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Joint modeling of recurrent and terminal events
using additive models

Lianqiang Qu, Liuquan Sun
∗
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In this article, we propose a joint modeling approach for
the analysis of recurrent event data with a terminal event.
We specify an additive rates model with a multiplicative
frailty for the conditional recurrent event rate, and an addi-
tive hazards frailty model for the terminal event. A shared
frailty is used to account for the association between recur-
rent and terminal events. An estimating equation approach
is developed for the marginal and association parameters in
the joint model, and the asymptotic properties of the pro-
posed estimators are established. The finite sample perfor-
mance of the proposed estimators is examined through sim-
ulation studies, and an application to a medical cost study
of chronic heart failure patients is illustrated.
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1. INTRODUCTION

Recurrent event data are frequently encountered in a wide
variety of fields such as biomedicine, public health, engi-
neering and economics, where each subject may experience
a particular event repeatedly over time. Examples include
cancer tumor recurrences, repeated hospitalization, multiple
infection episodes, repeated drug use, recurrent economic
recessions and many others (Cook and Lawless, 2007). In-
terest of recurrent event analysis often focuses on assessing
the effects of covariates on certain features of the recurrent
event times. Various methods have been considered for the
analysis of recurrent event data based on the intensity or
rate functions of recurrent events (e.g. Anderson and Gill,
1982; Lin et al., 2000; Lin et al., 2001; Zeng and Lin, 2007;
Cook et al., 2009; Zeng and Cai, 2010; Sun et al., 2011).
A comprehensive review of the existing statistical methods
can be found in Kalbfleisch and Prentice (2002) and Cook
and Lawless (2007).

In many applications, there may exist a terminal event
such as death that stops the follow-up. For example, patients
may experience recurrent hospitalizations that are termi-
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nated by death. Furthermore, it is often the case that the
terminal event is likely to be strongly correlated with recur-
rent events of interest. Some efforts have been made recently
on the analysis of recurrent events with a terminal event, and
the existing methods generally fall into three approaches: in-
tensity models, marginal models and partial marginal mod-
els (Pan and Schaubel, 2009; Liu et al., 2012). Intensity mod-
els use frailties to account for the dependence between the
recurrent and terminal events, and the intensity functions
of the recurrent and terminal events are fully specified by
the observed covariates and the unobserved frailties (Wang
et al., 2001; Liu et al., 2004; Huang and Wang, 2004; Zeng
and Lin, 2009). For this approach, it is assumed that given
the frailties, the recurrent event process is a Poisson process,
and the estimation procedures would generally be sensitive
to deviations from the Poisson assumption. Marginal mod-
els consider the marginal rates of the recurrent and terminal
events, and the association between the recurrent and ter-
minal events is left unspecified (Ghosh and Lin, 2002; Cook
et al., 2009; Schaubel and Zhang, 2010; Zhao et al., 2011).
In this case, the rate of the recurrent events averages over
surviving and deceased subjects, and the model parameters
are somewhat hard to interpret (Kalbfleisch et al., 2013).

Partial marginal models focus on the recurrent event
rates among survivors, and a variation of this approach uses
a frailty to specify the dependence between the recurrent
and terminal events. More detailed discussion on this ap-
proach can be found in Cook and Lawless (1997), Liu et al.
(2004), Ye et al. (2007), Pan and Schaubel (2009), Zeng and
Cai (2010), Liu et al. (2012) and Sun and Kang (2013). For
example, Cook and Lawless (1997) proposed the mean and
rate of the recurrent events among survivors at certain time
points. Ye et al. (2007) and Kalbfleisch et al. (2013) stud-
ied a joint semiparametric model through a shared gamma
frailty which is used to account for the dependence between
the conditional recurrent event rate and terminal event haz-
ard. Partial marginal models offer great flexibilities in for-
mulating the effects of covariates on the conditional recur-
rent event rate among survivors, and the model parameters
can be interpreted as the marginal effects on the conditional
recurrent event rate given survival.

For partial marginal models, most existing methods as-
sume multiplicative covariate effects on the conditional re-
current event rate and terminal event hazard. In practice, a
useful and important alternative to the multiplicative model
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is the additive model, in which the covariate effects are add
to the conditional recurrent event rate and terminal event
hazard. When the additive and multiplicative models fit
the data equally well, the additive model may be preferred
due to the interpretation of the regression parameters (Lin
and Ying, 1994; Zeng and Cai, 2010). Recently, Pan and
Schaubel (2009) proposed a treatment effect measure by
combining an additive model for the conditional recurrent
event rate and a proportional hazards model for the terminal
event. Zeng and Cai (2010) and Sun and Kang (2013) stud-
ied an additive rates model and an additive-multiplicative
rates model, respectively, wherein a proportional hazards
model is used to model the terminal event, and the associ-
ation between the recurrent and terminal events is treated
as a nuisance because the baseline rate function depends on
a frailty nonparametrically. Chen et al. (2016) considered a
partly Aalen’s additive model with a multiplicative frailty
for the recurrent event rate and assumed a proportional haz-
ards frailty model for the terminal event. But they did not
establish the asymptotic distributions of the proposed esti-
mators, because additional work is needed in developing a
full asymptotic treatment of this approach. To our knowl-
edge, there is no existing work that simultaneously uses the
additive models with frailty to analyze the recurrent and ter-
minal events. In this article, we propose the additive models
with a shared frailty for the recurrent and terminal events
simultaneously. To be specific, an additive rates model with
a multiplicative frailty for the conditional recurrent event
rate, and an additive hazards frailty model for the terminal
event. A shared frailty is used to account for the associa-
tion between recurrent and terminal events. An estimating
equation approach is developed for the marginal and associ-
ation parameters in the joint model. A rigorous justification
is provided for the consistency and asymptotic normality of
the resulting estimators.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the joint models. Section 3 presents an esti-
mating procedure for the marginal and association parame-
ters, and the asymptotic properties of the proposed estima-
tors are established. Some simulation results for evaluating
the proposed methods are reported in Section 4. An applica-
tion to a medical cost study of chronic heart failure patients
from the University of Virginia Health System is provided in
Section 5, and some concluding remarks are given in Section
6. All proofs are relegated to the Appendix.

2. JOINT MODELING

Let ÑR(t) denote the number of recurrent events over the
time interval (0, t], and let Z(t) be the p×1 vector of external
time-dependent covariates (Kalbfleisch and Prentice, 2002).
Let D be the terminal event time (e.g., death) and C be the
censoring time, where the terminal event stops further recur-
rent events in that dÑR(t) takes the value 0 for t > D. Write
T = C ∧ D and Δ(t) = I(T ≥ t), where a ∧ b = min(a, b),

and I(·) is the indictor function. Due to censoring, ÑR(t)
is not fully observed, and the observed number of recur-
rent events is denoted by NR(t) = ÑR(t ∧ T ). Also, let
ND(t) = ÑD(t ∧ T ) denote the observed number of the
terminal event, where ÑD(t) = I(D ≤ t). For a ran-
dom sample of n subjects, the observed data consist of
{NR

i (t), ND
i (t), Ti,Δi(t), Zi(t), 0 ≤ t ≤ Ti, i = 1, ..., n}.

