, B2, B3 are all negative, suggesting that the non-match
pairs containing two female subjects have the highest .95
quantile. The coefficients for the FM and MF categories are
larger negative numbers indicating lower .95 quantiles for
mixed-gender target/query pairs, likely reflecting an overall
tendency for mixed gender scores to be lower. Parameter
estimates for 84, 85, and g indicate that target/query pairs
where both subjects are wearing glasses have the highest .95
quantiles of four glasses categories, followed by cases where

both subjects are not wearing glasses. The probability of be-
ing classified a match looks to increase fairly significantly if
both pictures are taken outdoors. A non-match pair where
both pictures are taken indoors is more likely to be classi-
fied as a match than pairs where the pictures are taken in
different locations. Essentially, for all of the categorical co-
variates, u. is higher when there is agreement in the variable
between the target and query.

We next interpret the [ estimates describing how the
continuous covariates effect u,. The negative estimate for
the age difference covariate 319 indicates that as age differ-
ence increases the threshold u, decreases, thus non-match
pairs with subjects that have similar ages have higher match
scores. The FRIFM covariates 811 and (12 are both small
in magnitude, although (15 is significantly different from
Zero.

Fewer of the scale parameter estimates are significant.
Aside from +s, all the 7 estimates which are significantly
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Table 4. Parameter estimates for threshold parameters (3, scale parameters ~, and tail parameter £

Parameter Bo | B1: Gender FM | B2: Gender MF | (£3: Gender MM Ba: Glass NY | Bs: Glass YN| fs: Glass YY
Estimate 4.252 -2.094 -2.046 -0.885 -0.761 -0.730 1.675
95% CI (4.09,4.39)| (—2.19,—1.20)| (—2.15,—1.94)| (-0.99,—0.79)| (—0.86,—0.67)| (—0.83,—0.65) (1.46,1.86)
Parameter | 87: Setting 10| [s: Setting OI| By: Setting OO B1o: AgeDiff Bi1: tFRIFM | Bi2: qFRIFM -
Estimate -0.438 -0.390 2.600 -0.041 -0.002 0.008 -
95% CI (-0.56,—-0.31)| (—0.50,—0.31) (2.26,3.02) | (—0.045,—0.038) | (—0.005,0.002)| (0.004,0.012) -
Parameter Yo Y1 Y2 73 Y4 Vs Y6
Estimate 0.384 -0.096 -0.076 0.045 -0.176 -0.171 0.014
95% CI (0.067,0.43) | (—0.11,0.053) | (—0.093,0.089) (0.034,0.20) | (—0.22,-0.023) | (—0.22,—0.011) | (—0.031,0.23)
Parameter ¥7 Vs Yo Y10 711 Y12 '3
Estimate -0.159 -0.187 0.224 -0.015 -0.003 0.008 -0.011
95% CI (—0.21,0.048) | (—0.23, —0.026) (0.080,0.49) | (—0.019, —0.012) | (—0.008, —0.000) |  (0.004,0.012) | (—0.021, 0.045)

Table 5. Covariate vector used for each setting with corresponding probabilities of exceeding the algorithm’s classification

threshold

Covariate Covariate Used u o Prob
Setting | Gender I Glasses | Setting { AgeDiff | tFRIFM I qFRIFM > 4.093
1 FF YY 00 5 25 25 | 8473 | 1.963 > 0.05

2 FM NY 10 5 25 25 | 0.904 | 1.005 0.0018

3 FF YN 00 5 25 25 | 6.068 | 1.632 > 0.05

4 MF NN 00 5 25 25 | 4.752 | 1.795 > 0.05

5 FF NY 11 5 25 25 | 3.437 | 1.297 0.0296

6 MF YY (0)1 5 25 25 | 3.437 | 1.206 0.0285

7 MM NN 1I 5 25 25 | 3.313 | 1.617 0.0332

8 MM YN 11 5 25 25 | 2.583 | 1.363 0.0158

9 MM NY 11 0 25 25 | 2.758 | 1.462 0.0194

10 MM NY 11 0 40 10 | 2.607 | 1.236 0.0143

11 MM NY 11 20 25 25 | 1.936 | 1.084 0.0063

12 MM NY 1I 20 10 10 | 1.845 | 1.004 0.0048

13 MM NY 11 20 40 40 | 2.027 | 1.170 0.0079

14 MM NY 11 40 25 25 | 1.114 | 0.804 0.0010

15 MM NY 1I 40 25 10 | 0.993 | 0.721 0.0005

16 MM NY 1I 40 25 40 | 1.235 | 0.908 0.0018

different from zero have the same sign as the estimate for
the corresponding 3, implying that an increase in u, tends
to occur with an increase in the scale parameter o. The
significant positive estimate for 3 implies that when both
query and target are male, the distribution above u, has
larger scale than in the baseline FF case, despite the wu,
being lower for the MM case.

5.3.2 Covariate effect on tail and probability of false match
classification

To get an idea of how different the tail behavior is for
different covariate settings, we choose 16 covariate settings
to investigate. For the first 8 settings, which are listed in
Table 5, the numeric variables are held constant, so that
the age difference is 5, the target FRIFM is 25, and the
query FRIFM is 25. For settings 9-16, categorical covari-
ates are held constant, such that the non match pairs both
contain males, the target subject is not wearing glasses but
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the query subject is wearing glasses, and both pictures are
taken indoors.