Let υ be a nonnegative unobserved frailty that is assumed
to be independent of Z(t). Following Ye et al. (2007) and
Kalbfleisch et al. (2013), we consider a (partial) marginal
rate of the recurrent events given Z(t), D = s and υ, which
is defined as

dΛR(t|υ) = P{dÑR(t) = 1|Z(t), D = s, υ}, s ≥ t.

Note that dΛR(t|υ) may depend on Z(t) and the frailty υ,
but does not depend on the terminal event time D = s ≥ t.
This implies that given covariates, υ accounts for the cor-
relation between the recurrent and terminal events. Also, it
follows that dΛR(t|υ) = P{dÑR(t) = 1|Z(t), D ≥ t, υ} (e.g.
Kalbfleisch et al., 2013), which indicates that given Z(t)
and υ, dΛR(t|υ) specifies the marginal rate of the recurrent
events among those subjects surviving to time t. For the
analysis, we consider the following marginal additive rate
model for the recurrent events:

(1) dΛR(t|υ) = υ
{
dΛR

0 (t) + βTZ(t)dt
}
,

where β is a p×1 vector of regression parameters, and dΛR
0 (t)

is an unspecified baseline rate function.
Let dΛD(t|υ) = P{dÑD(t) = 1|Z(t), D ≥ t, υ} be the

hazard function for the terminal event given Z(t) and υ. We
specify the following additive hazards model for the terminal
event:

(2) dΛD(t|υ) = υ
{
dΛD

0 (t) + αTZ(t)dt
}
,

where α is a p × 1 vector of regression parameters, and
dΛD

0 (t) is an unspecified baseline hazard function. For nota-
tional convenience, models (1) and (2) assume the same set
of covariates Z(t). The proposed estimation procedure can
be extended in a straightforward manner to deal with differ-
ent set of covariates for these two models. In addition, as in
Ye et al. (2007), we assume that the frailty υ has a gamma
distribution with mean 1 and variance θ, where E(υ) = 1
is fixed for identifiability reasons. In what follows, we as-
sume that given Z(·), the censoring time C is independent
of {ÑR(·), ÑD(·), D, υ}.

3. ESTIMATION PROCEDURES

Note that if the frailty υ is known, then by using the ap-
proaches of Schaubel et al. (2006) and Lin and Ying (1994)
to models (1) and (2), respectively, we can get the estimating
equations for β and α. However, in reality, υ is not observed,
and thus we cannot directly use these approaches. For this,
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we consider an induced marginal model for β and α by tak-
ing the conditional expectation of (1) and (2) given D ≥ t
and Z(t). Under the assumed gamma distribution for υ, we
have

dΛR(t) = P{dÑR(t) = 1|Z(t), D ≥ t}(3)

= ψ(t)
{
dΛR

0 (t) + βTZ(t)dt
}
,

and

dΛD(t) = P{dÑD(t) = 1|Z(t), D ≥ t}(4)

= ψ(t)
{
dΛD

0 (t) + αTZ(t)dt
}
,

where

ψ(t) = E[υ|Z(t), D ≥ t]

=
[
1 + θ

∫ t

0

{dΛD
0 (u) + αTZ(u)du}

]−1

.

Define

dMR
i (t) = dNR

i (t)−Δi(t)ψi(t)
{
dΛR

0 (t) + βTZi(t)dt
}
,

and

dMD
i (t) = dND

i (t)−Δi(t)ψi(t)
{
dΛD

0 (t) + αTZi(t)dt
}
,

where

ψi(t) ≡ ψi(t; θ, α,Λ
D
0 ) =

1

1 + θ
∫ t

0
{dΛD

0 (u) + αTZi(u)du}
.

Under the assumed models, it follows from (3) and (4) that
MR

i (t) andMD
i (t) are zero-mean stochastic processes. Thus,

for given ψ(t), similar to Schaubel et al. (2006) and Lin and
Ying (1994), we can use the following estimating equations
to estimate ΛR

0 (t), Λ
D
0 (t), β and α:

n∑
i=1

[
dNR

i (t)−Δi(t)ψi(t)
{
dΛR

0 (t) + βTZi(t)dt
}]

= 0, 0 ≤ t ≤ τ,
n∑

i=1

[
dND

i (t)−Δi(t)ψi(t)
{
dΛD

0 (t) + αTZi(t)dt
}]

= 0, 0 ≤ t ≤ τ,
n∑

i=1

∫ τ

0

{
Zi(t)− Z̄(t)

}{
dNR

i (t)−Δi(t)ψi(t)β
TZi(t)dt

}

= 0,
n∑

i=1

∫ τ

0

{
Zi(t)− Z̄(t)

}{
dND

i (t)−Δi(t)ψi(t)α
TZi(t)dt

}

= 0,

where τ is a prespecified constant such that P (Ti ≥ τ) > 0,
and

Z̄(t) =

∑n
i=1 Δi(t)ψi(t)Zi(t)∑n

i=1 Δi(t)ψi(t)
.

However, the weight function ψi(t) also includes unknown
parameters θ, α and ΛD

0 (t), which must be estimated.
In order to estimate θ, let ÑR(t) and Di be defined as
earlier, but with subject i, i = 1, ..., n. Define ω1i(t) =
E[ÑR

i (t)|Zi(t), Di = t] and ω2i(t) = E[ÑR
i (t)|Zi(t), Di > t].

Under the assumed models, we obtain

ω1i(t) = (θ + 1)ψi(t)

∫ t

0

{dΛR
0 (u) + βTZi(u)du},

and

ω2i(t) = ψi(t)

∫ t

0

{dΛR
0 (u) + βTZi(u)du}.

Thus,

(5)
ω1i(t)

ω2i(t)
= θ + 1,

which is a local dependence measure between recurrent and
terminal events (Kalbfleisch et al., 2013). This also means
that the subject with a termination event at time t is ex-
pected to have more recurrent events than the one with the
termination event after t. In view of (5), as discussed in
Kalbfleisch et al. (2013), we specify the following estimating
equation for θ:

n∑
i=1

∫ τ

0

{
NR

i (t)− (θ + 1)Q(t)ω2i(t)
}
dND

i (t) = 0,

where

Q(t) =

∑n
i=1 ω2i(t)

−1Δ∗
i (t)N

R
i (t)∑n

i=1 Δ
∗
i (t)

,

and Δ∗
i (t) = Δi(t){1−ND

i (t)} is an indictor that subject i
is at risk at t and dies after t.

Let γ = (βT , αT , θ,ΛR
0 ,Λ

D
0 )T . We propose to esti-

mate γ using the solutions to the equations U(γ) =
(UT

1 , UT
2 , U3, U4, U5)

T = 0, where

U1 =

n∑
i=1

∫ τ

0

{
Zi(t)− Z̄(t)

}

×
{
dNR

i (t)−Δi(t)ψi(t)β
TZi(t)dt

}
,

U2 =

n∑
i=1

∫ τ

0

{
Zi(t)− Z̄(t)

}

×
{
dND

i (t)−Δi(t)ψi(t)α
TZi(t)dt

}
,

U3 =

n∑
i=1

∫ τ

0

{NR
i (t)− (θ + 1)Q(t)ω2i(t)}dND

i (t),

U4 =

n∑
i=1

[
dNR

i (t)−Δi(t)ψi(t)

×
{
dΛR

0 (t) + βTZi(t)dt
}]

, 0 ≤ t ≤ τ,
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U5 =

n∑
i=1

[
dND

i (t)−Δi(t)ψi(t)

×
{
dΛD

0 (t) + αTZi(t)dt
}]

, 0 ≤ t ≤ τ.

Let β̂, α̂, θ̂, Λ̂R
0 (t) and Λ̂D

0 (t) denote the solutions to
U(γ) = 0, where the estimates Λ̂R

0 (t) and Λ̂D
0 (t) will be a

piecewise constant function with jumps only at the observed
recurrent event times (across all subjects) and the observed
death times, respectively. Since estimation of each parame-
ter depends on a subset of the other parameters, the solu-
tions to the estimating equations can be obtained through
a recursive procedure.

Here, we propose the following iterative algorithm to
solve U(γ) = 0, which is robust and effective in the sim-
ulation studies in Section 4.

Step 0. Choose initial estimates θ(0), α(0) and Λ
D(0)
0 (t).

Step 1. Let ψ
(0)
i (t) = ψi(t; θ

(0), α(0),Λ
D(0)
0 ). Put ψ

(0)
i (t)

into U1 = 0, U2 = 0, U4 = 0 and U5 = 0, and solve
the resulting equations for updated estimates β(1), α(1),

Λ
R(1)
0 (t) and Λ

D(1)
0 (t).

Step 2. For given β(1) and Λ
R(1)
0 (t) with ψ

(1)
i (t) =

ψi(t; θ
(0), α(1),Λ

D(1)
0 ), obtain θ(1) by solving U3 = 0.

Step 3. Return to Step 1 with updated estimates until
convergence.

Note that many choices can be used for the initial esti-

mates θ(0), α(0) and Λ
D(0)
0 (t). Usually we can take θ(0) = 1,

α(0) = 0, and set Λ
D(0)
0 (t) to be the Nelson-Aalen type es-

timate of the cumulative baseline hazard function. For the
convergence, also several criteria can be applied, and in the
simulation studies below, we used the absolute differences
≤ 10−3 between the iterative estimates of the parameters.
The algorithm converges most times in general, but non-
convergence could occur occasionally depending on the set-
ups. In the simulation studies below, the percentage of non-
convergence is about 0.6% under different set-ups with sam-
ple size n = 200, and the algorithm always converges for the
case of sample size n = 400.

Let η = (βT , αT , θ)T , η̂ = (β̂T , α̂T , θ̂)T , and η0 =
(βT

0 , α
T
0 , θ0)

T be the true value of η. We now describe the
asymptotic properties of the proposed estimators. First we
consider the existence, uniqueness, and strong consistency
of η̂, Λ̂R

0 (t) and Λ̂D
0 (t). The results are summarized in the

following theorem with the proof given in the Appendix.

Theorem 1. Under the regularity conditions (C1)–(C4)
stated in the Appendix, η̂, Λ̂R

0 (t) and Λ̂D
0 (t) exist and

are unique. Moreover, η̂ is strongly consistent to η0, and
Λ̂R
0 (t) → ΛR

0 (t) and Λ̂D
0 (t) → ΛD

0 (t) almost surely uniformly
in t ∈ [0, τ ].

The asymptotic distributions of η̂, Λ̂R
0 (t) and Λ̂D

0 (t) are
given in the next theorem.

Theorem 2. Under the regularity conditions (C1)–(C4)
stated in the Appendix, n1/2(η̂ − η0) converges in distribu-
tion to a normal random vector with mean zero and co-
variance matrix Γ−1Σ(ΓT )−1, where Σ and Γ are given
in the Appendix. Furthermore, n1/2{Λ̂R

0 (t) − ΛR
0 (t)} and

n1/2{Λ̂D
0 (t)−ΛD

0 (t)} jointly converge weakly to a zero-mean
bivariate Gaussian process for t ∈ [0, τ ].

The asymptotic covariance matrix can be consistently es-
timated by the usual plug-in method. However, Σ involves
the Hadamard derivatives of some functions with respect to
ΛD
0 (t) and ΛR

0 (t), and has complicated analytic form. There-
fore, it may be unstable to estimate Σ using the usual plug-in
method with moderate sample size. Here, we adopt the boot-
strap method to estimate the covariance matrix of η̂. The
accuracy of the bootstrap method depends on the sample
size and the number of bootstrap samples. In the following
simulation studies with sample sizes n = 200 and 400, we
find that the covariance estimation is fairly accurate when
100 bootstrap samples are used.

4. SIMULATION STUDIES

We conducted simulation studies to examine the finite
sample properties of the proposed estimators. In the study,
the covariate Z was generated from a Bernoulli distribution
with success probability 0.5, and the frailty υ was generated
from a gamma distribution with unit mean and variance
θ = 0 or 0.5. For given the frailty υ and the covariates
Z, the terminal event time D was generated from model
(2) with ΛD

0 (t) = 0.2t and α = 0.5. The recurrent event
times were generated from a Poisson process with the in-
tensity υ{λ0(t) + β0Z}, where λ0(t) ≡ 1.8, and β0 = 0.5
or 1. The censoring time was generated from a uniform dis-
tribution on (1,6), and the censoring rate was about 40%.
The average number of the observed events per subject
was about 3 under the preceding settings. The results pre-
sented below are based on 500 replications with sample sizes
n = 200 or 400, and final estimators were reached at con-
vergence. The asymptotic variance was estimated using the
bootstrap method with 100 bootstrap samples, which were
found to be adequate. We also found that variance estima-
tors from 100 and 1000 bootstrap samples are close to each
other.