In addition to listing the settings, Table 5 lists the point
estimates for u, and o. It is clear that the covariates have
noteworthy effect on these parameters. For instance, setting
1, which has all categorical covariates in agreement between
query and target, has a much higher threshold and a scale
parameter nearly double that of setting 2 which has all cate-
gorical covariates disagree. In fact, setting 1 has the highest
threshold of any of the investigated settings, 2 units higher
than any other that we tested. Also listed is the estimated
probability that an observation with the listed covariates
would have a match score exceeding overall empirical .999
quantile of 4.093. Settings 1, 3, and 4 all have an estimates
for u, which exceed this level, meaning that our fitted model
estimates that more than 5% of observations with these co-
variates would be incorrectly classified as matches if this
4.093 were used as the classification threshold. Settings 1,
3, and 4 all compare images that were both taken outdoors.
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Figure 6. GPD., distributions for settings 1 through 8 (top) and 9 through 16 (bottom).

Figure 6 plots the estimated GPD. distributions for the
16 settings’ values for comparison. The top panel shows set-
tings 1-8, and the bottom panel 9-16. The thick vertical
lines in each figure represent the classification threshold of
4.093. Several of the aforementioned features are clearly il-
lustrated with some distributions being entirely above the
classification threshold. Differences in scales of the distribu-
tions are also evident. Other interesting aspects of the fitted
model become evident in Figure 6, such as the fact that the
estimated distributions for settings 5 and 6 are very similar
despite the fact that the settings themselves are quite differ-
ent. In the bottom panel, there is a noticeable distinction be-
tween settings 9 and 10, settings 11 through 13, and settings
14 through 16 which correspond to changes in age difference.
As age difference gets smaller, the GPD.. threshold gets big-
ger. While changes in the target and query FRIFM do have
an effect on the threshold placement, it’s not as pronounced
as the effect of age difference. We also note that none of the
GPD,, distributions displayed in the bottom panel of Figure
6 have thresholds that exceed the classification threshold.
For all eight of these settings, the categorical covariates are
fixed at settings which do not have the largest effect on the
threshold, as the non-match pair is comparing two images of

Table 6. Empirical .95 quantiles of the Bad partition
compared to the predicted u for select settings

Covariate Bad Partition 95% Confidence
Setting | Empirical Quantile U Interval for u

5 2.974 | 3.437 (3.00, 3.88)

7 3.269 | 3.313 (2.85, 3.76)

8 2.175 | 2.583 (2.01, 3.11)

9 2578 | 2.758 (2.22, 3.28)

males taken indoors, where the target subject is not wearing
glasses but the query subject is wearing glasses. It appears
that numeric covariates alone are not enough to push the
GPD, thresholds above the match decision mark.

5.3.3 Model performance

Since we only used 100,000 of the non-match pairs in the
GBU Bad partition, it is possible to compare the empirical
.95 quantiles from the entire partition to our predicted w
values. Table 6 compares such empirical quantiles to the
predicted u and its confidence interval for select settings,
chosen so that each setting had at least 100 observations
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in the sample of 100,000. Note that in order to find the
empirical quantiles, we are ignoring both target and query
FRIFM effects, which are minimal.

In settings 7, 8, and 9, the Bad partition’s .95 empiri-
cal quantile is contained within the 95% confidence interval
for u. The confidence interval for setting 5 does not include
the .95 empirical quantile, though it is just below the lower
bound. In this case, the .95 empirical quantile of the sam-
ple of 100,000 is 3.720, which suggests that the sample is
a relatively poor representation of the Bad partition. More
encouraging still, our model predicts a u that lies between
the two empirical .95 quantiles, suggesting that the model
offsets this poor representation issue to some degree. Tak-
ing this into consideration, along with the performance for
settings 7, 8, and 9, it appears that our model does an ad-
mirable job in estimating the .95 quantile.

5.4 Conclusion

In general, it appears that non-match pairs that com-
pare images that are similar to each other in terms of sub-
ject gender, age, and use of glasses, as well as indoor or
outdoor setting, have higher probabilities of being classi-
fied as matches. In some cases, such as situations where
both images are taken outdoors, this probability far exceeds
the 0.001 false accept rate that is applied to all non-match
pairs when choosing the classification threshold. Further-
more, similarities in these situations are not created equal,
as the algorithm is more likely to suggest two different fe-
male subjects are matches compared to two different male
subjects. One way to lessen this probability of being incor-
rectly classified as a match is to control all images so that
they are taken indoors and the subjects are not wearing
glasses.

6. DISCUSSION

We have proposed an approach to model the upper 7th
proportion of a distribution using a good parametric model,
the GPD... Importantly, 7 is fixed, which differs from thresh-
old exceedance methods from extremes. Because our model
is parametric, we are able to relate both w, and o to co-
variates, and in turn to interpret how covariates influence
the tail. Because our method assumes that the distribution
is well approximated by a GPD above the (1 — 7)th quan-
tile, it could only be used for relatively small values of 7.
Inference is performed via M-estimation, and our objective
function allows simultaneous estimation of u, and GPD,’s
parameters. Our simulation study shows that our GPD, is
competitive with quantile regression methods for estimating
high quantiles, and it may outperform quantile regression for
extreme quantiles. Our facial recognition application repre-
sents a unique application with a different motivation than
standard extremes analyses in disciplines such as hydrology
or finance.

We demonstrate that covariates can have a dramatic ef-
fect on the upper 7 = 0.05 proportion of the distribution
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of non-match scores. In particular, the categorical covari-
ate settings we investigated had a large effect on the loca-
tion of u, and, to a somewhat lesser extent o. For some
of the covariate settings we investigated, we estimate that
more than 5% of the observations exceed a classification
threshold set at the .999 empirical quantile across covari-
ate settings, implying that target/query pairs with these
covariates will have a high false discovery rate. Future in-
vestigations could determine if there are other covariates
that could prove more useful in describing the tail of the
non-match distribution.
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