The simulation results for estimation of β, α and θ are
summarized in the first half of Table 1 with n = 400, which
includes the bias (Bias) given by the sample means of pro-
posed estimates minus the true values, the sample standard
errors (SE), the sample mean of the standard error estimate
(SEE), and the 95% empirical coverage probabilities (CP)
based on the normal approximation. The results indicate
that our proposed method performed well for the situations
considered here. Specifically, the proposed estimators were
nearly unbiased, and the standard error estimators were very
accurate based on the bootstrap method. The 95% empirical
coverage probabilities were reasonable.
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Table 1. Simulation results for the estimation of α, β and θ

θ = 0 θ = 0.5
β Estimate Bias SE SEE CP Bias SE SEE CP

Z ∼ Bernoulli(0.5) with n = 400
0.25 β 0.0023 0.1328 0.1277 0.936 0.0121 0.2292 0.2316 0.950

α 0.0064 0.0656 0.0645 0.938 0.0075 0.0891 0.0913 0.957
θ 0.0019 0.0434 0.0436 0.951 0.0010 0.1038 0.0962 0.937

0.5 β 0.0044 0.1355 0.1352 0.950 0.0073 0.2383 0.2496 0.954
α 0.0020 0.0637 0.0646 0.954 0.0108 0.0878 0.0920 0.948
θ 0.0021 0.0424 0.0418 0.951 0.0039 0.0961 0.0947 0.945

1 β -0.0007 0.1450 0.1507 0.960 0.0181 0.2804 0.2832 0.959
α 0.0034 0.0631 0.0648 0.954 0.0081 0.0854 0.0913 0.953
θ 0.0001 0.0377 0.0392 0.966 0.0025 0.0914 0.0912 0.944

Z(t) = Z̃t with Z̃ ∼ Uniform(0, 1) with n = 200
0.25 β 0.0284 0.2449 0.2521 0.946 0.0334 0.4750 0.4893 0.952

α 0.0321 0.1587 0.1677 0.954 0.0249 0.2479 0.2632 0.944
θ 0.0155 0.0646 0.0661 0.956 0.0013 0.1245 0.1382 0.956

0.5 β 0.0348 0.2607 0.2678 0.938 0.0315 0.5188 0.5208 0.942
α 0.0273 0.1619 0.1681 0.950 0.0285 0.2523 0.2707 0.942
θ 0.0170 0.0593 0.0570 0.966 -0.0013 0.1305 0.1388 0.946

1 β 0.0367 0.2700 0.2937 0.956 0.0036 0.5855 0.5930 0.952
α 0.0375 0.1502 0.1720 0.960 0.0148 0.2411 0.2594 0.940
θ 0.0159 0.0548 0.0660 0.952 -0.0018 0.1176 0.1355 0.950

Table 2. Comparison results for our method and the näıve method with n = 200

Our method Näıve method
θ β Estimate Bias SE SEE CP Bias SE SEE CP

0 0.25 β 0.0066 0.1769 0.1791 0.950 0.0066 0.1587 0.1606 0.950
α -0.0001 0.0838 0.0898 0.962 -0.0001 0.0770 0.0835 0.964
θ 0.0020 0.0586 0.0587 0.932

0.5 β 0.0136 0.1866 0.1880 0.948 0.0107 0.1729 0.1660 0.942
α 0.0002 0.0875 0.0904 0.952 -0.0006 0.0814 0.0838 0.946
θ 0.0007 0.0576 0.0570 0.962

1 β 0.0019 0.1970 0.2121 0.956 0.0011 0.1760 0.1786 0.948
α 0.0129 0.0911 0.0917 0.956 0.0119 0.0863 0.0844 0.950
θ 0.0008 0.0537 0.0557 0.964

0.5 0.25 β 0.0007 0.3239 0.3280 0.942 -0.3891 0.2168 0.2120 0.552
α 0.0078 0.1218 0.1283 0.954 -0.1772 0.0675 0.0701 0.290
θ -0.0001 0.1288 0.1328 0.948

0.5 β 0.0167 0.3566 0.3516 0.950 -0.4521 0.2187 0.2246 0.474
α 0.0111 0.1226 0.1282 0.942 -0.1760 0.0682 0.0700 0.298
θ 0.0020 0.1335 0.1331 0.948

1 β 0.0183 0.4021 0.3961 0.936 -0.5900 0.2526 0.2500 0.354
α 0.0087 0.1239 0.1260 0.948 -0.1752 0.0689 0.0709 0.326
θ -0.0074 0.1292 0.1259 0.930

Next, we conducted simulation studies when the baseline
rate and hazard functions and the covariate are all time-
dependent. In the study, the setup was the same as in the
first half of Table 1, except that ΛD

0 (t) = 0.1t2, λ0(t) =
t, and the time-dependent covariate Z(t) was taken as Z̃t,
where Z̃ was generated from a uniform distribution on (0, 1).
The results are summarized in the second half of Table 1
with n = 200. Simulation results show that the proposed

method still performed well for the situations considered
here.

For comparison, we also considered the näıve method re-
garding the terminal event as an independent censoring time
(Schaubel et al., 2006). We used the same setup as in the
first half of Table 1, and the comparison results are given in
Table 2 with n = 200. We can observe that the näıve method
yielded consistent estimators when the terminal event was
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Table 3. Sensitivity analysis for the misspecification of the frailty with n = 200

Frailty Estimate Bias SE SEE CP

Uniform β 0.0270 0.3635 0.3647 0.950
α 0.0339 0.1328 0.1361 0.964

Log-normal β 0.0151 0.3303 0.3358 0.947
α 0.0103 0.1287 0.1312 0.955

Poisson β 0.0013 0.2331 0.2340 0.948
α 0.0104 0.1006 0.1030 0.952

Table 4. Analysis results for the medical cost data of heart failure patients

β α θ
Male White Age Male White Age Correlation

Our method
Est -0.0108 -1.3587 1.9264 0.0298 -0.0239 0.0592 1.2792
SE 0.0507 0.0514 0.0492 0.0066 0.0054 0.0037 0.0612
p-value 0.4159 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Näıve method
Est -0.3846 -0.5820 0.4612 0.0161 -0.0303 0.0472
SE 0.2099 0.2388 0.1208 0.0141 0.0157 0.0087
p-value 0.0335 0.0074 0.0001 0.1264 0.0269 <0.0001

Note: Est is the estimate of the parameter, and SE is the standard error estimate.

independent of the recurrent event (i.e., θ = 0). Under such
situation, both methods provided reasonable and compara-
ble estimates for β and α, and the variances of our method
were only slightly larger than those of the näıve method.
This was because the latter utilized the independent as-
sumption in estimation. However, when such independent
assumption was violated (i.e., θ �= 0), the näıve method
may have led to biases, and the proposed method worked
well.

Finally, we conducted simulation studies to examine the
performance of the proposed estimators when the gamma
distribution was misspecified. We considered three scenarios
for the frailty υ: (i) υ had a uniform distribution on (0, 2);
(ii) υ followed a log-normal distribution with unit mean and
variance 0.6; (iii) υ was generated as one-tenth of a Poisson
variable with mean 10. The other setups were the same as
in the first half of Table 1 with β = 0.5 and α = 0.5. The
results are presented in Table 3 with n = 200. It can be seen
that the proposed estimators still performed reasonably well
for the three scenarios considered, and the proposed method
was robust to misspecification of the frailty distribution.

5. AN APPLICATION

For illustration purposes, we applied the proposed meth-
ods to the medical cost data of chronic heart failure pa-
tients from the clinical data repository at the University
of Virginia Health System. The data set included a total
of 1475 patients aged 60–89 years who were first diagnosed
with heart failure and treated in 2004. The follow-up ended
with each patient’s last hospital admission up to July 31,
2006, or death date, which was obtained from the Death

Certificate Data at the Virginia Department of Vital Statis-
tics. During follow-up, 297 patients (20%) died and others
were censored. For each patient, three baseline covariates
were recorded: gender, race and age. Preliminary studies in-
dicated that patients visiting the hospital more often tended
to have a higher mortality rate. That is, the death (terminal
event) was likely to be strongly correlated with the hospital
visits (recurrent events) of interest (Liu et al., 2008; Sun et
al., 2012). Here, we applied the proposed methods to jointly
analyze the death hazard and the rate of hospital visits, and
focused on the effects of gender, race and age on the hospital
visits and death.

For the analysis, let Zi1 be a binary indicator of gender
(male= 1, female= 0), and Zi2 be a binary indicator of race
(white= 1, nonwhite= 0). Following Sun et al. (2012), we
defined Zi3 as the age group, taking values 0, 1 and 2 for
60–69, 70–79 and 80–89 years, respectively. Let τ be the
longest follow-up time. The asymptotic variance was esti-
mated by the bootstrap method with 100 bootstrap sam-
ples. The analysis results are summarized in Table 4. These
results show that both race and age had significant effects
on the rate of hospital visits, but gender did not seem to
be significantly related to the hospital visits. In particular,
white patients tended to visit hospital at less risk, and older
patients were more likely to visit the hospital. In addition,
gender, race and age had significant effects on the mortal-
ity rate. Specifically, male and older patients tended to have
higher mortality rates, while white patients had a lower mor-
tality rate. The estimate θ̂ = 1.2792 (p-value < 0.0001) in-
dicates that there was a significantly positive association
between the hospital visits and the death. That is, patients
who tended to visit hospital more frequently had a higher
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mortality rate. Moreover, in view of (5), a patient who is
known to die at time t is expected to have more than twice
(2.279) many hospital visits as a patient with identical co-
variates who has not died by the time t.

For comparison, we also analyzed the data with the näıve
method regarding the terminal event as an independent cen-
soring time (Schaubel et al., 2006). The comparison results
are also given in Table 4. It can be seen that although the
covariate effects in the recurrent and terminal event models
had the same directions between the näıve model and the
joint model across the various covariates, the covariate ef-
fects in the two models had different sizes. Specifically, for
the hospital visits, the näıve method overestimated signifi-
cantly the effect of gender, and underestimated the effects
of race and age. For the death, the näıve estimators for all
the effects were significantly different from ours. This is be-
cause, as shown in the simulation, the näıve method ignores
the correlation between the hospital visits and the death,
and leads to biases. In contrast, the proposed method uses
a shared frailty to account for the association between the
hospital visits and the death, and yields unbiased estimates.

6. DISCUSSION

In this article, we proposed a joint model for analyzing
recurrent event data with a terminal event, and a shared
frailty was used to account for the association between recur-
rent and terminal events. An estimating equation approach
was developed for the model parameters, which yielded con-
sistent and asymptotically normal estimators. The simula-
tion results showed that the proposed estimation approach
performs well, and the method was robust to misspecifica-
tion of the frailty distribution, at least for the situations con-
sidered. An application to a medical cost study of chronic
heart failure patients was provided to illustrate our method.

Note that models (1) and (2) allow a positive associa-
tion between recurrent and terminal events. Although these
models fit the example discussed in Section 5 well, the neg-
ative association may exist in some situations. For this case,
we could apply the model

dΛR(t|υ) = υ−1{dΛR
0 (t) + βTZ(t)dt},

and model (2), where υ has a gamma distribution with
mean 1 and variance θ < 1. It can be checked that ψ∗(t) =
E[υ−1|Z(t), D ≥ t] = 1/(ψ(t)(1 − θ)), and ω1i(t)/ω2i(t) =
1 − θ. This implies that the association between recurrent
and terminal events is negative, since the subject with a
terminal event at time t is expected to have less recurrent
events than the one with the terminal event after t. In addi-
tion, by replacing ψ(t) and 1+θ with ψ∗(t) and 1−θ, respec-
tively, in U1 and U3 and U4, the same estimating equations
can be constructed as in previous sections.

In the joint model, the multiplicative frailty does not have
an interpretation as an unobserved covariate. To obtain this
interpretation, similarly to Pipper and Martinussen (2004)

and Liu and Wu (2011), we could consider an additive frailty
for the recurrent event rate as follows:

dΛR(t|υ) = dΛR
0 (t) + βTZ(t)dt+ υdt.

The proposed estimation procedure can be easily extended
to the additive frailty model with a slight modification for
the equations U1 and U4 as

U∗
1 =

n∑
i=1

∫ τ

0

{
Zi(t)− Z̄∗(t)

}

×
{
dNR

i (t)−Δi(t)[β
TZi(t) + ψi(t)]dt

}
,

and

U∗
4 =

n∑
i=1

[
dNR

i (t)−Δi(t)

×
{
dΛR

0 (t) + βTZi(t)dt+ ψi(t)dt
}]

, 0 ≤ t ≤ τ,

where Z̄∗(t) =
∑n

i=1 Δi(t)Zi(t)/
∑n

i=1 Δi(t). Furthermore,
we also could consider the additive frailty for both the re-
current event rate and terminal event hazard functions as
follows:

dΛR(t|υ) = dΛR
0 (t) + βTZ(t)dt+ υdt,

and

dΛD(t|υ) = dΛD
0 (t) + αTZ(t)dt+ υdt.

In a similar manner, we can obtain the following estimating
equations for γ:

n∑
i=1

∫ τ

0

{
Zi(t)− Z̄∗(t)

}

×
{
dNR

i (t)−Δi(t)
[
βTZi(t) + ψ(t)

]
dt

}
= 0,

n∑
i=1

∫ τ

0

{
Zi(t)− Z̄∗(t)

}

×
{
dND

i (t)−Δi(t)
[
αTZi(t) + ψ(t)

]
dt

}
= 0,

n∑
i=1

∫ τ

0

{
NR

i (t)−
[ θψ(t)2t

λD
0 (t) + αTZi(t) + ψ(t)

+Q(t)ω2i(t)
]}

dND
i (t) = 0,

n∑
i=1

[
dNR

i (t)−Δi(t)

×
{
dΛR

0 (t) + [βTZi(t) + ψ(t)]dt
}]

= 0, 0 ≤ t ≤ τ,

n∑
i=1

[
dND

i (t)−Δi(t)

×
{
dΛD

0 (t) + [αTZi(t) + ψ(t)]dt
}]

= 0, 0 ≤ t ≤ τ,

where ψ(t) = E[v|D ≥ t, Z(t)] = (1 + θt)−1, λD
0 (t) =

dΛD
0 (t)/dt, and
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ω2i(t) = E[ÑR
i (t)|Zi(t), Di > t]

= ψ(t)t+

∫ t

0

{dΛR
0 (u) + βTZi(u)du}.

The above estimating equations involve estimating λD
0 (t),

which could be obtained by using some kernel-smoothing
methods. The asymptotic properties of the resulting esti-
mators would be worthy of investigation in future studies.

Since the proposed estimation procedure was given
by using the generalized estimating equation approach,
it may not be the most efficient method in the frame-
work of semiparametric models. Further research is needed
to develop a simple and more efficient inference proce-
dure. In addition, in order to assess the adequacy of
models (1) and (2) for the data, we can consider some
simple graphical and numerical procedures based on the
residuals dM̂R

i (t) and dM̂D
i (t) as in Lin et al. (1993)

and Zeng and Cai (2010), where dM̂R
i (t) = dNR

i (t) −
Δi(t)ψi(t; θ̂, α̂, Λ̂

D
0 )

{
dΛ̂R

0 (t) + β̂TZi(t)dt
}
, and dM̂D

i (t) =

dND
i (t)−Δi(t)ψi(t; θ̂, α̂, Λ̂

D
0 )

{
dΛ̂D

0 (t)+α̂TZi(t)dt
}
. It would

be worthwhile to further address this issue both theoretically
and numerically.
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APPENDIX: PROOF OF ASYMPTOTIC
RESULTS

In order to study the asymptotic properties of the pro-
posed estimators, we need the following regularity condi-
tions:

(C1) {NR
i (·), ND

i (·), Ti, Zi(·)}, i = 1, ..., n, are independent
and identically distributed.

(C2) NR
i (τ) is bounded almost surely, and Pr(T ≥ τ) > 0.

(C3) Zi(t) is almost surely of bounded variation on [0, τ ].
(C4) There exist a compact set B of η0 such that for

η ∈ B, Γ(η) is nonsingular, where Γ(η) is the limit
of −∂Ũ(η)/∂ηT with Ũ(η) defined in (A4).

Proof of Theorem 1. Define

Sk(t; η,Λ
D) =

1

n

n∑
i=1

Δi(t)ψi(t; θ, α,Λ
D)Zi(t)

⊗k, k = 0, 1,

where a⊗0 = 1 and a⊗1 = a for any vector a. Let
N̄D(t) = n−1

∑n
i=1 N

D
i (t), N̄R(t) = n−1

∑n
i=1 N

R
i (t), and

sk(t; η,Λ
D) be the limits of Sk(t; η,Λ

D) (k = 0, 1). Also for
given η, let Λ̃R

0 (t; η) and Λ̃D
0 (t; η) denote the solutions to

U4 = 0 and U5 = 0. Then

Λ̃R
0 (t; η) =

1

n

n∑
i=1

∫ t

0

dNR
i (u)−Δi(u)ψi(u; θ, α, Λ̃

D
0 )βTZi(u)du

S0(u; η, Λ̃D)
,

and Λ̃D
0 (t; η) satisfies the following integral equation:

Λ̃D
0 (t; η) =(A1)

1

n

n∑
i=1

∫ t

0

dND
i (u)−Δi(u)ψi(u; θ, α, Λ̃

D
0 )αTZi(u)du

S0(u; η, Λ̃D
0 )

,

which is a nonlinear Volterra integral equation and has a
unique solution (Polyanin and Manzhirov, 2008). For given
η, let ΛD(t; η) denote the solution to the following nonlinear
Volterra integral equation:

(A2) ΛD(t; η) =

∫ t

0

E{dN̄D(u)} − αT s1(u; η,Λ
D)du

s0(u; η,ΛD)
,

which also is a nonlinear Volterra integral equation and has
a unique solution with ΛD(t; η0) ≡ ΛD

0 (t). Let

Hn(t) =
1

n

n∑
i=1

∫ t

0

θΔi(u)ψ̃i(u; θ, α, Λ̃
D)ψi(u; θ, α,Λ

D)

×dN̄D(u)− αTS1(u; η,Λ
D)du

S0(u; η, Λ̃D
0 )S0(u; η,ΛD)

.

Then it follows from (A1) and (A2) that

Λ̃D
0 (t; η)− ΛD(t; η)

=

∫ t

0

[
Λ̃D
0 (u; η)− ΛD(u; η)

]
dHn(u) + En(t; η),

where

En(t; η) =
∫ t

0

dN̄D(u)− αTS1(u; η,Λ
D)du

S0(u; η,ΛD)
− ΛD(t; η).

By the uniform strong law of large numbers, we have that
En(t; η) → 0 almost surely uniformly in t ∈ [0, τ ] and a com-
pact set B of η0. which is a linear Volterra integral equation,
and the solution is

(A3) Λ̃D
0 (t; η)− ΛD(t; η) =

1

Pn(t)

∫ t

0

Pn(u−)dEn(u; η),

where Pn(t) =
∏

s≤t{1 − dHn(s)} is the product-integral
of Hn(s) over [0, t] (Andersen et al., 1993, Theorem II.6.3),
and Pn(u−) is the left-continuous version of Pn(u). Using
the asymptotic properties of the product-integral (Gill and
Johansen, 1990), the uniform strong law of large numbers
(Pollard, 1990), and Lemma A.1 of Lin and Ying (2001),
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we obtain that Λ̃D
0 (t; η) converges to ΛD(t; η) almost surely

uniformly in t ∈ [0, τ ] and η ∈ B. Let

ΛR(t; η) =

∫ t

0

E{dN̄R(u)} − βT s1(u; η,Λ
D)du

s0(u; η,ΛD)
,

with ΛR(t; η0) ≡ ΛR
0 (t). In a similar manner, we get that

Λ̃R
0 (t; η) converges to ΛR(t; η) almost surely uniformly in t ∈

[0, τ ] and η ∈ B. Thus, to prove the existence and uniqueness
of η̂, Λ̂D

0 (t) and Λ̂R
0 (t), it suffices to show that there exists

a unique solution to

(A4) Ũ(η) = (Ũ1(η)
T , Ũ2(η)

T , Ũ3(η))
T = 0,

where

Ũ1(η) =

n∑
i=1

∫ τ

0

{
Zi(t)− Z̄(t; η)

}

×
{
dNR

i (t)−Δi(t)ψi(t; θ, α, Λ̃
D
0 )βTZi(t)dt

}
,

Ũ2(η) =
n∑

i=1

∫ τ

0

{
Zi(t)− Z̄(t; η)

}

×
{
dND

i (t)−Δi(t)ψi(t; θ, α, Λ̃
D
0 )αTZi(t)dt

}
,

Ũ3(η) =

n∑
i=1

∫ τ

0

{
NR

i (t)− (θ + 1)Q(t; η)ω2i(t; η)
}

×dND
i (t),

and Z̄(t; η), ω2i(t; η) and Q(t; η) are defined as Z̄(t), ω2i(t)
and Q(t) with ψi(t) replaced by ψi(t; η, Λ̃

D
0 ), respectively.

Let Γ̂(η) = −n−1∂Ũ(η)/∂ηT . Then by the uniform strong
law of large numbers and the uniform convergence of
Λ̃D
0 (t; η̂) and Λ̃R

0 (t; η̂), we get that Γ̂(η) converges to a non-
random function Γ(η) uniformly in η ∈ B. Also it can be
checked that n−1Ũ(η0) → 0 almost surely. Thus, the conver-
gence of Γ̂(η) and condition (C4) imply that for η ∈ B, Γ̂(η)
is nonsingular when n is large enough. Hence it follows from
the inverse function theorem (Rudin, 1976, page 221) that
within B, there exist a unique solution η̂ to Ũ(η) = 0 for ev-
ery sufficiently large n. Therefore, there exist unique estima-
tors η̂, Λ̂D

0 (t) ≡ Λ̃D
0 (t; η̂) and Λ̂R

0 (t) ≡ Λ̃R
0 (t; η̂) (0 ≤ t ≤ τ).

Note that by the Taylor expansion,

n−1Ũ(η̂)− n−1Ũ(η0) = −Γ̂(η0)(η̂ − η0) + o(‖η̂ − η0‖).

It then follows that almost surely,

Γ̂(η0)(η̂ − η0) + o(‖η̂ − η0‖) = o(1).

Due to the nonsingularity of Γ̂(η) in B, the above equality
implies that η̂ is strongly consistent. In addition, the uniform
convergence of Λ̃D

0 (t; η) and Λ̃R
0 (t; η) implies that Λ̂D

0 (t) →
ΛD(t; η0) ≡ ΛD

0 (t) and Λ̂R
0 (t) → ΛR(t; η0) ≡ ΛR

0 (t) almost
surely uniformly in t ∈ [0, τ ].

Proof of Theorem 2. Let ψ̃i(u; Λ
D) = ψi(u; θ0, α0,Λ

D). De-
fine

G̃1(t) =
1

n

n∑
i=1

∫ t

0

θ0Δi(u)ψ̃i(u; Λ̃
D
0 )ψ̃i(u; Λ

D
0 )

×
{
αT
0 Zi(u)du+ dΛD

0 (u)
}

S0(u; η0, Λ̃D
0 )

.

It can be checked that

Λ̃D
0 (t; η0)− ΛD

0 (t) =

∫ t

0

{Λ̃D
0 (u; η0)− ΛD

0 (u)}dG̃1(u)

+
1

n

n∑
i=1

∫ t

0

dMD
i (u)

S0(u; η0, Λ̃D
0 )

.

Similarly to (A3), we have

Λ̃D
0 (t; η0)− ΛD

0 (t) =
1

R̃(t)

∫ t

0

R̃(u−)

∑n
i=1 dM

D
i (u)

nS0(u; η0, Λ̃D
0 )

,

where R̃(t) =
∏

s≤t{1 − dG̃1(s)} is the product-integral of

G̃1(s) over [0, t]. Using the uniform convergence of Λ̃D
0 (t; η0),

the uniform strong law of large numbers and and Lemma A.1
of Lin and Ying (2001), we get that uniformly in t ∈ [0, τ ],

(A5) Λ̃D
0 (t; η0)− ΛD

0 (t) =
1

n

n∑
i=1

φ1i(t) + op(n
−1/2),

where

φ1i(t) =
1

R(t)

∫ t

0

R(u−)
dMD

i (u)

s
(0)
1 (u)

,

R(t) is the limit of R̃(t), and s
(0)
1 (u) ≡ s

(0)
1 (u; η0,Λ

D
0 ). Let

G̃2(t) =
1

n

n∑
i=1

∫ t

0

θ0Δi(u)ψ̃i(u; Λ̃
D
0 )ψ̃i(u; Λ

D
0 )

×
{
βT
0 Zi(u)du+ dΛR

0 (u)
}

S0(u; η0, Λ̃D
0 )

,

and G2(t) be the limit of G̃2(t). It then follows from (A5)
that

Λ̃R
0 (t; η0)− ΛR

0 (t)(A6)

=

∫ t

0

{Λ̃D
0 (u; η0)− ΛD

0 (u)}dG̃2(u)

+
1

n

n∑
i=1

∫ t

0

dMR
i (u)

S0(u; η0, Λ̃D
0 )

=
1

n

n∑
i=1

φ2i(t) + op(n
−1/2),

where

φ2i(t) =

∫ t

0

φ1i(u)dG2(u) +

∫ t

0

dMR
i (u)

s
(0)
1 (u)

.
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Note that

Ũ1(η0)

=

n∑
i=1

∫ τ

0

{
Zi(t)− Z̄(t; η0)

}

×
[
dNR

i (t)−Δi(t)ψ̃i(t; Λ̃
D
0 )

{
βT
0 Zi(t)dt+ dΛR

0 (t)
}]

=

n∑
i=1

∫ τ

0

{
Zi(t)− Z̄(t; η0)

}

×
[
dNR

i (t)−Δi(t)ψ̃i(t; Λ
D
0 )

{
βT
0 Zi(t)dt+ dΛR

0 (t)
}]

−
n∑

i=1

∫ τ

0

{
Zi(t)− Z̄(t; η0)

}

×Δi(t)
[
ψ̃i(t; Λ̃

D
0 )− ψ̃i(t; Λ

D
0 )

]{
βT
0 Zi(t)dt+ dΛR

0 (t)
}
.

Let

G̃3(t) =
1

n

n∑
i=1

∫ t

0

θ0Δi(u)ψ̃i(u; Λ̃
D
0 )ψ̃i(u; Λ

D
0 )

×
{
Zi(u)− Z̄(u; η0)

}[
βT
0 Zi(u)du+ dΛR

0 (u)
]
,

and z̄(t) and G3(t) are the limits of Z̄(t; η0) and G̃3(t). Sim-
ilarly to (A6), we obtain

(A7) Ũ1(η0) =
n∑

i=1

ξ1i + op(n
1/2),

where

ξ1i =

∫ τ

0

{Zi(t)− z̄(t)} dMR
i (t) +

∫ τ

0

φ1i(t)dG3(t).

Likewise,

(A8) Ũ2(η0) =
n∑

i=1

ξ2i + op(n
1/2),

where

ξ2i =

∫ τ

0

{Zi(t)− z̄(t)} dMD
i (t) +

∫ τ

0

φ2i(t)dG3(t),

and G4(t) is the limit of G̃4(t) with

G̃4(t) =
1

n

n∑
i=1

∫ t

0

θ0Δi(u)ψ̃i(u; Λ̃
D
0 )ψ̃i(u; Λ

D
0 )

×
{
Zi(u)− Z̄(u; η0)

}[
αT
0 Zi(u)du+ dΛD

0 (u)
]
.

Let

ω∗
2i(t) = ψ̃i(t; Λ

D
0 )

∫ t

0

{dΛR
0 (u) + βT

0 Zi(u)du},

ω̃2i(t) = ψ̃i(t; Λ̃
D
0 )

∫ t

0

{dΛ̃R
0 (u) + βT

0 Zi(u)du},

Q̃(t) =

∑n
i=1 ω̃2i(t)

−1Δ∗
i (t)N

R
i (t)∑n

i=1 Δ
∗
i (t)

,

and q(t) be the limit of Q̃(t). Note that

Ũ3(η0)(A9)

=

n∑
i=1

∫ τ

0

{
NR

i (t)− (θ0 + 1)ω∗
2i(t)q(t)

}
dND

i (t)

−(θ0 + 1)

n∑
i=1

∫ τ

0

Q̃(t)
{
ω̃2i(t)− ω∗

2i(t)
}
dND

i (t)

−(θ0 + 1)

n∑
i=1

∫ τ

0

{
Q̃(t)− q(t)

}
ω∗
2i(t)dN

D
i (t).

As in the proof of (A7), the second term on the right-hand
side of (A9) equals

−(θ0 + 1)

n∑
i=1

∫ τ

0

[
Q̃(t)

{
ψ̃i(t; Λ̃

D
0 )− ψ̃i(t; Λ

D
0 )

}
(A10)

×
∫ t

0

{
βT
0 Zi(u)du+ dΛR

0 (u)
}]

dND
i (t)

−(θ0 + 1)
n∑

i=1

∫ τ

0

Q̃(t)ψ̃i(t; Λ
D
0 )

}[
Λ̃R
0 (t; η0)− ΛR

0 (t)
]

×dND
i (t)

= −(θ0 + 1)

n∑
i=1

∫ τ

0

[
φ1i(t)dG6(t) + φ2i(t)dG7(t)

]

+op(n
1/2),

where G6(t) and G7(t) are the limits of G̃6(t) and G̃7(t)
with

G̃6(t) =
1

n

n∑
i=1

∫ t

0

θ0

[
Q̃(s)ψ̃i(s; Λ̃

D
0 )ψ̃i(s; Λ

D
0 )

×
∫ s

0

{
βT
0 Zi(u)du+ dΛR

0 (u)
}]

dND
i (s),

and

G̃7(t) =
1

n

n∑
i=1

∫ t

0

θ0Q̃(s)ψ̃i(s; Λ
D
0 )dND

i (s).

Let dΦ(t) = E{ω∗
2i(t)dN

D
i (t)},

G̃8(t) =
1

n

n∑
i=1

∫ t

0

θ0ψ̃i(t; Λ̃
D
0 )ψ̃i(t; Λ

D
0 )

×
∫ t

0

{
βT
0 Zi(u)du+ dΛR

0 (u)
}Δ∗

i (t)N
R
i (t)dΦ(t)

ω̃2i(t)ω∗
2i(t)

,

G̃9(t) =
1

n

n∑
i=1

∫ t

0

θ0ψ̃i(t; Λ
D
0 )

Δ∗
i (t)N

R
i (t)

ω̃2i(t)ω∗
2i(t)

,
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and G8(t) and G9(t) be the limits of G̃8(t) and G̃9(t). In
a similar manner, the third term on the right-hand side of
(A9) is

(θ0 + 1)

n∑
i=1

∫ τ

0

[
φ1i(t)G8(t) + φ2i(t)G9(t)

]
dΦ(t)

−(θ0 + 1)
n∑

i=1

∫ τ

0

[ω∗
2i(t)

−1Δ∗
i (t)N

R
i (t)

E{Δ∗
i (t)}

(A11)

− q(t)

E{Δ∗
i (t)}

Δ∗
i (t)

]
dΦ(t) + op(n

1/2).

Using (A9)–(A11), we have

(A12) Ũ3(η0) =

n∑
i=1

ξ3i + op(n
1/2),

where

ξ3i =

∫ τ

0

{
NR

i (t)− (θ0 + 1)ω∗
2i(t)q(t)

}
dND

i (t)

− (θ0 + 1)

∫ τ

0

[
φ1i(t)dG6(t) + φ2i(t)dG7(t)

]

+ (θ0 + 1)

∫ τ

0

[
φ1i(t)G8(t) + φ2i(t)G9(t)

]
dΦ(t)

− (θ0 + 1)

∫ τ

0

[ω∗
2i(t)

−1Δ∗
i (t)N

R
i (t)

E{Δ∗
i (t)}

− q(t)

E{Δ∗
i (t)}

Δ∗
i (t)

]

×dΦ(t).

Let ξi = (ξT1i, ξ
T
2i, ξ3i)

T . Then it follows from (A7), (A8),
(A12) and the Taylor expansion that

(A13) n1/2(η̂ − η0) = n−1/2Γ−1
n∑

i=1

ξi + op(1).

By the multivariate central limit theorem, n1/2n1/2(η̂ − η0)
is asymptotically normal with mean zero and covariance ma-
trix Γ−1Σ(ΓT )−1, where Σ = E{ξiξTi }.

To show the weak convergence of n1/2{Λ̂D
0 (t) − ΛD

0 (t)}
and n1/2{Λ̂R

0 (t)− ΛR
0 (t)}, first note that

Λ̂D
0 (t)− ΛD

0 (t) =
{
Λ̃D
0 (t; η̂)− Λ̃D

0 (t; η0)
}

(A14)

+
{
Λ̃D
0 (t; η0)− ΛR

0 (t)
}
.

Let Υ̃1(t; η) = ∂Λ̃D
0 (t; η)/∂η. By the uniform strong law of

large numbers, it can be shown that Υ̃1(t; η) converge to
a nonrandom function Υ1(t; η) almost surely uniformly in
t ∈ [0, τ ] and η. It follows from the Taylor expansion, (A5),
(A13) and (A14) that

Λ̂D
0 (t)− ΛD

0 (t) = n−1/2
n∑

i=1

Ψ1i(t) + op(1),

where

Ψ1i(t) = Υ1(t; η0)Γ
−1ξi + φ1i(t).

Similarly,

Λ̂R
0 (t)− ΛR

0 (t) = n−1/2
n∑

i=1

Ψ2i(t) + op(1),

where

Ψ2i(t) = Υ2(t; η0)Γ
−1ξi + φ2i(t),

and Υ2(t; η0) is the limit of ∂Λ̃R
0 (t; η0)/∂η. Let Ψi(t) =

(Ψ1i(t),Ψ1i(t))
T . Because Ψi(t)(i = 1, ..., n) are indepen-

dent zero-mean random variables for each t, the multivariate
central limit theorem implies that n1/2{Λ̂D

0 (t)−ΛD
0 (t)} and

n1/2{Λ̂R
0 (t) − ΛR

0 (t)} jointly converge in finite-dimensional
distributions to a zero-mean Gaussian process. Since Ψi(t)
can be written as sums or products of monotone functions
of t and are thus tight (van der Vaart and Wellner, 1996).
Thus, n1/2{Λ̂D

0 (t) − ΛD
0 (t)} and n1/2{Λ̂R

0 (t) − ΛR
0 (t)} are

tight and jointly converge weakly to a zero-mean bivariate
Gaussian process whose covariance function at (s, t) is given
by E{Ψi(s)Ψi(t)

T }.
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